Quantum Cryptography (spring 2023)

Dominique Unruh

Exercise Sheet 12

Out: 2023-05-08

Due: 2023-05-15

1 Quantum proofs

Knowlets:	ProofSys	ProblemID: QProofs
Time:		
Difficulty:		

Show that if (P, V) is a proof system (Definition 56 in the lecture notes), then it also is a quantum proof system as in the following definition:

Definition 1 (Quantum proof systems) We call a pair (P, V) of interactive machines a quantum proof system for the relation R with soundness-error ε iff the following two conditions are fulfilled:

- Completeness: For any $(x, w) \in R$, we have that $\Pr[\langle P(x, w), V(x) \rangle = 1] = 1$.
- Soundness: For any (potentially computationally unlimited) quantum machine P^* , and for any $x \notin L_R$, we have $\Pr[\langle P^*(), V(x) \rangle = 1] \leq \varepsilon$.

Notice that the only difference to Definition 56 in the lecture notes is the additional word **quantum**.

Hint: You will crucially use the fact that it is possible for a classical algorithm to simulate the output of a quantum algorithm (as long as the quantum algorithm does not output quantum information, and as long as we don't hear about the runtime).