Quantum Cryptography (spring 2023)

Dominique Unruh

Exercise Sheet 13

Out: 2023-05-15

Due: 2023-05-22

1 Zero-knowledge and discrete logarithm

Fix a group G of prime order q with generator g. $(G, q, \text{ and } g \text{ may depend on some implicit security parameter but are considered publicly known.) Let <math>R := \{(x, w) : g^w = x, w \in \{0, \dots, q-1\}\}.$

Consider the following proof system for R (Schnorr's proof system for discrete logarithms):

- The prover P gets input $(x, w) \in R$.
- The verifier V gets input $x \in R$.
- The prover P chooses $b \stackrel{\$}{\leftarrow} \{0, \dots, q-1\}$ and sends $a := g^b$ to the verifier V.
- The verifier chooses $r \stackrel{\$}{\leftarrow} \{0, \ldots, q-1\}$ and sends r to the prover P.
- The prover P computes $s := b + rw \mod q$ and sends s to the verifier V.
- The verifier V checks whether $x, a \in G$ and $g^s = ax^r$.

This proof system is well-known to be a proof system. However, in the classical setting, it is unknown whether this proof system is zero-knowledge!¹

	Knowlets:	ProofSys	ProblemID: ZKDlogSound
(a)	Time:		
	Difficulty:		

Show that (P, V) is a proof system with soundness-error 1/q.

	Knowlets:	QZK, DlogAlgo	ProblemID: ZKDlogShor
(b)	Time:		
	Difficulty:		

Show that (P, V) is statistical quantum zero-knowledge.

Hint: This has nothing to do with rewinding! It has a lot to do with Shor's algorithm. Think of what information the simulator is missing for making everything easy, and how to get it.

¹It is however "honest-verifier zero-knowledge". This is a weaker notion where the verifier is considered to behave honestly.