Classical Control in Quantum Programs

Towards a quantum programming language

Dominique Unruh IAKS Universität Karlsruhe unruh@iaks.uka.de

Programs modelled as:

• Measurement operators

terminating programs)

• Mixture of POVM (for non-terminating)

• Classical output is measurement outcome

and generalized measurement (for

Operational Semantics

Simple Control Structures

Reasoning

Programs may:

• Terminate or run forever

- Have classical output (even when not terminating)
- •Have a post-execution state (when terminating)
- Realize any operation compatible with quantum mechanics

Simple control operations:

• Measurement operator easy to define

• **P**; **Q**: Sequential composition of programs

•print: Classical output

• if/switch: Case distinction

(branching) based on measurement results

Loops:

Harder to formalise

•No natural lattice structure → Fixpoint approach fails

No suitable topology \rightarrow Limit approach fails

• Axiomatic approach works: State some required properties of loops and show that these define loops uniquely

Reasoning:

- Pre-/postconditions as sets of density operators
- Express equality of programs conditioned on initial states
- •Reason about programs conditioned on some classical output

Examples: print a; print b print ab if (M) print 1 switch (M as m) print m print M (shorthand) Equivalent programs outputting ab If measurement M yields true, print 1 Outputs result of measuring M.

Examples:	
while (M) P	Run program P while measurement M yields true .
while (M) print N	Measure M . If nonzero, measure N , output the outcome, and redo from start
while (true) print x	Outputs infinite sequence \mathbf{x}^{∞}

Examples:	
{1} P {1}	If the initial state is a random state, so is the post-execution state (e.g. P is a permutation of basis states)
{ x in computational basis} P=noop	If variable x is in the computational basis, program P has no effect (e.g. P might be a dephasing of x)
${tr\rho = 1} P _{a} {tr\rho = \frac{1}{2}}$	Program P has probability ¹ / ₂ of outputting a

H	i:=0; while (i <n) h<sub="" {="">2 x[i]; i:=i+1 }</n)>
Uf	$\mathbf{y}:=0; \mathbf{y} \neg \mathbf{y} \oplus \mathbf{f}(\mathbf{x}); \sigma_{\mathbf{y}} \mathbf{y}; \mathbf{y} \neg \mathbf{y} \oplus \mathbf{f}(\mathbf{x})$
n ^o	$\mathbf{y}:=0; \mathbf{y} \neg \mathbf{y} \oplus OR(\mathbf{x}); \sigma_{\mathbf{y}} \mathbf{y}; \mathbf{y} \neg \mathbf{y} \oplus OR(\mathbf{x})$
Grover	i:=0; while (i <n) i:="i+1" td="" x[i]:="0;" {="" };<=""></n)>
	H;
	while (not f(x)) {
	<pre>while (k<r(n))< pre=""></r(n))<></pre>
	U _f ; H; U ₀ ; H;
	k := k+1
	}};
	i:=0; while (i <n) i="i+1" print="" td="" x[i];="" {="" }<=""></n)>