
Towards a quantum programming language

Classical Control in Quantum Programs

Operational
Semantics

Simple
Control

Structures

Loops

Reasoning

Simple control operations:

•Measurement operator easy to define

•P;Q: Sequential composition of programs

•print: Classical output

•if/switch: Case distinction

(branching) based on measurement results

If measurement M yields

true, print 1
if (M) print 1

print M (shorthand)

print ab

Outputs result of
measuring M.

switch (M as m)

print m

Equivalent programs
outputting ab

print a; print b

Examples:

Loops:

•Harder to formalise

•No natural lattice structure� Fixpoint
approach fails

•No suitable topology� Limit approach
fails

•Axiomatic approach works: State some
required properties of loops and show that
these define loops uniquely

Measure M. If nonzero,

measure N, output the

outcome, and redo from start

while (M)

print N

Outputs infinite sequence x�while (true)

print x

Run program P while

measurement M yields true.
while (M) P

Examples:

Example

Reasoning:

•Pre-/postconditions as sets of density

operators

•Express equality of programs conditioned

on initial states

•Reason about programs conditioned on

some classical output

If variable x is in the

computational basis,
program P has no effect

(e.g. P might be a

dephasing of x)

{x in computational

basis} P=noop

Program P has probability

½ of outputting a
{tr� = 1} P|a {tr� = ½}

If the initial state is a

random state, so is the
post-execution state (e.g. P

is a permutation of basis

states)

{1} P {1}

Examples:

Programs may:

•Terminate or run forever

•Have classical output (even when not

terminating)

•Have a post-execution state (when

terminating)

•Realize any operation compatible with

quantum mechanics

Programs modelled as:

•Measurement operators

•Mixture of POVM (for non-terminating)

and generalized measurement (for

terminating programs)

•Classical output is measurement outcome

Dominique Unruh
IAKS

Universität Karlsruhe
unruh@iaks.uka.de

i:=0; while (i<n) { x[i]:=0; i:=i+1 };

H;

while (not f(x)) {

while (k<r(n))

Uf; H; U0; H;

k := k+1

}};

i:=0; while (i<n) { print x[i]; i=i+1 }

Grover

y:=0; y ¬ y � OR(x); �y y; y ¬ y � OR(x)U0

y:=0; y ¬ y � f(x); �y y; y ¬ y � f(x)

i:=0; while (i<n) { H2 x[i]; i:=i+1 }

Uf

H


