Quantum Programs with Classical Output Streams
(Extended abstract)

Dominique Unruh

Institut fiir Algorithmen und Kognitive Systeme, Universitat Karlsruhe
Am Fasanengarten 5, 76131 Karlsruhe, Germany

Abstract. We show how to model the semantics of quantum programs that give classical output
during their execution. That is, in our model even non-terminating programs may have output. The
modelling interprets a program as a measurement process on the machines state, with the classical
output as measurement result. The semantics presented here are fully abstract in the sense that
two programs are equal if and only if they give the same outputs in any composition.

1 Introduction

Most (quantum) algorithms take a (classical or quantum) input, calculate, and finally give a (classical
or quantum) output. However, this paradigm does not capture the case where a program outputs data
before its termination. Then even a non-terminating program may have outputs (possibly an infinitely
long one). An example for such a program would be e.g. one that enumerates some set.

One possible way to model such a behaviour might be to model a program as a classical process
operating on a quantum state, giving raise to a stochastic process (examples for this approach can be
found in [LJ04, [GN04, [Val04l [SV04]). Such a language could then be augmented by operations for giving
classical output, and the stochastic process would induce a probability distribution on the outputs.

However, there is a drawback to such a hybrid approach. Due to the laws of quantum mechanics,
there are different probability distributions of quantum states that principally cannot be distinguished.
Therefore two programs might have different semantics although they have exactly the same observable
behaviour. This problem was tackled by [Sel04], where semantics of a quantum programming language
where presented which did not model a classical stochastic process on quantum data, but instead rep-
resented the state of the program directly by a density operator, an established formalism describing
probabilistic mixtures of quantum states. Since two density operators are equal if and only if the ensem-
bles are indistinguishable, this yielded to fully abstract semantics in the sense that two programs have
the same semantics if and only if they show the same behaviour in any larger context. However, these
semantics did not have the possibility of modelling streams of classical output.

We follow the philosophy adapted by [Sel04] and present fully abstract semantics for quantum pro-
grams with classical output streams. The idea underlying the model is to consider the execution of a
program to be a physical measurement process on the state of the program. Such a measurement process
takes a quantum state as input (the initial state of the system), returns a classical measurement result
(the output during the programs execution) and leaves the system in a new state. Such a measurement
process can be described by the established PMVM formalism. Of course, for a non-terminating pro-
gram the notion of the state after the execution is not defined, so these programs are to be modelled by
measurements without a post-measurement state, so-called POVMs.

We show how to combine the PMVM and POVM formalisms to allow for programs that sometimes
terminate and sometimes do not. The situation is slightly complicated by the fact that nonterminating
programs may have an uncountable number of possible output sequences. Fortunately, the modelling of
POVMs and PMVMs presented in [Dav76] (see also Section [[T]) is able to handle such a situation.

The most interesting construct presented here is that of loops. If nonterminating programs may have
outputs, the usual approach of defining a loop as the least fixpoint using the natural ordering of programs
fails. Therefore we present an alternative approach where the semantics of a loop are uniquely defined
by some intuitive axioms (see Section [T]).

In this extended abstract, we give complete formal definitions, but omit all proofs.

1.1 Notation and quantum mechanical formalism

Note that this summary of quantum mechanical formalism does not provide an introduction to quantum
mechanics. It is mainly intended to state the nomenclature used in this paper. For a gentler introduc-

tion see e.g., [INCO0] or [Pre98], and [Dav76] for the case of POVMs/PMVMs with uncountably many
outcomes.

By N, Z and C we note the natural numbers (including 0, N otherwise), the integers and the
complex numbers, respectively. If A is a non-empty set, by A* we denote the set of all finite, by A the
set of all infinite, and by A%°? the set of all finite or infinite sequences over A. The empty word is written
e. Given two sequences a and b, ab denotes the concatenation (if a is infinite, ab = a).

Pure quantum states are elements of some Hilbert space H with unit norm. A pure state is written
|@). Tts adjoint is (¥|. A Hilbert space of the form C¥ for some set X has a distinguished base, the
computational base {|i) : ¢ € X}. An operation on a pure state that results in a new pure state is
represented by a unitary transformation (or in general by an isometric one, if the operation is not
surjective).

To represent mixed states (i.e., states about which we have incomplete information), we use density
operators, which are symmetric, positive operators on H of trace at most 1. A mixture of (at most
countably many) states |¥;) with probabilities p; is represented as . p;|¥;)(¥;|. Each density operator
corresponds to at least one mixture (with total possibility < 1). Quantum processes on density operators
are represented by quantum superoperators, i.e., completely positive maps on density operators which
do not increase the trace. Trace-preserving superoperators we call probability preserving.

Given a density operator p over some composed Hilbert space H4 ® Hp, the partial trace try p is a
density operator over Hp which represents the state of the second subsystem, if the first subsystem is
lost.

Measurements on density operators are either modelled as POVMs or PMVMs. If the state of the
system after the measurement is undefined, a POVM is used. A POVM & with outcomes in a set {2 assigns
a positive symmetric operator £(A) on ‘H to any measurable subset A of 2, s.t. > . E(A4;) = E(U; Ai)
for any countable collection of disjoint sets (where the sum converges in the weak operator topology),
E(@) =0, and tr E(A)p < tr p for all measurable A C 2 and density operators p. If tr £(A)p = tr p for all
density operators, we call £ probability preserving. Given a state p, the probability of measuring some
a € A is given by tr(£(A)p).

In the case that the state of the system after the measurement is defined, one has to use PMVMs. A
PMVM F assigns a superoperator F(A) to each measurable A C 2, s.t. Y. F(A;) = F(U,; A;) for any
countable collection of disjoint sets (where the sum converges in the strong topology), F(0) = 0, and
tr F(A)(p) < trp for all measurable A C {2 and density operators p. If tr F(A)(p) = tr p for all density
operators, we call F probability preserving. Given a state p, the probability of measuring some a € A is

given by tr F(A4)(p), and the resulting state under that condition is %.

2 Modelling a program’s operation

We will now discuss how the operation of a program can be modelled. We first start by modelling
terminating programs. Such a program takes a state (the initial state of the machine, represented by
a density operator), gives some (classical) output, and returns a new density operator, the state of the
machine after program execution. This behaviour can easily be modelled by a PMVM, which takes the
initial to the resulting state and has a sequence of outputs as its measurement outcome. However, a
nonterminating program could not be modelled thus, since such a program does not have a resulting
state. Therefore, it is better modelled as a POVM, which takes the initial state and gives us a probability
distribution of output sequences, but not the state after application.

We can now model terminating programs and nonterminating programs. However, we need to model
programs, which do sometimes but not always terminate. Such a program we express as a mixed mea-
surement, which we define as follows:

Definition 1 (Mixed measurement). Let H be a Hilbert space. A mixed measurement M with out-
comes in 2 over H is a pair (M5 M™), where M is a PMVM over H and M™ a POVM over H
with outcomes in (2.

Given a density operator p, the probability that the measurement terminates (i.e., there is a state
after the application of the measurement), and that the outcome of the measurement lies in a measurable

set A C 02, is given by tr M (A)(p), and the resulting state is %.

The probability that the measurement does not terminate and has an outcome in A, is tr M (A)p.
We will usually take the Hilbert space H as implicitly given.

Since it does not make sense to talk about measurements, where the probability of getting any result is
greater than 1, we usually have to restrict mixed measurements to be probability preserving or reducing,
as given by the following definition:

Definition 2 (Probability preserving). A mized measurement M is probability preserving if for all
density operators p it is
tr MR (A)(p) + tr M™(A)p = trp.

We call M probability reducing if for all p it is
tr M (A)(p) 4+ tr M™(A)p < trp.

Using this notation, we can now model programs that may or may not terminate, by considering
them to be a measurement which yields the classical output of the program as a result.

Definition 3 (Program). Let a countable alphabet X be fized. Let 35°9 be the set of finite and infinite
sequences over S Let & denote the empty word in X.
A program P is a probability preserving mized measurement with values in X%, satisfying the addi-

tional requirement
Pﬁ“({:ﬂ € X%9: x is infinite}) = 0.

When P is only probability reducing, we call P a partial program instead.

The additional requirement in this definition results from the fact that no terminating program can
have an infinitely long output.

We finish this section by defining some very simple programs.

First, consider the program noop, which does nothing and terminates immediately. Since noop has
a probability of 0 for non-termination on any initial state, we get noop™(A) = 0 for all A. And since
the output is always € (the empty in X%9), we get noop™(A) = 0 for ¢ ¢ A. Finally, the state is not
modified, so we have noop'™(A) = 1 for e € A (since 1 is the identity on the density operators).

Second, consider the program halt, which does not terminate and has no output. Following a similar
reasoning as with noop, we see that haltfi"(A) =0 for all A, and halt™ x (A) = 1 if and only if € € A,
and halt™(A4) = 0 otherwise.

Finally, consider the simple program print x for x € X*, which outputs z and then terminates.
Again, as with noop we have (print x)™ = 0. But, since = is output, we get (print x)in(A4) = 1 if
and only if x € A. This program can of course only give constant outputs; in Section [0l we show how to
output the result of a measurement.

We collect these examples in the following

Definition 4 (Elementary programs). Let x € X*. Then the programs noop, halt, print x are
defined by (for all measurable A C X5¢4)

1 A
noop'™(4) = {O: i ; A: noop™(A) = 0,
haltfi®(4) =0, halt"(A) = L, ec4,
0, e¢ A,
(print x)"(A4) = {(1): i Z i: (print x)™(A) = 0.

It is easy to see that all these are in fact programs (as by Def. ().

3 Elementary operations

Besides the elementary programs presented in the preceding section, a very basic kind of quantum pro-
grams is the application of unitary transformations to the state of the system. Since such an application
does not terminate and does not give output, the following definition is straightforward:

1 335¢4 ig the set of all possible outputs of a program.

Definition 5 (Unitary transformations on the program’s state). Let U be an isometric transfor-
matiod on H. Then the program U is defined by

UpUt, €€ A,

U (A)p =0
0, A, (A)p

Ui (A)(p) = {

for all density operators p over 'H.
That this notion is well-defined, is shown by the following

Lemma 1 (Unitary transformations). Let U be an isometric transformation. Then U ezists and is
indeed a program.

Most often, one does not want to apply a unitary transformation to the whole of H, but only to some
registers.
To be able to define this, we will assume for the rest of this section that H has the following structure:

H= ®®Tw.

zeV

Here V is a list of variable names and T, an arbitrary countable set (the type of the variable). So H
is decomposes into several quantum registers with names x € V. Typical types might be bits, denoted
by the set bit := {0,1}, booleans, denoted by bool := {true, false}, or integers, denoted by the set
int := 7.

Using this decomposition, we can define the application of a unitary transformation on several vari-
ables:

Definition 6 (Unitary transformations on variables). Let x1,...,x, be pairwise different variable
names from V. Let further U be an isometric transformation on CTo1 @ --- ® CT=n. Then let $ be the
canonical unitary isomorphism (that only reorders the coefficients) between H and

C e -oCH @ ® CTen with X :=={z1,..., 2.}
zeV\X

Then U(x1,. ..,) is the unitary transformation &~ Lo(U®1)o® (here 1 is the identity on e\ x CTen),
and U(xy,...,%y) is U(z1,...,x,) interpreted as a program as in Definition [A
If n =1, we write short Uxy for U(xy).

So U(x4,...,%,) simply means that U is applied to the Hilbert space corresponding to the variables
TlyeeeyTp.

Another very important operation is the (classical) assignment to quantum registers. E.g., when we
write a := 5 we mean that in the register a the value 5 is prepared. This is easily formalised using the
partial trace. Consider a Hilbert space H decomposing into two spaces H = Ha ® Hp. Then preparing
the state |¢) in H 4 is the operation mapping a density operator p over H to |@)(p| ® tra p, where tr4 is
the partial trace tracing out the space H4. This can easily be generalised to assignments to variables:

Definition 7 (Constant assignments). Let x1,...,x, be pairwise different variable names from V,
and (a1,...,an) € [[} Tu,. Let

HA = (DTwl ®®®Twn7

Hp = ® CTen with X = {z1,..., 20},
zeV\X

and @ : H — Ha ® Hp be as in Definition [l Further tra denote the partial trace tracing out H,.
We define the superoperator S over H assigning (a1, ...,an) to (x1,...,2Tn):

S(p) =" (lar,...,an){a1,...,an| @ tra(@p O1)) &

2 Isometries are a more general case than unitary transformations. In particular, they need not be surjective.
Mostly we will only use unitaries, therefore the name of the definition.

for all density operators p over 'H.
Then (x1,...,%y) := (a1,...,2an) is the program P defined by

n S, ec€FE,
P! (E):{o e¢E

P"(E) = 0.

We also write x := a for (x) := (a).

The intuitive meaning of x := a is to assign a to x, and the intuitive meaning of the statement
(X1,...,%n) = (a1,...,%y) is to assign a; to ;. Note however that using this definition, only the assign-
ment of constant values is possible. In Section [0l we show how to assign the outcome of a measurement.

Note that the constructs in this section rely on the implicit or explicit definition of the variable

names V and the types 1. To make these explicit, we may use the following convention: A program
with H = @,y C7+, and variable names V and types T} is prefixed by

var x : Ty

for each x € V.
We present two examples for the constructs presented in this section:

var n:int; n=5;

This is a program over the Hilbert space H = €% which always terminates, gives no output, and where

the state after the execution is |5)(5| (independent of the initial state).
1000
For the second example, let CNOT := (8 50 (1)) operating on CP°°! @ C°°!, Then
0010

var a:bool; var b:bool; var c:bool;

CNOT(a,b); CNOT(c,b)
is a program over the Hilbert space H = C?°°! @ CP°°! @ CP°°!. It flips the second bit first conditioned
on the first and then conditioned on the third bit.

Admittedly, these constructs are quite rudimentary, they mainly serve to give a minimal set of ele-
mentary operations to be able to use the control-related constructs in the following sections. A concept
of variables with a richer type-system and scoping will be presented in a later paper [Unral.

Note further, that it seems very restrictive that only constant assignments are possible in this lan-
guage. However, in Section [0l it is shown how to assign the outcomes of measurements to variables.

4 Probabilistic sum

The simplest operation on programs is the probabilistic sum. Let P and Q be programs, and p € [0, 1],
then P &, Q denotes the program resulting by running P with probability (1 — p) and Q with probability
p. It is easy to see that this intuition is satisfied the following definition:

Definition 8 (Binary probabilistic sum). Let P and Q be programs (or partial programs), and p €
[0,1]). Then we define the program (the partial program) P &, Q by

(P®, Q)™ == (1 —p)P™ +pQ™,
(P&, Q)™ == (1—p)P" +pQ™.
We can even easily generalise this definition to an arbitrary number of summands:

Definition 9 (Probabilistic sum). Let I be a countable set. Let P; (i € I) be programs (partial pro-
grams), and p; € [0,1] (¢ € I) with) ,p; = 1. Then the probabilistic sum is the program (partial
program) @, piP; defined by

(@pipi)ﬁn = Zpip?n,
A i

(@pipi)nt =Y pP
A i

A question naturally arising would be, whether the probabilistic sum is always defined, especially for
infinitely many summands. The following lemma answers this question positively.

Lemma 2 (Probabilistic sum). Let I be a countable set. If all P; (i € I) are programs, and), ; p; =
1, then @, piP; exists, is uniquely defined and a program.

If all P; are partial programs, and), pi <1, then €, piP; ewists, is uniquely defined and a partial
program.

Example: Using this constructor, and the program print from the preceding section, we can formulate
a program, which outputs a random bit:

print O@% print 1.

5 Sequential composition

Probably the most important construction in any imperative programming language is sequential compo-
sition, i.e., the successive application of programs. To achieve this goal, we first formulate the composition
of mixed measurements.

Let P and @ be mixed measurements. What does the composition QP (Q applied after P) mean
intuitively? First we measure P, yielding outcome xp. Then, if P terminates, we measure @, yielding
outcome z¢. The overall outcome of this experiment shall then be (zp,zq) or zp (depending on whether
@ has been applied or not). This intuition easily gives us the following properties of @ P, which turn out
to define QP (cf. Definition [I]):

Definition 10 (Sequential composition of mixed measurements). Let P and @ be mized mea-
surements with outcomes in 2p resp. 2q. Then QP is the mized measurement with outcomes in (£2p X
q) U 2p satisfying the following equalities for all density operators p and all measurable Ap C (2p,
AQ Cg:

(QP)™(Ap x Ag)(p) = Q™ (AQ) (P™(Ap)(p)),
tr(QP)™(Ap x Ag)p = tr Q" (Ag) P™(Ap)(p),
tr(QP)™(Ap)p = tr P (Ap)p.

The following lemma justifies calling these properties a definition:

Lemma 3 (Composition of mixed measurements). Let P and @ be mized measurements with
outcomes in {2p resp. {2q.

1. If QP emists, it is uniquely defined by Definition [I0.

2. If 2p and 2o can be embedded in compact metrisable spaces, the composition QP exists.
3. If 2p = 29 = (25, the composition QP exists.

4. If P and Q are probability preserving (reducing), so is QP (if existent).

At a first glance, one might think that this definition already gives us the sequential composition
of programs. However consider the following example: Let P; output s € X*. Then we expect the
composition of P, and P. to have the same operational semantics as the composition of P, and Py,
namely Pa.. However, using Definition we get P.P.p, which yields with probability 1 the outcome
(ab,c) # abc. Similarly, Py.P, outputs (a,bc) # abc. This problem can be solved by defining the
composed program P,;Py. to result from applying the composed mixed measurement P.P,, and then
“forget” about the structure of the outcome, i.e., we map (ab, c) to abc, and more generally (z,y) to the
concatenation xy.

In order to formalise this idea, we first have to define what it means to apply a function f to the result
of a mixed measurement P. Note that Pfi"(A), P™(A) describe the behaviour of the measurement re-
stricted to the case that the outcome z lies in A. Then Pfin(f~1(A)), P™*(f~'(A)) describe the behaviour
of the measurement restricted to the case that f(x) € A. Considering this, one easily understands the

Definition 11 (Function application to mixed measurements). Let P be a mized measurement

with outcomes in (2. Let further f : 2 — (2 be a measurable function. Then we define the mived
measurement f(P) with outcomes in (2 by setting (for all measurable A C (2):

(F(P) ™" (4) = P™ (£ (4),
(F(P))™(A) = P (£7(A)).
If f has a domain containing but not equaling §2, we slightly generalise the definition by setting f(P) :=
fla(P).
The following lemma is then obvious:

Lemma 4. Let P be a mized measurement with outcomes in §2. Let further f : 2 — 2 be a measurable
function.

1. The mized measurement f(P) exists and is uniquely defined by Definition [T
2. If P is probability preserving (reducing), so is f(P).

We now have the means to formulate the

Definition 12 (Sequential composition of programs). Let flatten be the function taking a (finite
or infinite) sequence over X°°9 and returning the concatenation of the elements of the sequence.
Then we define the sequential composition P;Q of two programs (partial programs) by

P;Q := flatten(QP),
where on the right hand side P and Q are treated as mized measurements.

We are now able to formulate simple programs like

print a; print b (outputs ab),
print a; halt (outputs a, but does not terminate),

However, two questions arise naturally: Is P; Q in fact a program, and is the operator ; associative, as
one would expect? The following lemma answers these questions positively and thus justifies Definition T2

Lemma 5 (Composition of programs). Let P, Q, R be programs (partial programs). Then

1. P;Q exists, is uniquely defined, and is a program (partial program).
2. It is {P;Q};R="P;{Q;R}
3. It is P;noop = noop;P = P.

Using the notion of composition, we can now formalise the claim, that the semantics presented here
are fully abstract:

Lemma 6 (Fully abstract semantics). Let P # Q be programs. Then there are programs S,T and a
measurable set A C X% of outputs, s.t. the probability that S;P;T or S;Q;T has an output in A are
different for any initial state p. Formally:

tr(S;P5T) ™ (A)(p) + tr(S;P5T)™(A)p # tr(S;Q;T)™ (A)(p) + tr(S;Q;T)™ (A)p.

6 Branching programs

It would be quite hard to formulate interesting program code without the possibility of branching. We
will first discuss the simplest constructor for branching programs, the if-statement, and then proceed
to a more general construction, the switch-statement.

Let B be a PMVM with two possible outcomes: true and false, representing a Boolean test on the
state of the program (e.g., measuring two registers, and returning, whether they are equal). Then the

3 Note that for grouping programs, we use curly braces instead of parentheses, as common in many programming
languages like C, Java, etc.

program “if (B) P else Q” has the following intuitive representation: First, we apply the measurement
B, then, if the outcome is true, we run P, otherwise Q. The output of “if (B) P else Q” is that of P
or Q, respectively.

Using the semantics described in Definition [Il we easily see that this behaviour is captured by the
following

Definition 13 (Branching using if). Let B be a probability preserving (reducing) PMVM with out-
comes in {true,false}. Let further P and Q be programs (partial programs). Then

R:=if (B) P else Q
is the program (partial program) satisfying (for all measurable A C X%°9 and all density operators p):

RA%(A4)(p) = Pin(A) (B(true)(p)) + Qfin(A) (B(false)(p))
trR™(A)p = tr P™(A)B(true)(p) + tr Q" (A)B(false)(p)

Further “if (B) P” stands for “if (B) P else noop”.
This definition is supported by the following

Lemma 7. IfP and Q are programs (partial programs), and B a probability preserving (reducing) PMVM
with outcomes in {true,false}, then “if (B) P else Q” and “if (B) P” exist, are uniquely defined,
and are programs (partial programs).

This lemma follows easily from the more general Lemma [§
As an example, we formulate a small program, which sets a qubit to 0 and outputs its prior content,
using only measurements and unitary operations:

var a:bit; if (a=0) print O else { NOT a; print 1 }

Here NOT denotes the bit-flip, and a=0 is the PMVM measuring a and yielding true if and only if the
outcome is 0. The formal notation for elementary tests like a=0 is introduced in Section

A more general construct which has if as a special case is the switch-statement. Later in this section
we will see that its additional power is helpful in formulating quantum programs.

Consider a PMVM M with outcomes in a countable set C, and a family of programs P(c) indexed by
c € C. Then we can interpret the program switch (M as c) P(c) to describe the following experiment:
First, we measure the program’s state using M. Let ¢ € C denote the outcome of that measurement. Then
we execute P(c). Quite analogous to Definition [I3] we get

Definition 14 (Branching using switch). Let M be a probability preserving (reducing) PMVM with
outcomes in a countable set C. Let further each P(c) (c € C) be a program (partial program). Then
the program (partial program) R := switch (M as c) P(c) is defined by satisfying for all measurable
A C 351 and all density operators p:

RO (A4)(p) = 3 (PCe))™ (1({c}) ()

ceC

R (A)p = tr Y (P(0)) " M({e}) ()

ceC
The convergence notion used in these equations is that of weak convergence@
Lemma 8 (Properties of switch). Under the conditions of Definition[T]], the following holds:

1. If all P(c) are programs (partial programs), and B is probability preserving (reducing), then “switch
(M as ¢) P(c)” is a program (partial program,).
2. If B has outcomes in {true,false}, then:

switch (M as b) P(b) = if (M) P(true) else P(false)

4 Since the sums are increasing norm-bounded sequences of symmetric operators, strong, weak and ultra-weak
convergence coincide.

The reader may now ask, what we need such a switch-statement for, since a finite branching can be
realised using if-statements, and an infinite branching does not really reflect the possibilities in practical
programming. However, the following example may show the use of the switch-statement as a tool in
specifying program behaviour.

In Definition @] we have introduced the program print x, which outputs the constant word x. In
many cases this is not sufficient, since one may want to simply output the result of a measurement. This
can easily be formulated using only switch and print. Assume M to be a PMVM with outcomes in A,
and f: A — X* to assign labels to the outcomes. Then the following program measures M and outputs
the outcome:

switch (M as x) print f(x)

Similarly, the assignment of constant values from Definition [can be extended to allow for assignments
of measurement outcomes:
switch (M as x) a := x

assigns the outcome of measuring M to variable a.

To ease reading of the program code, we will often write the shorter P(M) instead of the less handy
switch (M as c) P(c). So the programs just presented will get the more intuitive forms print £ (M)
and a := M.

Note however that when using this shorthand notation, one has to ensure that no ambiguity ensues.
E.g., one must keep in mind that “P(M); Q(M)” shall always denote “switch (M as c) P(c); switch
(M as ¢) Q(c)”, and that a statement containing two implicit switch-statements is only well-defined
if the PMVMSs commute. So P(M,N) could be

switch (M as m) switch (N as n) P(m,n)

or switch (N as n) switch (M as m) P(m,n)

which are only identical, if M and N commute. So if in doubt, explicitly write switch. Also, a program

like a:=£f (b) could be read as switch (£(b) as x) a:=x (measure f(b) and assign the outcome to a)

or switch (b as x) a:=x (measure b and assign f(b) to a). Our convention is to assume the latter case.
Another syntactic variant is the following

switch (M as ¢) {

case Ci1(c): Py

case Cp(c): P,

default: P, }

which is another notation for “switch (M as c) P(c)”, where for all possible c, P(c) is the first P; so
that the condition Cj (c¢) is satisfied, or P, if no C; (¢) is fulfilled. Example: Let M have outcomes in
Nso. Then

switch (M as c¢) { case (c=1): print "one"

case (c<3): print "two" default: print "many" }

outputs the English word for the measured natural, or “many”, if the number exceeds the program’s
limited vocabulary.

6.1 Elementary tests

In order to be able to use the above if statement, we still need some means to specify elementary tests.
In the preceding section, we just assumed some PMVM with boolean outcomes to be given, here we will
present a method how to specify these. Similarly to the case of unitary transformations, we can define
measurements on functions of variables:

Given some variables 1, . .., z, and a function f on the types of these variables, we define f(z1,...,zy)
to be the measurement, that measures the value of f(z1,...,z,) without measuring z1, ..., z, (e.g., mea-
suring x1 ®- - -®x,, would measure the parity of x1, ..., x, without performing a complete measurement).
With such a measurement, getting measurement result m means projecting the state onto the subspace
H.,, of states where f(z1,...,z,) =m. We mould this into a formal definition:

Definition 15 (Elementary measurements on variables). Let 1, ..., z, be pairwise different vari-
able names from V, and M a countable set. Further let f : Ty, x -+ x T, — V be a function.
Then for m € M, let B, be the set of all elements e of the computational basis of H = Qzecy CT=
satisfying:
€= Quev|vg) with fUzyyenyvz,) =m.

Then we can define H,, to be the subspace of H generated by B,,, and Py, to be the orthogonal projection
onto Hy,. And finally this defines a PMVM £(x4,...,%n):

£(x1,..., %) (A)(p) := Y PupP),
meA
for any density operator p € H and any A C M.

The following lemma states the well-definedness of the above construct:

Lemma 9 (Elementary measurements on variables). With the notation of Definition [I3, if the
variables x1, ..., x, are pairwise different, £(x1,...,%y,) is a probability preserving PMVM with outcomes
in M.

With M = {true, false}, the above construct is suitable for use with the if statement. We give an
example:

var a:bit; var b:bit;
a:=0; b:=0; Hsa; Hsb;
if (a=b) NOT a;

Here Hy denotes the Haramard-transform on one qubit, and NOT the bit-flip. If the test a=b fails, we a
and b are entangled to have opposite values. Otherwise, they are entangled to have the same value, but
a gets flipped, so after the if statement they have opposite values, too. So the above example generates
an EPR pair.

Of course, such PMVMs can also be used in conjunction with switch. So e.g.,

var i:int; switch (i as c) { case (i*i=4): print "X"; }

and var i:int; switch (i*i as c¢) { case (i=4): print "X"; }

are different programs. While the first completely measures i, the second directly measures the square
of i, i.e., ignores the sign, so if e.g., i is in superposition between 2 and —2, this superposition is not
destroyed.

Like in Section Bl the notation for elementary measurements given here is only rudimentary. A more
powerful method will be presented in [Unra].

7 Loops

In this exposition, one control structure is still missing, without which hardly any useful program can
be written: the loop.

Assume that a program P and a probability preserving PMVM B with outcomes in {true,false}
are given (cf. Definition [[3]). Then the program while (B) P shall intuitively represent the following
experiment: Repeatedly measure B. While B yields true, apply P. When B yields false, stop. The overall
output shall be the concatenation of the outcomes of all invocations of P.

In order to get a formal definition of the above while-program, let us first consider the intermediary
case, where the outcome of the loop is not the concatenation of the outputs of P, but the possibly infinite
list of these outputs. L.e., let R denote the following experiment: Repeatedly measure B. While B yields
true, apply P. When B yields false, stop. The overall output shall be the (finite or infinite) sequence of
the outcomes of all invocations of P.

It turns out to be quite difficult to write the infinite process in the intuitive definition of R in terms
of sums and products of operators (as we did e.g. in Definitions [[0] and [[4]), since no intuitive notion of

10

convergence springs to mind where the following would be meaningfulﬁ

if (B) {P; if (B) {P; --- if (B) {P; halt}---}} =while (B) P

n times

Another common approach would be to define R to be the lowest fixpoint of X — if (B) { P; X }.
However, this at least fails when using the natural ordering on mixed measurements

Therefore we will try and postulate some axioms, which should hold for R, and will then show that
these are indeed define R.

First, observe that always one (and only one) of the following cases is bound to occur:

1. The loop terminates after n > 0 invocations of P.
2. The n-th invocation of P does not terminate (n > 1).
3. Every invocation of P terminates, but B always yields true (so the loop does not terminate either).

Note that the only case where R terminates is the first one. Therefore we can at least write down,
what we expect from Rf": For any n > 0, any initial state p, and all measurable A; C X*°9, it holds

n
RY (A1 x - x A,)(p) = B(false) o [(P™(4)) o B(true) (o).

i=1

Here H?zl X; means the composition X,, o---0 Xj.
Similarly, the case where R does not terminate, but has only a finite number of outputs is covered by
case 2] which we can formalise as follows:

tr P"(4,) B(true) o [T (P (4i) o B(true)) (p), n>1

tr R™(A; X -+ X Ay) p=
T (1)p {07 n=0.

The last case is more difficult. In order to approach that case, we first note that by requiring R to be
probability preserving (which seems a sensible thing to do, since both P and B are), we get

G RIE((5569)%) p = 1 — BRI ((5%09)7) (p) — trRY ((5%°9)") p. &

Now consider the following event: B never always yields true (i.e., the loop runs an infinite number of
iterations), and in the first n iterations P has output in the set Ay X --- x A,. When p’ is the state
after the first iterations (conditioned on the outputs being in A; x --- X A,,, and B yielding true in the
first n iterations), then the conditional probability that the loop will run an infinite number of iterations
(with arbitrary further output) is just tr R*((X°°9)>°) p. Writing this as a formula we get the last of our
axioms for R:

R (Ay X o x Ay x (2509 p = trR™((5%°9)) [[(P™(A:) o B(true)) (p),

=1

which by () defines the left hand side.

Note that using these axioms define Rf™ and R™ on A; x - x A,, and Ay x --- x A, x (%) (for
all n > 1, A; measurable), i.e., on a set of generators the sigma-algebra of (X%1)5°d. Therefore we can
hope that these axioms will define a unique and existent R (this is positively answered by Lemma
below). Then we can finally define the while-program by concatenating R’s outputs, i.e., while (B) P :=
flatten(R).

Collecting the axioms stated in the above text, we get the following

5 In fact, there are metrics on the set of partial programs such that the above statement is meaningful and
equivalent to Definition [[6l and even allows the definition of while (B) P where B and P are only probability
reducing. These are important for the definition of recursive programs and will be presented in [Unrb|. However,
we believe that these metrics can not as easily be justified as the axiomatic approach below, and therefore
present the (probably more natural) axiomatic approach instead.

5 The natural order is defined by: A > B if A— B is a mixed measurement (all mixed measurements are positive).
The problem consist in having a difference between the least mixed measurement 0 and the program halt.
Both are solutions to the equation X = if (B) { P; X }, but halt is the fixpoint we are looking for, while
0 is the least one.

11

Definition 16 (Loops). Let P be a program and B a probability preserving PMVM with outcomes in
{true, false}.
Then let R be the probability preserving mized measurement with outcomes in (X%°4)%1 satisfying

Rﬁn(Al X oo X An)p fa]_se H Pﬁn oB(true)) (p)

P"(A,) B nl(pfin(4;) 0B >1
R (A x - x A p = | 17 P (An) B(tzue) o [, (PR (4y) o B(true)) p), m 2
0, n =0.
trR™(Ap x -+ X Ay x (X5°9)%°) p = trR™((2%°9)>° H Pﬁ“) o B(true)) (p).
=1

We then define while (B) P := flatten(R).
The next lemma tells us that while (B) P is in fact a definition.

Lemma 10 (Well-definedness of while). Let the situation be as in Definition[I0. Then R and while
(B) P always exist, are uniquely defined and while (B) P is a program.

The following fact constitutes some evidence that the previous definition in fact complies with the
intuitive meaning of a while-program:

Lemma 11 (Unrolling while-loops). Let P and B be as in Definition[I6. Then
while (B) P = if (B) { P; while (B) P }
We give a simple example of a while-loop:
var o : bit; o :=1; while (o=1) { Hpo; print 1 }

This program has a one-bit-variable o which is initially initialised to |1). Then its is repeatedly mea-
sured in the computational basis, until the outcome does not equal 1. Each time 1 is measured, a
Hs-transformation is applied to o and the symbol 1 is output.

References

[Dav76] E. B. Davies. Quantum Theory of Open Systems. Academic Press, London, 1976.

[GN04] Simon J. Gay and Rajagopal Nagarajan. Communicating quantum processes. In Peter Selinger, editor,
2nd International Workshop on Quantum Programming Languages, pages 91-107, 2004. Online available
at http://quasar.mathstat.uottawa.ca/ selinger/qpl2004/PDFS/07Gay-Nagarajan.pdf.

[LJ04] Marie Lalire and Philippe Jorrand. A process algebraic approach to concurrent and dis-
tributed quantum computation: operational semantics. In Peter Selinger, editor, 2nd Interna-
tional Workshop on Quantum Programming Languages, pages 109-126, 2004. Online available at
http://quasar.mathstat.uottawa.ca/ selinger/qpl2004/PDFS/08Lalire-Jorrand.pdf.

[NC00] M. Nielsen and I. Chuang. Quantum Computation and Quantum Information. Cambridge University
Press, Cambridge, 2000.

[Pre98] John Preskill. Lecture notes for physics 229: Quantum information and computation, September 1998.
Online available at http://www.theory.caltech.edu/people/preskill/ph229/.

[Sel04] Peter Selinger. Towards a quantum programming language. Mathemati-
cal Structures in Computer Science, 14(4):527-586, 2004. Online available at
http://quasar.mathstat.uottawa.ca/ selinger/papers/qpl.ps.gz.

[SV04] Peter Selinger and Benoit Valiron. A lambda calculus for quantum compu-
tation with classical control, November 2004. Preprint, online available at

http://quasar.mathstat.uottawa.ca/ selinger/papers/qlambda.ps.gz!

[Unra] Dominique Unruh. Quantum types and variables. In preparation.

[Unrb] Dominique Unruh. Recursive programs with output. In preparation.

[Val04] Benoit Valiron. Quantum typing. In Peter Selinger, editor, 2nd International Work-
shop on Quantum Programming Languages, pages 163-178, 2004. Online available at
http://quasar.mathstat.uottawa.ca/ selinger/qpl2004/PDFS/11Valiron.pdf.

12

http://quasar.mathstat.uottawa.ca/~selinger/qpl2004/PDFS/07Gay-Nagarajan.pdf
http://quasar.mathstat.uottawa.ca/~selinger/qpl2004/PDFS/08Lalire-Jorrand.pdf
http://www.theory.caltech.edu/people/preskill/ph229/
http://quasar.mathstat.uottawa.ca/~selinger/papers/qpl.ps.gz
http://quasar.mathstat.uottawa.ca/~selinger/papers/qlambda.ps.gz
http://quasar.mathstat.uottawa.ca/~selinger/qpl2004/PDFS/11Valiron.pdf

	Quantum Programs with Classical Output Streams[2pt] (Extended abstract) -10pt
	Dominique Unruh
	Introduction
	Notation and quantum mechanical formalism

	Modelling a program's operation
	Elementary operations
	Probabilistic sum
	Sequential composition
	Branching programs
	Elementary tests

	Loops

