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Abstract. The collision-resistance of hash functions is an importaanhdation of many cryptographic protocols.
Formally, collision-resistance can only be expected ifttash function in fact constitutes a parametrized family of
functions, since for a single function, the adversary caifaply know a single hard-coded collision. In practical ap-
plications, however, unkeyed hash functions are a commoitehcreating a gap between the practical application
and the formal proof, and, even more importantly, the camiathematical definitions.

A pragmatic way out of this dilemma was recently formalizgdRmgaway: instead of requiring that no adversary
exists that breaks the protocol (existential securityg @guires that given an adversary that breaks the protweol,
can efficiently construct a collision of the hash functiging an explicitly given reductioftonstructive security).

In this paper, we show the limits of this approach: We giveaqmol that is existentially secure, but that provably
cannot be proven secure using a constructive security proof

Consequently, constructive security—albeit constitinuseful improvement over the state of the art—is not
comprehensive enough to encompass all protocols that cdediewith using existential security proofs.

1 Introduction

The collision-resistance of hash functions is an imporitagtedient of many cryptographic protocols. For-

mally, collision-resistance can only be expected if théntfaaction in fact constitutes a parametrized family

of functions, since for a single function, the adversaryldaimply have a collision hard-coded into its pro-

gram. In practical applications, however, such unkeyeth fiisctions are often used (e.gHA-1), creating

a gap between the practical application and the formal peoad, even more importantly, the concise math-
ematical definitions.

A pragmatic way out of this dilemma was discussed by Stin&ii0]] and recently formalized by
Rogaway|[Rog06]: instead of requiring that no adversargtesthat breaks the protocol (existential security),
one requires that given an adversary that breaks the ptotowm can efficiently construct a collision of the
hash functiorusing an explicitly given reductioftonstructive security).

Slightly more formally, the dilemma can be described afed: An existential security proof for a
protocol = shows the following: If there exists a polynomial-time abary A that has a non-negligible
advantage in breaking the protocol, then there exists aypaiyal-time adversarys that has a non-negligible
advantage in breaking at least one of the assumptions ofrtitecel. Here, the exact meaning of the word
advantagedepends on the security notion under consideration; inaf ggstem for example, the advantage
would be the probability to convince the verifier of a wrongtfa-or collision-resistant hash functions, it
would be the probability of finding a collision. Consideriagprotocolm whose security is based on the
collision-resistance of annkeyechash functionH, an existential security proof would show the following:
If an adversaryd has non-negligible advantage in breakinghere is an adversafy that outputs a collision
of H with non-negligible probability. However, this is vacutusue: There always exists an adversary that



has a collision off hard-coded into its program and outputs this collision pithbability one. We, that is
the totality of all human beings, might not know this adveyshut it exists nonetheless. To circumvent this
problem, mathematical definitions and proofs usually maes af keyed hash functions. In this case, for
every keyK the collision might be different so that the assumption ttapolynomial-time adversary can
compute collisions for more than a small fraction of the kisysensible.

But what if we are forced to use unkeyed hash functions, bagause of efficiency considerations or
simply because industrial applications often rely on uekepash functions? Do we lose all possibility
to prove security, since we cannot expect an existentialrgggproof in this case? Fortunately, this is
not necessarily the case: we may ground security on the \@iger that although there always exists an
adversary finding a collision of an unkeyed hash functioig #uversary might not be explicitly known.
This leads to the following approach that was recently fdized by Rogaway| [Rog06]: A constructive
security proof for a protocok that uses a hash functiai is an efficient transformatio’ (that must be
explicitly given) that, upon input an adversady and the hash functio/, outputs a collision off. If
someone finds a successful adversdryne hence also knows an adversary breaking the collisisistamce
of the hash function.

Rogaway|[Rog06] stresses that most existential securitgfpralready constitute constructive security
proofs and that all that must be done for concisely handlinkeyed hash functions is to rephrase those
proofs in a constructive setting. Indeed, folklore has givaelieved that protocols with existential security
proofs can be transformed into constructive ones. In somesdamay be as easy as rephrasing the theorem
statement, in other cases it may be as hard as finding a diffpreof. E.g.,[[Rog06] writes: “In general,
it is well understood that one can rephrase provable-ggcrgsults as assertions about explicitly given
reductions”. Although this folklore statement may holdetin many cases of practical interest, we show
that it does not hold true in general. We construct a prot@oalre exactly, a zero-knowledge argument of
knowledge) that we show secure with an existential secpritpf, but for which we further show that there
provably does not exist any constructive security proof.

Hence although constructive security proofs may constiuiseful improvement over the state of the art,
there are applications where the use of unkeyed hash faisat@nnot be justified even with this technique.

1.1 Our Contribution

We show how hash functions can be used to construct prottiedlsan be shown secure using an existential
security proof, but that cannot be proven secure using drumtise security proof. We investigate argument
systems (computationally sound proof systems) as our iseawation of interest. The approach can be
adapted to other notions as well, e.g., by constructing sopobfor another task that uses and depends on
the argument system presented in this paper.

In more detail, we construct, depending on a hash fundtiom proof systen{ P, V) of which we
can show the following properties:

— Under two nonstandard but reasonable assumptions (distimdow in the paragraph on complexity
assumptions and formalized[in Assumptign 1 in the body ofpégeer) and the assumption thfdtis a
non-uniform collision-resistant hash function, we caregmexistentialsecurity proof for( P, V1),

— Using[Assumption|1, we can prove that one cannot gigersstructivesecurity proof that reduces the
security of (P, V) to the collision-resistance dff. This even holds independent of any additional
assumptions we might use for the constructive securityffeolong as these assumptions are not false).

At a first glance, this separation may seem confusing becalu®e different layers of assumptions (in
the proofs themselves and in the proofs about proofs). Theisallowing view might help to improve the
intuition underlying our result: In a world whefre Assumptif) has beeprovento hold, it will be possible
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to showexistentiallythat (P, V) is secure ifH is collision-resistant, but aonstructivesecurity proof
for (P, V) reducing to the collision resistance Hfwill be impossible.

At this point, we consider it important to stress that ouuagstions and in particular our proofs strongly
rely on the careful distinction of non-uniform and uniformnaplexity. In particular, we use non-uniform
techniques to prove results about uniform algorithms.

Basic Idea of the Constructiomn order to construct a zero-knowledge argument of knowdetigt has an
existential proof of security but no constructive secupitgof, we use the following general approach. We
take an existing zero-knowledge proof of knowled@®, V1) and modify it as follows: Instead of directly
showing that a given statememtholds, the prove? shows (usingP?) that one of the following two
statements holds:

— he knows a witness for the statementr

— he knows a ciphertextthat is the encryption of a collision df .

The basic idea is that given an adversary that knows suchheantgxtc, one can break the argument. How-
ever, given an adversary with a hard-coded ciphertext, atngstive security proof should not be able to
extract the collision contained in the ciphertext. We havadhieve the following two goals:

— If H is a collision-resistant keyed hash function, it is hardndl & ciphertext that is the encryption of
a collision of H. Otherwise the argument can be easily broken even if the foastion is secure, thus
even defying the existential security proof.

— Giveng, it is hard to extract a collision from; in particular, the decryption key should be secret. Oth-
erwise a constructive security proof can use a knowledga@xt to extract from a successful prover
and then extract a collision from Further, the decryption af should not be part of the witness used
for the proof systeniPt, V1) since this witness could then be extracted from the adwersar

We achieve the first goal as follows: To ensure that it is harfind a ciphertext given a collision-resistant
keyed hash function, we use an encryption scheme that carokerbby non-uniform adversaries, but that
is secure against uniform adversaries. An adversary tleatkb( P, /) entails an adversary that finds
a ciphertextc that is the encryption of a collision df. This again entails the existence ohan-uniform
adversary decrypting these ciphertexts and thus findingsiomis. Consequently, if we requitE to be a
keyed hash function that is collision-resistant agaim®t-uniformadversaries, we obtain a contradiction.
On the other hand, a constructive security proof cannotimlbtee collisions in this way, since in such a
proof the reduction would have to be explicitly given andstiuparticular be a uniform algorithm.

The second goal is achieved as follows: We do not directlysfusing PT) thatc is the encryption of a
collision of H, since this would necessitate to use the plaintext, i.e ¢tilision, as a witness, which in turn
would allow to extract this witness. Instead, we introdueether proof systergP*, V*). This proof system
is non-interactive (in the strong sense that it does not agera common reference string), statistically sound
(otherwise the overall scheme could be broken by non-umifadversaries that know a single wrong proof)
and it should hide the plaintext of the encryptiarnhe last condition roughly means that if some adversary
can extract the plaintext af given a proofN, then it could also extract the plaintext without knowledge
of N with non-negligible probability. We call such a proof syata content-hiding proof of contenGiven
a content-hiding proof of content, we do not directly prokatic is an encryption of a collision, but that
we know a non-interactive prod¥ thatc is an encryption of a collision. Then in the constructiveusiyg
proof, c and N might be extractable from an adversary, but this would nobdfdeelp: If one could extract
a collision fromc and N, one could extract one from alone as well (sincé P*, V*) is content-hiding).

If the encryption scheme is IND-CPA secure, the encryptialone is indistinguishable from a random
encryption. Thus one could also find the collision withouhgs: at all. A constructive security proof would
hence imply the existence of an algorithm to find collisions.
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Summary of the ConstructiokVe now summarize our construction in a more detailed and & wmmcise
manner. Letf be a one-way permutation that is secure against uniformrsaies, but can be inverted by
non-uniform adversarie§ (Definition 2). Frofnwe construct an encryption scheréig such that for each
security parameter, there is a fixed public key, and suchttieatorresponding secret key can be found by a
non-uniform adversary (Definitiod 3). The scheffyeis shown to be IND-CPA secure (Lemmia 2).

Let then(P*,V*) be a content-hiding proof of content for the encryption secbe; (Definitions[4
and[%). That is, using®* we can show non-interactively that a given ciphertexs the encryption of a
cleartextm that fulfills a given propertyr. Since P* is content-hiding, we know that if we can extract the
plaintext frome given the non-interactive proof, we can also do so withoaeas to the proof. L&tP, V1)
be a computational zero-knowledge proof of knowledge A &te a hash function (keyed or unkeyed). Then
we construct the argument systém | V1) as follows [Definition 6):

— The proverP! takes as input a SAT-instaneeand a corresponding witness The verifierV # expects
a SAT-instancer.
— To show his knowledge ab, the proverP! invokes the proveP! to show that either
e he knows a witness for o, or
e he knows a ciphertext and a non-interactive prod¥ such that the prooN convinces the verifier
V* that the ciphertext is an encryption of a collision off .
The prover can easily perform this proof since he knows theessw.
— The verifierV# usesV'T to verify the above proof.

Note that the proveP* is never used in the above construction. The existend&*afill however be used
in the proofs.

On our Complexity Assumptior®ur proof is based on the existence of content-hiding probt®ntent as
well as on the existence of one-way permutations with ndfeum trapdoors, which constitute nonstandard
complexity assumptions. To motivate these assumptiongpraree that relative to a random oracle these
assumptions follow from standard ones.

At afirst glance, it may seem that a result that needs suchgsassumptions and involved constructions
will not be of relevance for the provability of natural prot constructions, i.e., construction which do not
have the creation of a counterexample in mind. We would likpdint out the following counterarguments:
First, one reason why we need such strong assumptions wéh@ not only want a protocol that cannot be
proven secure using constructive proofs, but giravablycannot be proven secure using constructive proofs.
The reason for the complexity of our example may hence nlmvidirom the fact that all natural protocols
have constructive proofs, but rather from the fact that im@wnprovability is in general a difficult task.
Secondly, somewhat similar techniques have already bemhinghe literature: Barak [BarD1] presents an
argument system in which the prover proves that the stateameler consideration is true or that he knows a
short circuit describing (the data sent by) the verifiersid@emingly contrived construction then was shown
to allow for argument systems that enjoy properties thatrevkaown to be impossible for zero-knowledge
argument systems that do not use the circuit of the adve(sary black-box zero-knowledge argument
systems). In that light it may well be possible that some wispfotocol will have to use constructions
similar to the ones presented in this work and thereforehaie no constructive security proof.

1.2 Related Work

Hash functions where first formalised in_[Dam87]. In [Rog@&¢ notion of a constructive security proof
was made explicit, although the concept was already disedusssimplicitly used in many other papers.
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The idea of considering problems relative to oracles toyaeatomplexity assumptions was introduced
by [BGS75]. See alsd [For94] for a survey and a discussiomcif selativisation techniques.

An example of a non-constructive security proof can be founfDNO2, Section 8]. They give a re-
settable zero-knowledge proof in the timing-model, and gheof of soundness uses a non-constructive
reduction. However, it is not shown that their protocol does have a constructive proof. In contrast, the
complexity of our constructions result from the necessitgreating a scheme where we cprove that
no constructive security proof exists. We believe that #sult of [DNO2] and our result complement each
other: [DNO2] show that there amatural protocols where we doot knowconstructive security proofs,
while we show that there amonstructedprotocols where constructive security proofsraut exist(under
complexity assumptions).

2 Preliminaries and Notation

By x — A we mean assigning the output of the probabilistic algorithito =, and byx S m assigning a
uniformly randomly chosen element 8f to x. By (A, B) we mean the output @B after an interaction of
the interactive machined and B. The variablek will always denote the security parameter.

An unkeyed hash functioH is a function from{0, 1}* to {0, 1}" for somen that can be computed in
deterministic polynomial time. Aeyed (family of) hash functiom®nsists of a family{ Hx } of functions
together with an efficient key generation algoritidfa; such that the following holds: GiveR andzx, the
image H () can be computed in deterministic polynomial time. Furtfar,K — G (1%), the function
Hy maps{0,1}* to {0, 1}*(*) for some polynomially bounded functidh

Of central interest to this paper is the notion of a consivactecurity proof. In principle, a constructive
security proof consists of two parts: an explicitly givemuetion C' from adversaries to collisions, and a
proof thatC' is indeed such a reduction. Since we are only interested gative results in this paper, it
will be sufficient to show that no such reductiéhexists. We therefore slightly abuse notation and define
a constructive security proof to solely consist of this i&thn C. That is, we do not even require that the
reduction is proven to be correct.

Furthermore, we will confine ourselves to constructive ggcproofs that a given protocol is an argu-
ment system. This results in a less abstract definition, lwisisufficient for our application. Examples of
constructive security proofs for other properties are ive[Rog06].

Let (P, VH) be a proof system parametrized by an unkeyed hash funéfithat is assumed to be
given as a circuit. For an adversa#ly(given as a circuit) and an unsatisfiable SAT-formau)ave define

Advi (A, o) = Pr(A, VT (1%,0)) = 1].

Further, for an algorithnd’, let
Adv(j;)}k(C,A,J) .= Pr[(z,2') — C(1*,H,A,0) : z # 2’ andH (z) = H(z)].

Definition 1 (Constructive Security Proof). Let (P, V) be a proof system parametrised by an unkeyed
hash functiond. We call an algorithmC' a constructive security proof thaP”, V) is an argumenif C
runs in uniform probabilistic polynomial-time and therestixsomec > 0 and some negligible function
such that for all circuitsA, all unsatisfiable boolean formulasand all k. € N we have

Adv:%  (A,0) \°
AdvL(C, A, o) > vk — (k).




Our notion of a constructive security proof slightly deestfrom the notion put forward in [Rog06]. The
most obvious difference is that [Rog06] does not containaayynptotic definition of a constructive security
proof. Instead, all results are given in terms of concreteisty, i.e., the relation between the advantage to
break the protocol and the advantage to find collisions isrgaxplicitly. A negative statement, i.e., a claim
that a given protocol has no constructive security proofincarely on concrete security since one does
not aim to show that a given relation between the two advastages not hold, but that no (useful) lower
bound forAdv®® in terms of Adv®® exists. To characterize such useful lower bounds we havednted
the above asymptotic formulation. Since we are interested megative result, we have made the lower
bound as weak as possible.

A notion of black-box constructive proofs has also been &dized in [Rog06]. Since black-box is the
stricter kind of reduction, our negative result encomps$lsis notion as well.

3 Assumptions Underlying our Negative Result

In this section, we will present two cryptographic assuomithat are needed in our proof.

3.1 One-Way Permutations with Non-Uniform Trapdoors

The first assumption roughly states that there are one-wewytations that are secure against uniform
adversaries but that can be inverted by non-uniform ones.

Definition 2 (One-Way Permutations with Non-Uniform Trapdoors). A functionf : {0,1}* — {0,1}*
is aone-way permutation with non-uniform trapdogifs

— The functionf is a length-preserving permutation that is computable itedwinistic polynomial time.

— The functionf is one-way against uniform adversaries.

— There exists a sequen¢g of polynomial-sized circuits, such that(f(z)) = = for all £ € N and all
x € {0,1}*%,

The existence of one-way permutations with non-unifornpdors constitutes a nonstandard complexity
assumption in cryptography. Although we did not succeedidiucing the existence of one-way permutations
with non-uniform trapdoors to more common assumptions irega, we show that there is an oracle relative
to which this is possible.

Lemma 1. Assume that trapdoor one-way permutations with dense (plkleﬁf exist that are one-way
against uniform probabilistic polynomial-time adversesi Then there exists an oradkrelative to which
one-way permutations with non-uniform trapdoors exist.

The proof of this lemma is given [n_ subsection A.1.

The proof of Lemmall in fact shows a stronger statement: ¢hgasrandom oracle entails one-way
permutations with non-uniform trapdoors with probabiliiye. If we accept the random oracle heuristic, the
following conjecture is thus made realistic by the prodf ehima 1:

Conjecture 1.Let R be a sufficiently unstructured, efficiently computable fiort Then usingR in the
construction of the proof 1 yields one-way permaitest with non-uniform trapdoors.

3 We say a family of trapdoor permutations has dense publis Kethe distribution of the public keys is near the uniform
distribution on the set of strings of a given length. Inugty, this means that we can choose the public key using authjiq
coins.



Using one-way permutations with non-uniform trapdoors,cae use the standard construction for cre-
ating IND-CPA secure encryption schemes from one-way pttioms. The result is an encryption scheme
where for each security parameter there is a single pubjicated where the corresponding secret keys can
be recovered by non-uniform adversaries (but not by unifones).

Definition 3 (Singleton Encryption). Let f be a one-way permutation with non-uniform trapdoors. We
define thesingleton encryption schemg&, D, for f as follows: Letpk, := 1* and skj, := t;, where

t,, denotes the trapdoors of the functigh For = € {0,1}, we have&;(pk,z) = (f(r1),r2,(r1 -

r9) © x) wherery,ro are uniformly random from{0, 1}/, For z € {0,1}*, we have&;(pk,z) :=
(Ef(pk,xl), v ,Ef(pk,x‘x‘)).

The corresponding (deterministic) decryption algorithf; proceeds as follows: Upon input
(pk, sk, (c1,72,c2)) Wheresk is a circuit and(cy, 2, c2) the encryption of a single bit, the decryption algo-
rithm first verifies thatf (sk(c1)) = ¢ and that|c;| = |pk|. If so, it outputs(sk(cy) - 72) @ co. Otherwise,
it outputs_ | . The encryption of multiple bits is handled by decryptingtrehit individually (with outputl if
one of the decryptions fails).

The set of valid public keys of ; for security parametek is hence{pk, }; consequentely the public key
generation algorithm is trivial. The corresponding se&ssts sk, i.e., the trapdoors of, are guaranteed to
exist, but they are not efficiently computable by a uniforraeadary. We hav® ¢ (pky,, ski, Ef(pky, m)) =
m for all m by construction; moreoveR;(pk,, sk,c) = m # L for some (possibly invalid) secret kay
implies Dy (pk;,, ski, ¢) = m since the checks performed BY guaranteesk(c1) = sky(c1).

The following lemma states that the construction given abiodeed results in an IND-CPA secure
encryption scheme, at least against uniform adversaries:

Lemma 2. Let f be a one-way permutation with non-uniform trapdoors and’lebe the singleton encryp-
tion scheme forf. ThenE; is IND-CPA secure against uniform adversaries in the foilaysense: For alll
uniform probabilistic polynomial-time algorithm4;, A,, we have that

Pr[(mo,ml,z) — Al(lk),b & {0,1}, ¢ — E¢(pky,my) Ag(lk,c, z)=b A |mg| = |mq]
is negligible ink.

A proof of Lemmé& 2 can be found ih [GolD4, Section 5.3.4.1thAlugh this proof applies to a slightly
different definition of public-key encryption where the fiakand secret keys are chosen by an explicit key
generation algorithm, the proof carries over, mainly beedhe secret keys are not used in the definition of
IND-CPA security.

3.2 Proofs of Content

We now introduce the novel notion of a non-interactive prafofontent. Intuitively, a proof of content is a
non-interactive proof system that proves that a given ciehliec is the encryption of some plaintext that
fulfills some predicater.

We first introduce some additional notation: Given an enoypscheme(&, D) with deterministic
decryption, a Boolean circuit, a ciphertext, a public keypk and a private keyk, let w755 [c] := true if
and only ifm := D(pk, sk, c) # L andw(m) = 1, and letrP*[c] = true if there exists a secret key: such
that7? 5 [c] = true.



Definition 4 (Non-Interactive Proofs of Content). A non-interactive proof of content for an encryption
scheme(&, D) (whereD is deterministic) consists of a polynomial-time proveérand a polynomial-time
verifier VV such that the following holds:

— Polynomial length.There exists a polynomial such that for everyr, ¢, pk, sk, and k, we have
[P(1*, 7, e pk, sk)| < p(|(1F, 7, ¢, pk, 5k)]).

— CompletenessThere is a negligible functiop such that for everyt, ¢, pk and sk satisfyingr?**[c] =
true and for everyk, we have

PI‘[V(lk,pk,ﬂ',C,P(lk,ﬂ‘,C, pk, sk)) = 0] < u(k).

— SoundnessThere is a negligible functiop such that for everyr, ¢, and pk satisfyingm?*[c] = false
and for evenyk and every stringV, we have

Pr[V(lk,pk‘,ﬂ',c, N) = 1] < (k).

So far, a proof of content can be quite easily realized byalavg the secret key of the encryption scheme.
This of course is not satisfying; hence we need an additiseealecy property. We cannot expect the proof
system to be zero-knowledge (since it is non-interactivihaut a common reference string), but we can
require that a proof will not help us to extract the plaintigin the ciphertexin (which would be clearly
violated if we learned the secret key). We will call this pedy content-hiding

We now define content-hiding proofs of content. This notiah evucially depend on the notion of a
valid public key of a given encryption scheme, and of thearotf the corresponding secret key. The notion
of a valid public key and corresponding secret key has a alatueaning for most public-key cryptosystems,
but it may not be well-defined in general. However, in the rieidber of the paper we will only consider the
encryption scheme from Definition 3 where a public key isd/éland only if it has the formi*, and where
the secret key corresponding to a given public key is unigdetermined as;. So for the sake of readability
we abstain from formally specifying what a valid public keydahe corresponding secret key are.

Definition 5 (Content-Hiding Proofs of Content). A non-interactive proof of contert?, V') for an en-
cryption schemé¢&, D) is calledcontent-hidingf the following holds:

Let G be any polynomial-time algorithm that upon inplift outputs a valid public keyk for £, a
messagen € {0,1}*, a circuit 7 and some auxiliary information € {0,1}*. Let A be any polynomial-
time algorithm such that

Pr[(pk,m,ﬂ, z) — G(1F), ¢ — E(pk,m), N — P(1*, 7, ¢, pk, sk),
m' — A(1¥ pk,e,m,z,N) : m = m'}
is not negligible ink, wheresk denotes the secret key correspondingko
Then there exists a polynomial-time algoritithoutputting a list of strings, such that
Pr[(pk,m,ﬂ, z) — G(1%), ¢ — E(pk,m), M' — S(1*, pk,c,m,2) :m € M’].
is not negligible ink.

While the definition of content-hiding proof is similar toathof witness-hiding proofs, there is an im-
portant difference: Witness-hiding proofs guarantee thatwitness cannot be guessed if the statement is
chosen according to some fixed distribution, while we regthat the content-hiding property holds oty
efficiently sampleable distribution on the message$-urthermore, a witness-hiding proof only guarantees
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that the witness is not disclosed as a whole, while we onlyireghat themessagen is not disclosed as
a whole; the latter requirement is weaker since a witnesddwmnsist ofm and the randomness used for
encryption.

The existence of content-hiding proofs of content const#a novel cryptographic assumption. We did
not succeed in reducing it to existing assumptions, but veevghat at least there is an oracle relative to
which this is possible.

Lemma 3. Assume that trapdoor one-way permutations with dense pkblis exist that are secure against
non-uniform probabilistic polynomial-time adversarieghen there exists an oracl@ relative to which
content-hiding proofs of content with deterministic versiexist for any encryption scher® D).

The proof of this lemma is given [n subsection A.2. The prddfe@mma 3 establishes the following slightly
stronger statement: choosing a random oracle entails rehiding proofs of content with probability one.
Hence the following conjecture is again justified by the @ndracle heuristic:

Conjecture 2.Let R be a sufficiently unstructured efficiently computable fimet Then usingR in the
construction of the proof 3 yields content-hidimggds of content with deterministic verifiers.

In the next section we will need both the existence of one-pexynutations with non-uniform trapdoors as
well as of content-hiding proofs of content. We additiopaite some standard complexity assumptions. All
assumptions used are summarized in the following statement

Assumption 1 There exist a one-way function with non-uniform trapdoprefinition 2) and a content-
hiding proof of content with a deterministic veriflefor the singleton encryption schenty for f
(Defnition 3).

Further, we assume the existence of one-way functionsesagainst non-uniform adversaries and the
existence of a keyed family of hash functions that is coliisesistant against non-uniform adversaries.

4 Limits of Constructive Security Proofs

Based on the definitions and assumptions from the precedttgrs, we are now ready to show the exis-
tence of an existentially secure argument system that duldsawe a constructive security proof.

In the following, let f be a length-regular one-way function with non-uniform ttagrs, let; be the
singleton encryption scheme fgr and let(P*,V*) denote a content-hiding proof of content . Let
(Pt, V1) be a computational zero-knowledge proof of knowledge, Wisan be constructed from one-way
functions secure against non-uniform polynomial-timeasdaries (see e.g., [Gol01, Section 4.7.3]). When
passing an algorithml as argument to a function or algorithm, we assume thist encoded as a circuit in
some canonical way. L&l be the description of a function frogo, 1}* to {0, 1}*. When considering?
as a circuit, we will always mean the circuit describing thedtion H restricted to the domaif0, 1}*.

Stating the construction in a concise manner necessitdexg auxiliary definitions:
Let g (1, 20) := true ifand only if z1, x5 € {0,1}%, 21 # zo and H (z1) = H ().
Lety(H,c, N) := true if and only it V* (1%, pk,, 7p, ¢, N) = 1.

Letn(H,o,c, N,w) := true ifand only if o (w) = 1 ory(H, ¢, N) = true.

Letl.(k) := |£;(1%, 12)| denote the length of an encryption ok-bit plaintext.

4 We could also weaken the assumption slightly by allowingadabilistic verifier. While our results hold as well for paihlistic
verifiers, we have chosen to use this slightly stronger féatran since it makes the separating example and the preidrea



— Letp be a polynomial such that for ai € N andc € {0,1}(¥), the valuelp(k + |H|) is an upper
bound on|P*(1* 7y, ¢, t1,)| where|H| denotes the size of the circulf andt; is the non-uniform
trapdoor forf (cf.[Definition 2). Such a polynomidl exists, since there are polynomial upper bounds
on all arguments of’*, and P* satisfies the polynomial length property from Definitidn 4.

— Let L,, be the language consisting of &/, o) such that there exist a triple, IV, w) with |c| < [.(k)
and|N| < Ip(k + |H|) that satisfies)(H,o,c, N,w) = true. Obviously, L, € NP. Note that if
o(w) = 1, thenw is a witness fo(H, o) € L,,.

Using this notation, we can now describe the protocol thdthaive an existential security proof, but that
will provably not have a constructive proof:

Definition 6 (The Separating Argument System)The proof systeriP | V#) where I may be a keyed
or unkeyed hash function, is defined as follows:

— The proverP? is invoked with input1*, o, w) wheres is a Boolean circuit andv is an assignment
such thatr(w) = 1. The verifier is invoked with inpyt*, o).

— The proverP¥ invokesP! on security parametet”, L, -instance(H, o) and witnessw; here H is
treated as a circuit mapping0, 1}* to {0, 1}*.

— The verifierV I invokesV (1%, ) to verify the proof given by the provét?.

The notation introduced in front of Definitions 4 6 (e¥[c], v, PT, etc.) will be used in the
following proofs without explicit reference.

We have assumed in Assumptioh 1 thét is deterministic. IfVV* was probabilistic, we would have
to change the above proof system as follows: First, the promemits to a witneséc, N, w). The prover
and the verifier then perform a coin-toss to choose a randpemRdor V*. Finally the prover proves that
o(w) = 1 or that the verifielV* accepts with random tapR. We have opted to consider the case of a
deterministic verified”* to make the presentation more readable.

Theorem 1. Under Assumptionl 1, i/ is a keyed hash-function that is secure against non-unifaiier-
saries then the proof systei®’?, V) is a (non-uniformly secure) computational zero-knowleaigriment
of knowledge for SAT. (We assume the Ketp be chosen by some key generation algorifif”).)

The proof is given in Appendix Al3.

Theorem 2. Under Assumptiohl1, there exists no constructive securitgfi that (P7, V) is an argu-
ment.

In particular, the theorem implies that no constructiveusiég proof exists that P, V) is a computa-
tional zero-knowledge argument of knowledge.

Proof. Assume for contradiction that a constructive security p@@xists that P, V) is an argument.
Let f be a one-way permutation with non-uniform trapdoors anc{fék}Ke;c be a keyed family of
hash functions that is one-way against non-uniform adviesd_etG ; be the key generation algorithm for
Hy, and assume w.l.o.g. that féf < G 5 (1*) the function - maps from{0, 1}* to {0, 1}*.
We first construct a keyed familyH , p, ¢ } (a,5, 5)ev < Of hash functiond, , x : {0, 1}* — {0, 1}t
with Y := J Y, andYy, := {(a,b) : a,b € {0,1}*,a # b} as follows:

O|Hi(x), |z|#F,
Hyp () = < 1| f(z), lz| = k, f(z) # a, fora, b,z € {0,1}*.
1(|b, lz| =k, f(z) = a.
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It is easy to see that the only collisidm, /) of H,;, i that satisfiesz| = |2/| = kis (f~1(a), f1(b)).
Hence finding such a collision @, ;, i for random(a, b) implies invertingf ata. Finding collisions(z, )
with |z| # k or |2/| # k breaks the collision-resistance #fx. So H,; ¢ is collision-resistant against
uniform polynomial-time adversaries.

In the following, we writek-collision to denote a collisiorz, ') with || = |2’| = k. Then there exists
only a singlek-collision (z, ') of H,j, x (Wherek = |a| = |b]).

Letoy,s. denote some fixed unsatisfiable circuit. Izbe a prover that upon mp(ll"C H,c, N) invokes
PT on security parametdr®, L, -instance( H, o 4. ) and witnesgc, N, w).

By construction of P, V) and sincg PT, V1) is complete, there exists a negligible functiepsuch
that for all¢, N with |c| < I.(k) and|N| < Ip(k + |H|) such thatV is a valid proof fomﬁ’“ [c] = true
(i.e., such that’* (1%, pk,, 7, c, N) = 1), we have

Pr[(P(1F, H, e, N), VE(1*, 0/qe)) = 1] >1— (k). 1)

Consider the following gamé&:

(d> 5) i Yk’> a = f(d)> b:= f(l;)v K Gﬁ(lk)> H .= Ha,b,K» (2)
C%gf(pkkv(dvl;)% N(_P*(lkﬂTH»Capkk»Skk)a (3)
(a,b) — C(1*, H,P(1*, H, ¢, N), 0 faise)- (4)

That is, first, in[(2) we construct a hash-functiéhsuch that we know the (only)-collision (a, 5). Then
in (3) we construct an encryptianof that k-collision and a proof that indeed contains &-collision (i.e.,
thatwgf"[ | = true). Finally, in @) we invoke the generic security pradfwith a description of the hash-
function H, with a description ofP (instantiated with input1®, H, ¢, N')) and with the SAT-instancey,se -

By the completeness ¢f*, V*), there is a negligible functiop, such that inGG, the following holds:
Pr[V*(1%, pky, 7, ¢, N) = 1] > 1 — po(k). Further, by definition of. andip it is |c| < I.(k) and
|IN| <lp(k+ |H]). Then using[(l) we get

Adv¥™E = Pr[(P(1%, H, e, N), VI (1, 0puse)) = 1] > 1 — s (k) — pa(k)

whenH, cand N are chosen as in ganig,.

Since oy,5. is not satisfiable, this violates the soundness of the argtimgstem(P?, V). So
by the definition of constructive security proof§, should be able to extract a collision givef, H,
P(1% H,¢,N) and ofase- More exactly, letp be a polynomial such that(k) bounds the length of
(1%, H,P(1* H,c,N), Trase ). Such a polynomial exists, sindé is constructed by a polynomial-time algo-
rithm andP runs in polynomial time. Then there is:a> 0 and a negligible functioms such that

Pr[(a,b) is a collision of H] > (A;(Vgg>c — ps(k) > <1 — ”1;"&)— ”2(’“)>c — s (k) = v(k).

Thenv is not negligible. On the other hand, sinfe is collision-resistant against non-uniform adversaries,
and(a, b) is computed by non-uniform polynomial-time algorlthmsM)E there is a negligible function
4 bounding the probability thdt, b) is a collision of H. Since by construction off := Hg,p i, the only

collision of H that is not a collision o  is thek-collision (f~'(a), (b)) = (a, b), it follows that

Pr((a,b) = (@,b)] > v(k) — pa(k). (5)

® The non-uniformity stems from the appearanceliof in gameGy.
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Let now A(1%, pk, e, m, H,N) := C(1*, H, P(1¥, H, ¢, N), 04us ). SinceC and P are polynomial-time
algorithms, so isd. Further letG/(1%) be an algorithm that chooses := (a,b) and H as in gameG, and
then outputs pk,, m,7g, H). ThenG runs in polynomial-time, too. Then the following gar6g is just a
rewriting of game(zg:

(pk,m,m, H) — G(1%), ¢ — Er(pk,m), N P*(1%, 7, ¢, pk, sk), m' — A(1*, pk,c,m, H,N)

with (a, 13) := m/ and with sk being the secret key correspondingpta So by [5) it follows thatPr[m =
m'] > v(k) — ua(k) in gameGy. This is not negligible. SincéP*, V*) is content-hiding, it follows that
there is a polynomial-time simulatdf such that

vo(k) := Pr[(pk,m,m, H) — G(1F), ¢ — Er(pk,m), M" — S pk,e,m, H) : m e M'] (6

is not negligible. Sincefy is IND-CPA by[Lemma P, and the algorithms [ (6) are all unifgpolynomial-
time algorithms, we can replac¢g (pk, m) by £¢(pk, 02*) (since|m| = 2k). (For this, note thaf’ chooses
pk := pk,;.) Then, for some negligible functioms, we have

Pr((ph, m, ) — G(1%), ¢ — E(pk, 0%), M’ — S(1¥, pk,e,m, H) : m € M') = va(k) — ps(k)

Since given a description @, x With a = f(a) andb = f(b), we can efficiently verify whether for some

m’ we havem’ = (a, b), we can modifyS so that it directly outputsn = (a, b) if that m is in M’. Call the
resulting algorithms’. By substituting the definition aff we get

Pr((a,b) & Vi, a = f(a), b= f(b), K — Gy (1%),
(dv l;) N S/(lkapklwgf(pkk»Ozk)aﬂ-Ha’b’Ka Ha,b,K) :
(a,0) = (@, b)] > va(k) — pa(k).

Let the algorithmT'(1%, a) perform as follows: First, it choosésuniformly from {0, 1}¢\ {a} and K
using G 7 (1%). Then it execute$a, b) «— S'(1%, pky, E¢(pky,0%%), 7h, , - Hap, i) @nd outputsi. Then
the previous probability can be rewritten as

Prla & {0,1}%,a:= T(1*, (@) : @ = a] > va(k) — ps(k).

Sincewvy, — ug is not negligible and is a uniform polynomial-time algorithm, this is a contrada to f
being one-way against uniform polynomial-time adversari¢ence our assumption th@tis a constructive
security proof was wrong. O

A Postponed proofs

A.1 Proof ofLemmal

Proof. Let {gx} be a family of trapdoor permutations with dense public ké&s./ be the polynomially
bounded function such thal is a permutation o0, 1}* for every K ¢ {0,1}¢(*),

Let O be the set of all function® such thatO(z) € {0,1}*) for 2 = 1* andO(x) = 0 otherwise.
(Intuitively, O is the set of all oracles that assign a single kgy € {0, 1}5(’“) to each security parameter
k.) Let D be the uniform distribution of. In particular, ifO is chosen according t®, then©(1%) is uni-
formly distributed on{0, 1}“’“. (So, intuitively, D represents the distribution resulting from independently
choosing a fresh key for each security paramgjer
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For a function® € 9, we define the permutatiof® as follows:
£O(x) = goar (z).

By construction f© is a length-preserving permutation i 1}* (if we additionally setf(\) := A where
A is the empty word). And sincex can be efficiently computed, given access to the orétlee can
also computef© efficiently. Furthermore, sincfyx } is a family oftrapdoor permutations, for each public
key O(1%) there exists a polynomial-size trapdagrsuch that for alle € {0, 1}*, we havet (f°(z)) =
te(9oar) (@) = .

To conclude the proof, it is left to show that there exists @O € O such thatf© is indeed one-way.
We will even show more: 1 is chosen with distributioD, then with probabilityl the permutatiory© is
one-way.

For any oracle Turing machingd, we defineA to be the Turing machine that upon inpur®, K, )
simulates the following process: First, an ora€les chosen according to distributidn. Let(’)(l’“) K
andO'(z) = O(z) otherwise. Them simulatesA©(1*, ). In other words A simulates4 with a random
oracle© with the only exception thaD(1%) is the key thatd got as input.

Note that if A is polynomial-time, so isd, since a randon® can be simulated by choosing a random
K € {0,1}*®) on demand upon a que€9(1%).

We define the following probabilities (wherk denotes a Turing machine):

pa(k) :==Pr[K & {0, 1}£(k), z—{0,1}*, y — gk (),
x’ — A(lk,K,y) : gK(x) = g[{(fﬂ,)],
pQ (k) := Prlz — {0,1}*, y — fO(x), 2/ — A9 (1%, y) :

fOz) = o),
(k) == Prlpf (k) > Kpa(k))
Ba(k) z%[uA(/%) 214(k) for somek > k],
Ba(o0) := P [MA(/%) >k 21 ( ) for infinitely manyk]

HerePro denotes the probability witth chosen according tD.
By construction off, A andD we have

palk) = Priz — {0,1}",y — fO(2),a" — A°(1%,y) : [O(x) = FO(2)] = Blu (k)]

So using the Markov inequality, we get

Hence we have
o0 o0 1
SEOMICED W P
k=k

For anyk we have that if some predicaté(/%) holds for infinitely manyk, then it also holds for some > k.
S084(00) < Ba(k) — 0, thusBa(co) = 0.
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Let 2 be the set of all uniform probabilistic polynomial-time Tng machinesA. Then2l is countable.
Further, sincey is one-way by assumption, the functipn is negligible for allA € 2(. We then have

%r[ f9 is notone-way relative t@)

=Pr34 e 19 is not negligiblg

Here (%) uses the fact thgt4 and therefore alsé?u” is negligible forA € 2, and (x+) makes sense
becausél is countable.
So with probability1, the functionf© is one-way relative to the oract@. O

A.2 Proof ofLemma 3

Proof. If one-way trapdoor permutations with dense public keystekien there is a non-interactive proof
system(P, V') for SAT in the common reference string model that is adafgtiseund, adaptively computa-
tional zero-knowledge, has perfect completeness, a poliaidime prover and a deterministic polynomial-
time verifier (cf. e.g.,[[Gol01, Section 4.10.3.]Eurther, the CRS is a uniformly chosen string (due to the
dense public keys). In the following, we will assume the CR%0 be a string of infinite length (i.e., an
element of{0, 1}). Of course, any polynomial-time Turing machine will readyoa finite prefix ofR.

We recall the definition of adaptive soundness:

Pr[R — {0,1}N : 3o € SATC, N € {0,1}* such that/ (1%, R, o, N) = 1] is negligible ink + n.

HereSAT,, denotes the set of all yes-instances$SafT' of length at most, andSATEL denotes all strings of
length at most that are not yes-instances @AT. (We differentiate between the lengthand the security
parametek to make presentation simpler later on.)

The definition of adaptive computational zero-knowledgethis following: There are probabilistic
polynomial-time Turing machines$; and S (constituting the simulator) such that the following holds
For any (possibly unbounded) algorith that upon input(1*) outputs a triple(z, z,w) of polynomial
length consisting of some auxiliary informatian a SAT-instance: and a witnessv for z, the following
two random processes are computationally indistinguighiab:

rRE {0, 13N, (z,z,w) — X(1%), N — P(1*,R,z,w) : (R,z x,N)
and

(R,t) — S1(1%), (z,2,w) — X(1¥), N — Sy(1*,2,t) : (R, z,z, N).

Note that there is some abuse of notation in the precedingitiefi. The Turing machine; outputs an
infinite string R € {0, 1}, which is of course impossible. However, since only a potyiad prefix of R

® Note that only the verifier is guaranteed to be computatipreiunded.
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is used in the remainder of the definition, we can assume&haimply chooses a polynomial prefix of
sufficient length.

Let O be the set of all function® from X* to {0, 1} with the property thaif (z) = 0 if « has not the
form z = 1. (Intuitively, © € © is an oracle assigning a single bit to each security paranketd.et D
be the uniform distribution osD. Each oracle® € © induces a CRR(0) € {0, 1}N with R; := O(1%)
whereR; is thei-th bit of R(O). Note that the mappin@ — R(Q) is a one-to-one mapping, and thatlf
is chosen according B, then R(O) is uniformly distributed or{0, 1}.

Let now (&, D) be an encryption scheme. (Possibly even making use of tieée@?a) We now construct
a proof of content P, V.©) for (D, £). For a circuitr and public and secret keyé, sk and an encryption
¢, let7P5% ] and7P*[c] be defined as in Definition 4. We can then consid®i{c] as a SAT-instance, and
a secret keyk with 7P [c] = true as a corresponding witness. We then define

PO (1% 7, ¢, pk, sk) := P(1¥, R(O), 7P*[c], sk),
VO (1¥, pk,m ¢, N) := V(1¥, R(O), 7" [c], N).

That is, to showrP*[c] = true, the proverP? uses the proveP with R(O) as the CRSV,© then verifies
that proof using/.

Note that althoughR(O) has infinite length, any prefix of polynomial length can be pated in
polynomial-time (given oracle-access@. SoV.? runs in oracle polynomial time sindé runs in polyno-
mial time. The same holds fdP®.

There is an additional subtlety we have to consider. If trerygsion algorithmD uses the oracl®, it is
not immediately clear that?*[c] can be expressed as a SAT-instance, since the circuit ¢vaue® ** [c]
accesses the oraof2. However, w.l.0.g., we can assume tliatueries the oracle only with queries of the
form O(1™) (all other queries returfi anyway). Further, there is a polynomial upper bourdon m in
these queries. We can therefore hardc6de®), ..., O(1*) into the circuit representing?***[c|. In this
form, 7P*[c] can indeed be considered as a SAT-instance.

We are now going to show that withh chosen according to the distributidn, with probability 1 the
proof system( P, V.©) is a content-hiding proof of content.

For any© < 9, the polynomial-length property (Definition 4) 0P, V.©) follows from the corre-
sponding property of P, V). Furthermore, sincéP, V') has perfect completeness, i.e., for any CRS the
proof succeeds, the completenesg@f , V.©) follows for anyO € ©O.

It is left to show that( P, V©) satisfies the soundness property and the content-hidingegyowith
probability 1.

First, we show thatPC, V,©) is sound with probabilityi. For someR € {0,1}*, let V% be defined as
is V.©, except thal/"* usesR as the CRS (instead @?(1%)). Then we define the following probabilities:

(k) :==Pr[R — {0,1}N : Ipk, 7, ¢, N € X* such that
mP*c] = false andV (1%, R, 7P%[¢], N) = 1],
1O (k) == Pr[3pk,m, ¢, N € X* such that
7% [c] = false andVP (1%, pk, 7, ¢, N) = 1]
ak) = Prlu® (k) > k> (k)]
B(k) := Pr[u® (k) > k*u(k) for somek > k],

@
B(c0) := Pr[u® (k) > k*u(k) for infinitely manyk].
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Since(P, V) is adaptively sound (see abovg)is negligible ink. Furthermore, by construction &€, it is
w(k) = %r[Eka‘,ﬂ, ¢, N € X* such that

7P*[] = false andV (1%, R(O), 7P*[¢], N) = 1]

_ 5,0
= Eu"(R)]-
Like in the proof of Lemmal, it followsy(k) < % and henced(k) < ZZO . k—lz — 0 and thusg(k) >

B(c0) = 0. We saw thaf is negligible. So ifu© is negligible we have:© ( ) > k2 w(k) infinitely often.
Thus @ is negligible with probabilityl — 3(co) = 1. Therefore( PO, V,©) fulfills the soundness property

(Definition 4) with probability1.
It is left to show that PC, V,©) is also content-hiding with probability.
Fora CRSR € {0, 1}N, let O(R) be the unique® € O with R(O) = R. Given oracle Turing machines

G and A, we then define the following probabilities:

fiac(k) == Pr[R & {0, 13N, (pk, m, 7, z) — GOR(1F), ¢ — EOU) (pk,m),

N — P(1*, R(O), 7P [d], sk),m’ — AP (1F pk,c,m, 2, N) : m = m],
i3, (k) = Prl(pk,m, 7, 2) — G(1%), ¢ — £°(pk, m),

N — PO(1* 7, ¢, pk, sk), m' — AP (1% pk,c,m, 2, N) : m = m/].
K iaak)),

Bac(k) = Pr[ia§ o(k) > k*jia (k) for somek > k],

(
aack) = %r[#A a(k) >

=Pr )
Bacloo) == =Pr r[iq o (k) >

A, (k) for infinitely many#].

By definition of O(R) and R(©), and by construction oPO, we see thafia ¢(k) = Eoli§ (k)] Like
above and in the proof 6f Lemma 1, it followis, (k) < kQ and hences ¢ (k) < >oie kT L — 0and thus
Bac(k) > Bacloo) =0.

Then, sincg P, V') is adaptively computationally zero-knowledge, for anyypoimial-time A, G there
exist probabilistic polynomial-time machinés, S, such that

6a6(k) = Pr[(R, 1) — S1(1%), (pk,m,m, 2) — GO (17), ¢ — €9 (pk,m),

m' — Sy(1%, 7P [c], 2, N) : m = m/]

is negligibly close tqi4 ¢, i.e.,|fta,c(k) — 64,c(k)| is negligible.
So if 5.4, is negligible, so igi4 ¢, and therefore alsb?fia,¢ (k). So if i (k) < k*fia (k) for all
but finitely manyfc (which happens with probability — BAg(OO) = 1), the functioniiy ., is negligible, too.
So for every polynomial-timel and G, we have with probabilityl that if [LXG is not negligible, so is
0 4,G- Since there are only countably madyandG, the probability isl that for randomO we have that if
[ig & is not negligible, so i$ 4 ¢
By Definifion 8, (P, V©) is content-hiding if for all polynomial-timel andG from the fact thafq ;
is not negligible, it follows thas§ , is not negligible. So with probability, (P, V) is content-hiding.
So we have shown, that for ang, D), the probability isl that the corresponding proof systé¢i®, VO)
is a content-hiding proof of content. Since there are onlyntably many different encryption schemes
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(€,D), it follows that with probabilityl (over oraclesO chosen according t®) we have that for each
encryption scheméf, D) there exists a content-hiding proof of content. O

A.3 Proof of[Theorem 1

Proof. Since(P*, V1) is a computational zero-knowledge proof, the computatiaeeo-knowledge prop-
erty and the completeness @, V1) follow from the construction.

We show that P, V1) is an argument of knowledge, i.e., we construct a knowleag@aetor £ such
that there exists a polynomialsuch that for any non-uniform polynomial-time proverand any sequence
o of SAT-instances of polynomial length, there is a negligifunction such that the following holds for
eachk € N:

Pr[K — K(1F): EPONE)(1% Hy o4) is a SAT-witness fop]

> Wlk;) PriK — K(1%) : (P(1%, K), V< (1%, o)) = 1] — (k). 7)

Here EP(*K)(1F Hy 0;,) denotes the extractdt with black-box access t&(1%, K) and that is given a
description ofH k.

Let E; be the knowledge-extractor ¢f>T, VT). Then there is a polynomial such that for every non-
uniform polynomial-time prover® and every sequence of polynomial-sizég-instances Hy,, o) there
exists a negligible functiom such that for alk the following holds:

PO*) 1k ; i
Pr[E; (1%, Hy, 01) is an Ly-witness for(Hy, oy)]
1 .
) Pr[(P(1F), VI(1*, Hy, on)) = 1] — v(k). ®)

Here EF(1") denotes the extractdr; with black-box access té/ x andP(1%, K).

We construct the knowledge-extractBras follows: When invoked with black-box accesstand with
input (1%, H, o), it invokes(c, N,w) — Ef(1¥, H, ) and then returns.

It is left to show thatF satisfies[{l7). Lef? be a non-uniform polynomial-time prover as d (7) ana
sequence of SAT-instances of polynomial length. Kebe a sequence of keys for the hash-functidnBy
(8) and by definition of_,, there exists a negligible functionsuch that

Pr[(c, N,w) < Ef(lk’K’“)(lk,Hk,ak) :n(Hg,, 0%, ¢, N,w) = true]

> ﬁ Pr[(P(1%, K}), VI(1%, Hk,, 01)) = 1] — v(k) 9)

Since this holds for every sequenkeof keys, we have for some negligibleand allk € N:
PI‘[K — K(lk)> (Ca N, w) - E]{S(lkj{)(lk» Hg, Uk) : U(HKy ok, ¢, N, w) = true]

> s PHK — KOs (PUX K. VI, Hion)) = 1= w(0) 4o

(Otherwise we could simply use the worst-case sequenceysftkecontradict[(9).)
Let 11 be defined as follows:

ui(k) == Pr{K — K(1%), (¢, Nyw) — EXYO 08 Hi o0) - /(Hig, e, N) = true].
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By definition, v(H,c, N) = true is equivalent toV*(1%, pk;, mu,,c, N) = 1 which in turn im-
plies wﬂi{k [c] = true. Hence there exists a secret key such thatD(pk,,sk,c) =: m # L and
THi(m) = true. SinceDy¢(pky, sk,c) = m # L implies D¢(pky, ski,c) = m by construction, it fol-
lows thatr . (Df(pky, ski, c)) = true. We therefore have

p1(k) < Pr[K « K(1%), (¢, N,w) « EP(1 )1 Hye, o),
m « Dy(pky, ski,c) : Ty, (m) = true].

Since (¢, N,w) «— Ef(lk’K)(l’“,HK,o—k), m «— Dys(pky, ski,c) can be computed by a non-uniform
polynomial-time algorithm (giveri* and K), and sincery,. (m) = true implies thatm encodes a col-
lision of Hg, we have constructed a non-uniform polynomial-time alfponi that finds collisions of i
with probability at leasi;. Since by assumptior{ i is collision-resistant against non-uniform polynomial-
time adversaries, this implies that is negligible.

By definition, we have)(Hy, ok, ¢, N,w) = true if and only if oy (w) = 1 ory(Hg, ¢, N) = true. SO
using the definition of? andV ¥ we get

Pr{K — K(1¥), w — EPOSE (1% Hie op) 2 o(w) = 1]
Pr[K — K(1%), (¢, N,w) — Bf "% Hy,0) : o(w) = 1]

> Pr[K — K(1), (e, N,w) — B0 H,on) - n(Hi, o, ¢, Now) = true] — u (k)

@ 1 .

> 0] Pr[K «— K(1%) . (P(1*, K), VT(1* Hg, 01)) = 1] — v(k) — py (k).

_ b ky . (p1k Hic 1k o B

= gy P = KO8 2 (PO, VI (18, 04)) = 1] = w(8) = i (), (11)
Settingy := v + pu1, this gives usl{[7) and thus shows thi&, V) is a (non-uniformly secure) computa-
tional zero-knowledge argument of knowledge. O
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