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Abstract

We describe a technique that enables accountability iesysthat use randomized protocols. Byzan-
tine faults whose effects are observed by a correct nodevargweally detected and irrefutably linked
to a faulty node. At the same time, correct nodes are alwalgstaldefend themselves against false
accusations. The key contribution is a novel technique émegating cryptographically strong, account-
able randomness. The technique generates a pseudo-raadoense and a proof that the elements of
this sequence have been correctly generated, while agptbat future values of the sequence can be
predicted. External auditors can check if a node deviatas its expected behavior without learning
anything about the node’s future random choices. In pddican accountable node does not need to
leak secrets that would make its future actions predictalthe technique is practical and efficient. We
demonstrate that our technique is practical by applying & simple server that uses random sampling
for billing purposes.

1 Introduction

Nodes in distributed systems can fail for many reasons: a nad suffer a hardware or software failure; an
attacker can compromise a node; or a node’s operator caredsiely tamper with its software. Moreover,
faulty nodes are not uncommdg?. In a large scale system, it is increasingly likely that sonodes are
accidentally misconfigured or have been compromised asufi c#sinpatched security vulnerabilities.

Recent work has explored the useagitountabilityto detect and expose node faults in distributed sys-
tems P7,14]. Accountable systems maintain a tamper-evident rec@iitovides non-repudiable evidence
of all nodes’ actions. Based on this record, a faulty nodesghabservable behavior deviates from that of a
correct node can be detected eventually. At the same tinm@yaoct node can defend itself against any false
accusations.

PeerReview(14], for instance, creates a per-node secure log, which redbi messages a node has
sent and received, and the inputs and outputs of the apphicainy nodei can request the log of another
nodej and independently determine whethidras deviated from its expected behavior. To do thisplays
j's log using a reference implementation that defifisexpected behavior. By comparing the results of the
replayed execution with those recorded in the log, PeedRevan detect Byzantine faults without requiring
a formal specification of the system.



The approach taken by PeerReview is very general, but iinexjthat each node’s action be determin-
istic. (Otherwise, divergent actions of a node and its ezfee implementation may be classified incorrectly
as a fault.) One approach to ensure deterministic behawvtordisclose, as part of a node’s record, the seed
of any pseudo-random number generator used in the nodejsgmno Unfortunately, disclosing the seed also
reveals any secrets that were randomly chosen by this natlersables prediction of the future sequence
of pseudo-random numbers. We could allow a node to choos& a&&ed once it has proven that its past
actions were fault-free. However, this would allow a badenta manipulate seeds strategically, and thus
follow a sequence of actions that is not pseudo-random.

Thus, applying PeerReview's technique faces us with a ehewe can make a node’s actions (including
its adherence to a pseudo-random sequence) accountalble exgense of revealing the node’s secrets
and making its future actions predictable; or, we can ptategode’s secrets and keep its future actions
unpredictable, but give up the ability to verify that the aad following a pseudo-random sequence of
actions.

Consider, for instance, a distributed algorithm that usesesform of statistical sampling. We would like
to be sure that each node follows a truly random sequencegilea to ensure unbiased results. However,
disclosing a node’s future random samples as a side-effeatiditing the node’s past actions may allow
an attacker to adapt his behavior to the expected samples,biasing the results. As a result, existing
accountability techniques are not appropriate for suckopugs.

We contribute a protocol for generating cryptographicalisong,accountablerandomness. The tech-
nique allows us to apply PeerReview to probabilistic proteavithout making their actions predictable.
More precisely, we propose a pseudo-random generator aisahb following five properties:

1. The pseudo-random generator should output cryptographisiaong randomness in the sense that
even the entity that is generating this randomness canmopei something that could not be com-
puted if those numbers were chosen truly randomly.

2. The pseudo-random generator should support accounyabdit, after each random valuds gener-
ated, it should be possible to generate a proof that thisvaluas indeed correctly derived from a
given seed.

3. Future random values of honest nodes should be unpredictabl, for an entity learning random
valuesry,...,r; and the corresponding proofs, all future random valyes, ... should still look
random. (In particular, this excludes the obvious solutbnsing the random seed as a proof.)

4. The pseudo-random generator should specify a method fasaig the seed such that even if mali-
cious entities are involved in the computation of the sde& yésulting randomness should still fulfill
the properties described above.

5. Both generating the randomness and verifying the correpgrproofs should be highly efficient to
keep the costs of accountability low compared to the actu@bpol execution. (In particular, this
excludes solutions based on zero-knowledge proofs.)

We achieve these properties by an initial coin-toss praétdotiowed by a novel combination of hashing
(where the hash function is modeled as a random oracle) aag@oor one-way permutation. Our construc-
tion essentially constitutes a chain of inverse trapdo@tiegtions starting from the seed derived from the
coin-toss, where the sequence is partitioned into blockmtegymediate applications of the hash function.
The hash function is additionally used to transform elemeithis sequence into independent random val-
ues. Elements in the sequence serve as a proof for formegsegelements and hence for the corresponding
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random values, since everybody can use the permutatiomipute former sequence values itself and then
compare them with the actually used random values. The basdif inverting the trapdoor permutation and
the usage of the random oracle prevent a prediction of flgeqgience elements, and consequently of the
random values used in the future. This construction turnsoooe efficient, and it can be further optimized
by exploiting number-theoretic properties of low-expanRSA.

The security of our protocol for generating accountablaeloamness is formally established by compar-
ing it to an ideal specification of its expected behavior,arrttie additional hypothesis that the surrounding
protocol does not use the same hash function as that useerferaging the randomness. This corresponds to
the well-known simulatability paradigm of modern cryptaghy, out of which the Reactive Simulatability
(RSIM) framework [P] and the Universal Composability (UC) framewoi#j Eonstitute the most prominent
representatives that have been used to prove the secungriofis protocols. In particular, simulatability
offers strong compositionality guarantees.

We implemented our protocol as an extension to the publichilable PeerReview library2B]. Our
evaluation shows that the computational cost of our tecanig low: on current hardware and with @24-
bit RSA modulus, a random number can be generated in les2thanand verified in less thahOus. We
also show that our protocol is practical, and that its stemagd bandwidth costs are low both in relative and
in absolute terms.

The rest of the paper is organized as follows. Section 2 aesrthe related work. Section 3 describes
the protocol for generating accountable randomness anelssbait its correctness properties. Section 4
sketches the implementation of the protocol in the contERe@rReview. Section 5 gives a few examples of
existing and prospective applications of our techniquectiSe 6 presents the evaluation results. Section 7
concludes the paper. Corresponding security proofs asepted in the appendix.

2 Related Work

On generating accountable randomness A technique that is strongly related to our technique is tfat
Verified Random Functions (VRFZ0] and the stronger simulatable VREKI]. However, these fall short
of our requirements in that they do not guarantee that théomness produced by malicious parties has
strong randomness properties even if the malicious partlesse additional information on their seeds.
Furthermore, in particular the simulatable VRFs are mush &fficient than our technique. We buy these
advantages by using the random oracle model which is knowladw for very efficient constructions.

On accountability Accountability in distributed systems has been suggestednaeans to achieve practi-
cal security L], to create an incentive for cooperative behaviti§]] to foster innovation and competition
in the Internet/17,[1]], and even as a general design goal for dependable netwsykéeims(26].

Systems have recently been built for adding accountaldditydeterministic systems by exploiting se-
cure logs that record the messages sent and received by edeh@ATS 28] implements a deterministic
network storage service with strong accountability propsr Besides its restriction to deterministic sys-
tems, it depends on a trusted publishing medium that entueastegrity of these logs, and it detects faults
by checking logs against a set of rules that describes theatdoehavior of a specific system (a network stor-
age service). Repeat and comp&# uses accountability to ensure content integrity in a pegreer CDN
built on untrusted nodes; it detects faults by having a sttisted verifier nodes locally reproduce a random
sample of the generated content, and by comparing thesésulte content returned by the untrusted nodes.
PeerReview14] offers strong accountability for any distributed systdrattcan be modeled as a collection
of deterministic state machines. Just as CATS, it relies amtaining secure logs for recording sent and



received messages, but it does not assume a trusted pablisteidium and does not require a specification
of correct behavior; instead, it replays the logs using {fstesns’s reference implementation.

3 The Protocol for Generating Accountable Randomness

3.1 Cryptographic Assumptions

The Random Oracle Model. The random oracle modéd] constitutes one of the most popular heuristics
in cryptography. The security of virtually all practicalieployed public-key encryption and signature
schemes relies on the random oracle model, e.g., of the RSBP@&ncryption schem&][ specified in the
PKCS #1 standard®H).

The random oracle model formalizes the intuition that a goggdtographic hash function has essentially
no recognizable structure, i.e., this function can be egoketo behave as a completely random function.
Instead of proving the protocol under consideration wigpeet to some fixed actual hash functidne.qg.,
SHA-1), proofs in the random oracle model presuppose aituméf : {0,1}* — {0,1}! that is uniformly
chosen from the set of all such functions, i.e., for eachesajuhe valueH (z) constitutes a uniformly chosen
value (with two calls taH (x) returning the same value). The security of the protocol ucdaesideration
is then proven by granting the protocol oracle-accesd tthe implementation, however, uses the concrete
hash function. Although (pathological) protocols existttliolate the random oracle heuristié@],[no
example of a practical protocol is known to the best of ounkdedge that is proven secure within the random
oracle model but whose implementation turns out to be ineewhen implemented with a sufficiently good
cryptographic hash function.

The random oracle model is known to allow for very efficierdtpcol constructions. In our setting, the
random oracle model furthermore enjoys the following adlvg®e: our randomness generation protocol is
only provably secure if it relies on a hash function that is a®well used in the application protocol. For
an actual hash function, this statement is difficult to fdimeaproperly since the application protocol might
only compute parts of the hash function, or the function migghobfuscated. If one relies on the random
oracle model, this statemement can be naturally formalizedonstraining the application protocol to not
query the oracldd.

Low-exponent RSA. In the following, we consider the low-exponent RSA permiotaff,,(z) := = mod

n, wheren is a random RSA-modulus (a product of two random primasdq of the same length) of some
lengthl with 3t ¢o(n) = (p — 1) - (¢ — 1). The low-exponent RSA permutation constitutes a variamhef
RSA permutation where the public exponens instantiated as a small fixed number (in our case 3).
While naively using low-exponent RSA in larger protocolgy(eas an encryption scheme without additional
padding) is known to yield troublesome scenarios, it is d-aetepted assumption that the low-exponent
RSA permutation itself is hard to invert. More exactly, wéile the following functioregrga .

Definition 1 Letesrsa(/, s) be the maximum probability over all circuits of size at mogtat upon input
of a random RSA modulusof length! and a randomy € {0,...,n — 1} the circuit outputs some with

2% = y mod n.

The low-exponent RSA assumption for= 3 (abbreviated 3RSA) can be formally stated as follows:

Assumption 1 (3RSA) For I(k) € (k) and any polynomiak(k), we have thatsgsa (I(k), s(k)) is negli-
gible.



The 3RSA assumption trivially follows from the well-estshled strong RSA assumptidf]| In addition,
the functionf,, can be inverted efficiently if the factorization of= pq is known: One computes a secret key
d with 3d = 1 mod n and then computef; ' (z) = % mod n. In other words, under the 3RSA assumption,
fn constitutes a trapdoor one-way permutation.

3.2 The Protocol Idea

We now outline the security properties our protocol aimctueve as well as the techniques used to achieve
them. The formal description of the protocol, its securityag@ntees as well as the rigorous security proof
is given in the subsequent sections.

3.2.1 Desired Security Properties

Defining a protocol for generating accountable randomressssfus with the challenge of finding a pseudo-
random generator that achieves the following properties:

1. The pseudo-random generator should guarantee cryptagadlplstrong randomness. This not only
captures that the randomness is uniformly distributed at tlo outsider can guess the randomness,
but also that even the entity generating the random numlb@rsot compute something that cannot be
computed if those numbers were chosen truly randomly. Fbairte, generating the random number
r together with its discrete logarithahshould be impossible. Only requiring the randomness to be
uniformly distributed would not exclude tHls.

2. The pseudo-random generator should be accountable,figg.each random valueis generated, it
should be possible to generate a proof that this valvas indeed correctly derived from a given seed.

3. Future random values of honest nodes should be unpredictabl, for an entity learning random
valuesry,...,r; and the corresponding proofs, all future random valyes, ... should still look
random. This requirement in particular prevents us fromgihe random seed as a proof.

4. The pseudo-random generator should specify a method fasoig the seed such that even if mali-
cious entities are involved in computing the seed, the tiegutandomness still fulfills the properties
described above.

5. Both generating the randomness and verifying the correipgrproofs should be highly efficient
to keep the costs of accountability low compared to the ei@cwf the application protocol. This
requirement in particular excludes solutions based on-keowledge proofs. Our protocol will use
only a few hashes and multiplications in an RSA group for egateration of a random value.

3.2.2 Achieving Accountability and Unpredictability

We first concentrate on the accountability and the unprabliity of the pseudo-random generator, i.e., on
Propertie@ and3 Assume that a node would like to generate a random value. Our approach presgspo
the existence of a seed that is known to everyone (this will later be guaranteed bynéral coin-toss) as
well as of a trapdoor one-way permutatirnvhose secret key is known only 10, i.e., only P can invert the
permutation. Consequently, is able to compute a sequenge= f~!(s;_1) while all other entities are not
capable of computing the values even giversy, . .., s;_1, since they lack the secret key pf Evaluating
the functionf, however, allows everyone that knows ; ands; to check if f(s;) = s;—1 holds true. In

!For instance, the following random-number generator fodomn elements of a grou would not be cryptographically strong,
although it produces a uniformly distributed Chooser’ randomly, set := g“ (whereg is a generator of), and return-. The
valuer would be uniformly distributed but the entity computingvould also know its discrete logarithm.



this case, it also holds that = f~!(s;_1). Hence we achieve accountability for those values. We mate t
the s; cannot directly be used as random values sifjcands; 1 stand in a strong relation (hamely, one
is the image of the other undg; this would not be the case if these values were chosen ttamgomly.
Therefore, we let; := H(s;) and user; as the desired random value. Consideriigas a random oracle
then allows for concluding thdi (r;) andH (r;—1 ) have been successfully decoupled. Hence future random
values cannot be predicted (Propd8jyand accountability for those values is provided (Profdgyty

3.2.3 Achieving Strong Cryptographic Randomness

Providing strong cryptographic randomness in the senseapfetyll constitutes a difficult task in general.
Fortunately, our construction can be shown to already affieong cryptographic randomness as long as
we modelHd as a random oracle. To convey the basic idea behind this\@t&er, we first sketch how
cryptographic randomness will be defined. We rely on the-established approach of defining security
by means of simulation: To show that a sequengesven given the side information and f (and if P is
malicious, additionally the secret key f@), is random we show that there is an efficient machine (called
the simulator) that, given a sequence of valgesan simulate a realistically looking protocol executibatt
results in exactly these values (in particular, it has to eap with realistic values; and f). The intuition
behind this notion is that if some property holds for thé the original protocol (called the real execution),
the same property would hold for the truly randonin the simulation (called the ideal execution). Rigorous
definitions of this idea will be given in Secti@B For instance, if one could compute the discrete logarithm
of ; in the real execution, one could also compute the discrgiriihm of the truly random; in the ideal
execution. Since the latter is conjectured infeasibleplibfvs that the discrete logarithm ef cannot be
computed in the real execution as well, not evernfoiyself.

Defining security by means of comparing a protocol againgleal execution has asserted its position as
a salient technique in modern cryptography, and the flavoaneeising has been shown to offer very strong
security and compositionality guarante@s{]. In our case, the simulation becomes possible because of th
random oracléd. Since the simulator has to simulat® it is free to choose the valud$(x) in a suitable
manner, as long as the distributionfdf{ x) is still the uniform distribution. In our case, the simulatan do
this by settingH (s;) := r;, provided that the simulator succeeds in recognizing aevald s;. The protocol
described so far does not seem to offer an efficient way togréze such values since arbitrary values
may occur; might be arbitrarily large, and one would have to test foiteakily manyi whetherfi(s) = sq
holds. We hence slightly adapt the protocol as follows: lergv;-th step, the value; is not computed as
s; = f~(si—1) butass; = f~1(H*(s;—1)) (hereH* is a suitably padded version &f), sedFigure 1 (The
dashed lines can be ignored at this point.) Thensasys; fulfills f7(s) = H*(x) for somej < t and some
x. Since the simulator simulates the functifh it knows all valuesi *(x) that have been queried frofd
so far, and thus he can efficiently check whetlfiéfs) = H*(z) holds for somer that has already been
queried; for values: that have not been queried, one can easily show this equatiaimost never hold
true. This allows for proving that our protocol indeed giedi®ng randomness guarantees, even against a
malicious P. We note that; = 1 — to hash before every application pf! — constitutes a perfectly fine
choice from a security point of view. Larger valuestpfallow for more efficient implementations though,
see SectioB.4

3.2.4 Choosing a Suitable Seed

We now turn to the property of suitably choosing the seedd@mty[4). Our construction presupposes that
the initial seeds, is chosen randomly and that the functigns chosen correctly even ¥ is malicious.
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Figure 1: The randomness generator for= 3. The dashed lines depict the optimized variant from
[Subsection 314.

A suitable choice ofsy can be enforced by choosing as the result of a coin-toss, which can easily be
implemented using the hash functiéh Enforcing a correct choice gf turns out to be more sophisticated.
Since the secret key gfmust not be disclosed to any participant other tRa®® choosesf on its own. This
opens the following possibilities of a badly-formed choagef. First, f might not constitute a permutation.
In this case, the values will not necessarily be uniformly distributed; even worseme values;_; may
have several preimagesunderf so thatP may be able to choose the next random value from these p@ssibl
values. Second, an incorrectly chosémight have a small period, i.e., for sorsgand someu, we might
have thats,, = f*(s,) = s, and consequently that, = r,. The first attack can be prevented by
finding a way to prove thaf indeed constitutes a permutation. This is difficult to provgeneral if the
secret key must not be revealed. In the case of the low-expd&®BA permutation, however, it turns out to
be sufficient to show for a few random valugghat all these values have a preimage urydeviore exactly,

in order to prove thaf constitutes a permutation, we compute valygs= f~!(H (u,n)) wheren is the
RSA modulus used by. The second attack is circumvented by includidgnd: in all hash values. Hence
even in the case,,, = s,, we still haver, ., # r,.

3.2.5 Towards an Efficient Solution

We finally consider the efficiency of randomness generatimhpaoof validation (Proper{§). In the proto-
col outlined above, both generation and verification of @can value need one application pbr f~*. For
general trapdoor one-way permutations this may be quiteresipe. In our particular scheme we propose
to use 3RSA; in this case, an applicationfofan be performed using two multiplications. The invefsé

still requires one exponentiation, and this is too expenfiv our purposes. In Secti@4, we give a batch
evaluation technique that brings the amortized complexityenerating one random value arbitrarily close
to two multiplications. Note that one random value is notregkd random bit but, bits wherel, is the
length of the output of{.

3.3 Description of the Protocol

We now formally describe the protocol for generating actable randomness. This protocol is designed
as a subprotocol for inclusion in some larger applicatiGe PeerReview; we hence only specify the rou-
tines for generating randomness and the correspondingspranad for verifying these proofs. Full-scale
accountability is then provided on the next layer, e.g., grReview.



3.3.1 Protocol Parameters and Additional Notation

Our protocol is parametrized by the following values: Theugd, is the length ofH (x) for anyz. The
valuel, is the length of the RSA modulus used. The valugs$,,t3,t4 > 1 denote integers satisfying
tsly > ls. The security of the protocol will be guaranteed;ifis, t3l; — I, andty are of at least linear size
in the security parameter (see dlBoeorem Jlbelow).

We use the following notation:H/ () denotes an application of the random oracle. When writing
H(z,y,...)weassume that the tuple, y, .. . ) is encoded into a single string in some efficiently decodable
fashion. ByH*(z) we denoteH (1, z)|| ... || H (t3,x). Note that the length off*(z) is at leasty. For an
integern (not necessarily an RSA modulus), we wrjtg to denote the functiorf,,(z) := 23 mod n. In
slight abuse of notation, we writg; ! (x) € {0,...,n— 1} for the preimage of mod n underf,,, provided
that f,, constitutes a permutation dM, ..., n — 1}. Note though that even jf~! is defined, it is the inverse
of f, onlyon{0,...,n —1}.

3.3.2 The Coin-toss Subprotocol

This auxiliary subprotocol will be used in the main randossigeneration protocol to get a random value
s (from which the initial seed is derived). We do not require the valsgo remain secret; this strongly

facilitates to perform a secure coin-toss, in particulathie random oracle model. We additionally sign all
messages so that when plugging the protocol into PeerResi@ny party can prove that it indeed behaved

correctly.

For nodesP, P, ..., P, to perform a coin-toss, the nodes first choose random valugs. . . , ;. Then
each node&’; computes; := H(r;) and produces a signatusg on ¢;. Then all(¢;, 0;) are sent taP. Then
P setsc := H(r), setsh := (¢, c1,01,...,ck, 0k), and produces a signatuseon h. Then eachP; checks
all signatures im, produces a signature on i, and sendgr;, o}) to P. P checks all signatures; and
sendyr,ri,...,rg) to Py, ..., P,. The outcome of the coin-tossds=r & r; & --- @ rg.

It is easy to show that this protocol produces a random valtiat least one party is honest. Moreover,
this protocol will only be invoked once during the setup ghasour protocol; hence the communication
and computation overhead generated in particular by thmagiges is acceptable.

3.3.3 The Randomness Generation Subprotocol

We are now ready to formally describe our protocol for getiegacryptographically strong, accountable
randomness. The protocol consists of three parts: a setagepor generating the seed, a function for
generating the random values and the corresponding afmlitriation (proofs), and a function for verifying
these proofs.
In thesetup phaseach node” performs the following steps:
e Choose a random RSA-modulussuch that3 {1 ¢(n) and compute the secret keywith 3d =
1 mod ¢(n). (Do not store the secret key in the audit log.) Then comppite= f. ' (H* (pk, y1,n))
forp=1,...,ty and send a signed messdge, n, qi, . . ., q;,) to all its withesses.
e ThenP, P,..., P, perform a coin-toss (see Secti@B8.2 whereP, ..., P, are the witnesses a?
(or any other set such that we assume that at least ofe®f, . .., P, is honest). Lek denote the
outcome of the coin-toss.
e Setsy := H*(P,start, s) whereP denotes a string encoding the identity of the nét

Here we assume thak is some string that is different from the identifier of any aod
3Herestart is some fixed string which is not an integer.



For generating a random value; and the corresponding audit information (wheris a sequential index
startingi = 1), perform the following steps:

o If t1|i—1,sets; ;== f, {(H*(P,i—1,5,_1)).

o If t; 1’ 1 — 1, sets; := fn_l(si—l)-

o Letr; := H(P, 7, Si)-

e Stores;, r; in the audit log.
For verifying a random valuer;, the following function Verify is evaluated on the values
(P,n,s,ri,q1s- -, qty,S1,- - -, Si) WhereP is a string encoding the identity of the nodk s is the value
computed in the coin-toss; is the current random value;, . . ., ¢, are the values sent in the setup phase
andsy, ..., s, are the values found in the audit log.

Definition 2 (Verification function) When invoked a¥erify(P,n, s,7i,q1, .-, qty, S1,- - -, S;) Withi > 1,
the functionVerify performs the following checks:
?

)
o fu(sy) = H*(P,p — 1,s,—1)modn for all p = 1,...,4 with¢; | u — 1 wheresy :=
P, start, s).

)

e r;, = H(P,i,s; mod n).

—~

Itis of course not necessary to perform all these checks apoh invocation of/erify. Since only one new
value s; occurs for each new randomness query, each evaluatiofrafy essentially uses one application
of f,, (costing two multiplications) and some hashing. Furtheenat most valuess; need to be stored
when such an incremental evaluationléfrify is used.

3.4 Efficient Implementation

The main computational overhead of the randomness gemeatbtocol stems from the computation of the
one-way permutatiorf,, and of its inversef,, 1. Verifying one random value requires one applicatiory,gf
generating one random value requires one applicatiofy,6f (Such random values are at least not single
bits but an element from the imageBt) Sincef,, has been chosen #s(z) = 2* mod n, computingf,, ()
requires only two multiplications module and is hence efficient. The invergg!, however, is computed
asf;1(x) = 2¢ mod n and therefore needs one exponentiation, which is too ekgendien invoked for
every new random value. The following technique allows fawéring the amortized computational cost
per random value to approximately two multiplications. Wpleit that for anym and anyj € {1,...,t1},

we have thats,,+; = fn”(9m) Whereg,, := H*(P,mty, sy, ). In particular, s, 1y, = f, " (9m)
and sy, 45 = fu(Smt4+441) for j = {1,...,¢t; — 1}. Using this equation, we can compute the block
Smty+1s- - -5 S(m+1)1, USINGt; — 1 applications off,, and one application of % (cf. the dashed lines in
[Figure . Sincef, " (z) = 24" = z° mod n with ¢ := d"* mod ¢(n) and sincec needs to be computed
only once, the cost fof, ! is essentially one exponentiation. Thus for computingaluess; we need

t; — 1 multiplications and one exponentiation. For sufficientlygle values of,, the amortized complexity
per values; hence amounts to only one multiplication. We refer to ourchemarks in Sectioi.1



3.5 Security Guarantees

We now discuss the security guarantees offered by the miopoesented in the previous section. The main
difficulty is to model the fact that the generated randomnedsed constitutes cryptographically strong
randomness. Such strong guarantees are useful for pretthail use cryptographic primitives: if the ran-
domness contains some structure that becomes apparentggivee additional information (namely the
audit information), this may break the proofs of many randess-based cryptographic protocols.

The basic idea behind our security definition can be summciaz follows. We first define an idealized
version of our protocol. In this idealized version, the poatl does not generate the randomness according
to the protocol description, but it instead uses truly rand@lues. The idealized version ensures that even
malicious nodes cannot lie about their randomness. Howeaicious nodes are allowed to predict their
own future random values even if these values have not yet bemhhysthe protocol; moreover, the used
random values of honest nodes get revealed to the advelsaydealized version of the protocol captures
the properties we want to prove about the randomness geddyabur protocol: intuitively, the randomness
generated by our protocol is as good as true randomness hp twod aforementioned imperfections. If
desired, these imperfections can be additionally takea ckat the cost of having a computationally more
expensive solution, cf. Sectifht

It remains to define a notion that captures that our protacakigood as its idealized version. This is
formalized by requiring that for any adversatythat attacks the protocol (i.e., an adversary that conthels
malicious nodes and may intercept information) there sxastimulatorS that attacks the idealized version
of the protocol, such that any third entity, called the eswinent, cannot distinguish between a run of the real
protocol with A and an execution of the idealized version of the protocah Wit In particular, this entails
that for any structure that might find or produce in the random valuegsjs capable of finding the same
structure in the ideal random values. However, since thakees are truly randong will not find any such
structure; consequently, we conclude tAawill not be able to find any structure either. Other propertie
carry over to the real protocol in a similar manner, e.g. ugredictability of the randomness of the honest
nodes or the fact that the randomness of all nodes satisfeffinient statistical test for randomness.

This approach for defining the properties of cryptograpfigteams is widely used in the cryptographic
community, where it is known as UC security (Universal Cosgimlity) or as RSIM security (Reactive
Simulatability). Definitions of these kinds have been shdawprovide very strong security and composi-
tionality guarantee&?][7]. Compositionality is particularly important in our seigi since we want to use our
protocol as part of a larger context (with PeerReview andaffygication protocol). The underlying reason
why this definition entails such strong compositionalityatantees is that we show that no environment can
distinguish between the real and the idealized protocaic@én particular the application protocol (which
constitutes a valid environment) cannot distinguish theseprotocols, and all properties of the application
protocol (as long as they are observable) are consequaetgiyed when replacing the idealized protocol
by the real protocol.

We now define the model for the execution of the real proto€olfacilitate the modeling, we include
both the generation of the randomness as well as the vegficat the proofs usingVerify into a single
machine. One should keep in mind that in a real implememtatieese two algorithms would run on different
machines; in particular/erify would be evaluated several times.

Definition 3 (Real machine) The real (hones} [dishonegtmachineMp for id P performs the following
steps:
¢ Inthe first activation by the environmerthe valuegn, ¢i, . . . , q,) are generated honestly according
to the randomness generation protocfthe adversary is asked for some valgesq, . .., q:,)]. This
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tuple (n,q1, ..., q,) is returned.

e In its second environment activation, a randene {0, 1}t is chosen and returned. The valsés
also given to the adverssﬂ/.

¢ In each further environment activation (tii¢h randomness query, starting with= 1), (the values
ri, ; are generated according to the randomness generation podtdthe adversary is asked for
valuesr;, s;|. Thenb; := Verify(P,n,s,7i,q1, .-, tys S1,---,5i) IS computeﬁ The triple(r;, s;, b;)
iS returned.

We now define the corresponding idealized versionfgf. The idealized version chooses truly random
valuesr;, even if it is malicious. The real machine cannot be forcedutput correct values, but we can
only enforce that if it outputs an incorrect one, then thisigawill fail the tests. To adaequately model this
situation, the adversary may choose whethdthe outcome of the test) or 1. If the adversary chooses
b; = 0, it may choose the randomness to be returned; if the adyeckaonses,; = 1, true randomness is
always returned. Furthermore, if the machine is honesy; bn& 1 is allowed. Our security definition in
particular does not require any properties aboutsth@nly about the result o¥erify, but this is captured
by the value ob;). The valuess; can consequently be chosen by the adversary even in the theoaest
parties (this is a popular way to model nondeterminism iptrgraphic protocols).

Definition 4 (Ideal machine) The ideal(hones} [dishonegtmachine)M for id P performs the following
steps:
o Before the first activation, it initializes an infinite listwaluesr, o, . . . uniformly and independently
distributed over{0, 1} H [All valuesr; are made accessible to the advers@ry.
e Upon each activation, the inputs to the machine are forwdraethe adversary.
e In its first environment activation, the adversary is askedsome valuesn, g1, ...,q:,). This tu-
ple (n,q1,...,q,) is returned.
e In its second environment activation, a randen& {0, 1}t is chosen and returned. The valsés
also given to the adversary.
e In each further environment activation (indexed conseelyj starting with = 1), the machine sends
r; to the adversary and asks the adversary for a tuples;, b;). (Then it returng(r;, s;, 1).) [Then it
returns(r;, s;, 1) if b; = 1 and(7;, s;, 0) otherwisel.

We can now state the security property of our protocol:

Theorem 1 Let [q,[s,11,t0,t3,#11 be polynomially bounded in some security parameter and
la, ta, (t3ly — l2) € Q(k), and assume that the 3RSA assumption holds.

Let a setll of nodes be given of which an arbitrary number may be malgidinen for any polynomial-
time machineA there exists a polynomial-time machisesuch that for any environmerif that does not
access the random oraclH the following holds: LetPgr denote the probability thaZ outputs1 after
running together withd and real machined/p for all P € I1. Let P; denote the probability that outputs
1 after running together witts' and ideal machined/p for all P ¢ 1I. Then|Pg — P;| is negligible in the
security parametek:.

“Here we simplify: Instead of using the coin-toss subprdtome assume that the initial seeds chosen as true randomness.
A complete treatment would have to prove that the coin-tabp®tocol presented above actually returns a truly ranslofi this
point, however, we treat the subprotocol as a black-boxesingses only well-known techniques.

®Note that the valué; is computed correctly even for maliciod% sinceb; is not part of the output oP but captures if the
output of P would pass the tests or not.

bstrictly speaking, the whole infinite list is not initialideat the beginning of the protocol, but it is lazily built up ertever a
valuer; is required.

"That is, when the adversary querieshe machine returns.
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The requirement that the environmeiitis not allowed to access the random orafldranslates into the
requirement that the protocol we wish to make accountabieyusir randomness generation subprotocol is
not allows to use the hash functigh. However, this does not imply that has to be secret, since we allow
the adversary to accegs. (The formal consequence of disallowitgjs access tdd is that the simulator
now can simulate any valud$(z) as long as these values look random. This is crucial for enulsition
proof.)

The proof ofTheorem llas well as concrete security bounds are given in AppdAtlix

3.6 Variants of Our Approach

In this section we discuss possible variants and extensibosr protocol.

Different choice of the trapdoor permutation. The most obvious variation is to use a different trapdoor
one-way permutation. Although this is possible, there a@nacaveats. First, our optimization technique
from Sectiori3.4is specific to 3RSA. Implementations using alternative pgations hence are likely to be
much less efficient. Furthermore, if one replace 3RSA bytardiunction f, the security of the protocol
will only be guaranteed if the following three properties ansured by in addition to being one-way (these
properties are derived from the security proof). First, onest be able to efficiently prove thétis indeed a
permutation (this is done in our protocol by sending the @sd}). Second, one must be able to efficiently
convert a random bitstring into an element of the domain ¢f(we did this by computing mod n), and

it must be efficiently possible to recognize if a given valgendeed in the domain of (we did this by
checking whethes; € {0,...,n — 1}). The necessity for the last point is best illustrated by xemeple.
Consider the functiorf,, := 22 mod n. If n is a so-called Blum integer, thef, is a permutation on the
quadratic residues moduta However, for any given quadratic residsgthere always exist; 1 # s;
with f,,(si+1) = fa(si) = s; wheres] , is nota quadratic residue. This does not contradict the property
that f,, is a permutation on the quadratic residues, but it still keghe security of our protocol: In each
step a malicious node can choose between two values, arersinefficient way is known to tell quadratic
residues from quadratic non-residues, the auditors cantldetect an incorrect choice.

Applying a PRG to ;. In highly randomness-consuming protocols, one might betechto perform the
following optimization: One generates a neywonly when the previous; has been revealed (e.g., since
it was contained in an audit log). Then the randomné@sxg), ... of the protocol is generated with a
classical pseudo-random generator frgmin this case, however, a malicious node can mount the faiigw
attack: When it is about to perform some action that needsoraness, it first checks what the next value
2! would be. If the node does not like this value, the node detasaction until the next audit. After that

audit, a new seed;  is used and the next valuejé”l), which possible suits the node better. Although
the effect of this attack may be small if audits are not toguient, it is still present and in protocols where
a single random value may have large consequences (etgdeifides whether a given sum of money will
be transferred or not) it is indeed harmful.

Using Interaction. One of the limitations of our protocol is that malicious nedmn predict their own
randomness. If the randomness is generated nonintedgctivis is necessarily the case, since a node can
always compute that randomness ahead of time. One possibilget rid of this problem would be to use
interactivity: foreachrandom value, one performs a coin-toss with one’s witne§edkis case one could
also get rid of the random oracle). Although a coin-toss ttutes a rather efficient protocol, this obviously
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incurs large communication costs (but this might still basible for protocols that only rarely need random-
ness). Another solution that springs to mind would be toudelthe incoming messages in the generation
of the randomness, i.e:; := H(P,i,s;, m) wherem is the history of communication. Then even a mali-
cious node can only predict its own randomness as far as preatict incoming communication. However,
this approach is flawed: If two malicious nodes collude, tbag mutually influence their randomness by
adaptively choosing the messages they exchange.

Using Zero-Knowledge. The second limitation of our protocol (which is already jgrtsin the original
PeerReview) is that the auditors learn the state of a node dan solve this problem by letting a node
send only a hash of its log and then prove using a zero-kn@el@doof that the hash contains a valid log.
Although this is possible in theory, general purpose zeroskedge proofs are extremely inefficient and the
incurred computational and communication costs would bhipttive for all but very specific applications.

4 Implementation

We implemented our technique as an additioh tdpeer r evi ew, which is an open-source implementa-
tion of PeerReview that was written by the authorsaf] [and is publicly available froni23). In total, we
added or modified, 984 lines of code.

Our implementation is transparent to the user and worksowttinodifications to existing application
code; it simply replaces the libraryget Randomfunction. When our technique is enabled, faulty nodes
can no longer predict future random values of a correct nisdaddition, nodes can be exposed as faulty if
they change their random seed after startup.

Internally, our code extends the application’s state nrato (i) run the randomness generation subpro-
tocol when a node is started for the first time, and to (ii) oespto coin-toss messages from other nodes. We
could have added these elements as a meta-protocol ins@adyer, our approach has the advantage that
the additional steps can be checked natively by PeerRevVieus, we do not need a separate mechanism to
detect if a node breaks the randomness generation subpirotdgnores a coin-toss message.

We also extended the log format with additional entries fars;. Checkpoints now include the tuple
(I2,t,1, s;), wherei is the index of the last random number generated, as welkeastdite of the randomness
generation subprotocol (while it is active). This is neeggdecause the witnesses need to be able to start
auditing from a recent checkpoint.

Our implementation uses SHA-1 hashes fby which implies/; = 160. We further use¢, = 5 and
t, = 480. t; andl, can be chosen freely by the user, apds chosen a; - (“—ﬂ + 1).

Currently, our initial coin-toss protocol requires benjgarticipation of every witness. We can relax this
assumption by employing, e.g., the shared-coin protoctii monstant bias by Canetti and Rali@j.[The

protocol may tolerate up to one third of compromised witees3Ne leave this extension up to the future
work.

5 Applications

Randomness is an important instrument in the design of mistldited algorithms. Ensuring accountable
pseudo-randomness is important in systems where (i) itpeitant to be able to detect when a node deviates
from an expected sequence of pseudo-random values; angkediicting future values in a node’s pseudo-
random sequence may allow an attacker to gain an advantage.

13



In this section, we give a few examples of existing and proisye applications that use randomness in
the aforementioned way. In each case, our technique carebeasdd accountability to these applications
without exposing them to attacks.

5.1 Sampling

Some applications use statistical sampling to estimat@rbigerties of a large system. For example, Mas-
soulié et al. propose a technique to aggregate statistjpsass in a peer-to-peer system using random walks
or random sampledf]. A node that performs these samples must follow a pseuddera sequence, else it
could bias the results. However, if an attacker can predtaré pseudo-random values generated by benign
nodes, it can bias the random walk towards nodes under itcowntnol or adjust its response to the sampling
query and thereby influence the sampled value.

Random sampling is also used to measure resource usagexarople, many routers implement Net-
Flow [12], which provides IP flow information that ISPs use for bijipurposes. In this case, customers
wish to verify that the sampling is truly random; howevegustomers were able to predict the sampling pat-
tern, they could delay their own traffic when the ISP is abouake a sample, and thus make their resource
usage appear lower.

5.2 Randomized replication

LOCKSS is a distributed storage system for long-term data pregenv. LOCKSS is randomized so
as to make it difficult for an attacker to target specific regwi. LOCKSS would benefit from accountability
because it could detect and remove faulty nodes early; witbor technique, however, this would reveal
information about a node’s future actions.

5.3 Load balancing

Some systems use randomness to distribute the load evenbsax set of servers. For example, the Total-
Recall storage system places replicas of objects on a rasdbof nodes§]. If a node was able to predict
this choice, it could insert a small dummy object whenevdiniws that it will be chosen next. Thus, it
could reduce its own storage load at the expense of othessnode

A similar challenge occurs in anycast services suclilfls yvhere requests are forwarded along a tree.
If a leaf node can predict from the seed values of the interdales that the next request will be forwarded
to it, it can insert a particularly cheap request and thuse#lue more expensive requests to be forwarded to
other nodes, in order to shed load unfairly.

6 Evaluation

6.1 Microbenchmarks

We begin by discussing the cost of the two fundamental oje&sitn our algorithm, namely (i) generating
a random number on a node, and (ii) verifying a random nuniirwas generated on another node. To
guantify the average cost per operation, we executed eamtatogn 10, 000 times in a tight loop, using a
RSA modulus of; = 1024 bits and varying the batching parameter The hardware we used was a Sun
V20Z rack server, which has a 2.5 GHz AMD Opteron CPU. Fif{eg shows our results.
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Figure 2:Microbenchmarks: With ¢t; = 100 and an RSA modulus @ = 1024 bits, a node can generate
a random number ih9us, and an auditor can verify its choice 6nl s, given10.2 bits of information.

Without precomputation, it takels 200..s to generate a random number, a7 us to verify one. The
numbers vary little witht;, which is expected because the cost of exponentiation dgussnthe cost of
hashing. However, if we compute random numbers in blocks vélues as describedBubsection 3]4he
average cost drops quickly with. With ¢; = 500, a random number can be generated in énly.s and
verified in only6.0us. This shows that our optimization is effective, and it destoates that the overhead
from random number generation should be insignificant fostrapplications.

In Figurel2(b), we show the average amount of state that a node musbskstb an auditor for each
random value it generates. If random numbers are generatgdarly, the node needs to disclose only
ones;, i.e.ly bits, for each block of; random numbers; hence, the overhead drops quickly svithwVith
t1 = 500, only 2 bits need to be disclosed on average, although one additipnaust be disclosed during
each audit ift; 1 7. This overhead is insignificant, given that the logs of actable applications can grow
by several megabytes per hod].
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Figure 3:Key length: The cost per operation increases with the length of the RSdutns.

Figurel3 shows how the average cost per operation increases witlenigénl of the RSA modulus. For
this experiment, we chogge = 100 and used the same hardware as above.
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6.2 Application-level benchmark

To estimate the overall impact of these costs, we implendest@mple demo application, which consists of
a web server and clients. The web server allows its clients to store, re&jew delete objects in its store,
and it charges them using a simple random sampling techni§ieandom intervals, it picks a random
file from its store, and it charges the owner one credit pdinis clearly desirable to make such a server
accountable to its clients, since otherwise it might chamipirary amounts; however, without our technique,
this is difficult to accomplish because clients would gamm dlbility to predict when one of their files will be
sampled, and could avoid the charge by temporarily rematriagfile.

We performed a simulation experiment in which we ran thisesewith £ = 5 clients for one hour. On
average, the server storéd00 files with an average size @bkB, one of which was requested every second.
The expected number of samples per second was five, i.e.mandmbers were used at the rather high rate
of ten per second. The parameters we chose Were 1024 and¢; = 100. We ran the simulation twice,
once using our technique to generate the random numbersardising thé r and function from GLIBC.
The workload in the two simulations was identical.

We found that our technique changed the server’s on-dislsilog from56.5 MB to 56.7 MB, a 0.3%
increase. The amount of information transmitted to thetatslithe five clients) changed fron2.5 MB to
13.1 MB, a4.2% increase. The difference occurs because the on-disk lagiosradditional information
(such as checkpoints) which is not normally sent to the atslifThese overheads are small both in relative
and absolute terms, which suggests that our techniquedtigak

7 Conclusion

In this paper, we have described a technique that lends atdulity to systems that use randomized proto-
cols. The key contribution is a new technique for generatitygtographically strong, accountable random-
ness, i.e., to generate a pseudo-random sequence that witimasproof that the elements of the sequence
have been correctly generated, while avoiding that aulit@rn anything that would make the node’s future
actions predictable. We have applied the technique to alsimeb server that uses random sampling for
billing purposes. Our experiments indicate that the cowputal cost of our technique is low and that the
approach is practical: On current hardware and wittd24-bit RSA modulus, a random number can be
generated in less thatus and verified in less thatOus. We have additionally shown that the storage and
bandwidth costs of our protocol are low both in relative amdlsolute terms.
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A Security Proof

Theorem 2 Let a setll of nodes be given of which an arbitrary number may be malgiothen for any
polynomial time machingl there exists a polynomial time machifiesuch that for any environmeut that
does not access the random oradlethe following holds: LetPr denote the probability thaZ outputsl
after running together wittd and real machined/p for all P € TI. Let P; denote the probability thaZ
outputsl after running together witts' and ideal machined/p for all P < II. Then

‘PR o PI’ < (% + % . 2l2—t311)t2 i Q + (2—l2+1 + 212—t3l1) . Qtl + 212—t3l1 . Q2 . #H
+ Q- #11- e3r5A (o, O(T + Qtsh + (Q + #11t)15 log Iz log log 12))
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Here Q denotes the number of queries performedZzbgnd A (both to the randomness generation protocol
and toH), T denotes an upper bound on the size of the circuits descrifiagd A (i.e., roughly the running
time) and#ll is the number of nodes.

In particular, if I1,1o,11,t2,t3,#I1 are polynomially bounded in some security parameterand
la, ta, (t3ly — l2) € Q(k), and the 3RSA assumption holds, thep — P;| is negligible.

Proof plan. To prove[Theorem 2 we proceed in three main steps. First, we define a variarieofeal
execution where the random oradieis replaced by a simulatioAl which internally works very different
from H but is designed to still give (almost) uniformly distribdteutputsﬁ](m). We call the execution using
H the hybrid execution (since it is a mix between the real aeddbal execution). Then several events are
defined that represent various possible failures or imptofes of the simulationZ and the probability
Prgap Of these events is then shown to be negligible. It is then shibxvat unless these events occur, the
outputs ofH have the same distribution as thosefhf We then proceed to construct the simulagowhich
is strongly simplified by the fact that the oradlealready computes all values necessary for the execution of
S. When then show that unless one of the above-mentionedseveaurrs, the hybrid and the ideal execution
have the same distribution. Concluding, we have that theision of the output ofZ in the real and the
ideal execution differ only byrgap.

Before we present the actual proof, we need the followingliamk lemma:

Lemma 1 Letn € N be an integer of length. Letl, > lo. If f,(z) := 23 mod n is not a permutation on
{0,...,n— 1}, then for randomy € {0, 1}% the probability that some valugexists withf,,(¢) = y mod n
is bounded from above g+ 2 - 2274,

Proof: Forn < 2 the functionf,, is always a permutation. Thus assume> 3. Sincef,, is a permutation
iff 31 (n) (since exactly in this casghas a multiplicative inverse module(n)) we know that3 | ¢(n).
Thus there is a primg and ane € N such thatp® | n, p*t! { n and3 | ¢(p¢). We distinguish two cases,
p =3andp # 3. If p = 3, we have thap(p®) = 2-3°", thuse > 2 and9 | n. Thus if¢® = y mod n, then

3 = y mod 9. The only solutions to this equation ajec {0, 1,8} mod 9. Thus, for randomy mod n
(and thus also randommod 9), we have that there existsgawith ¢*> = y mod n with probability 3 < 2.
Now we consider the cage+# 3. Sincep(2¢) = 2¢~t andp(5¢) = 4 - 571, by 3 | ¢(p®) we havep > 7.
Further, sincg { p and3 | ¢(p°¢) = (p — 1)p°~!, we have thas | p — 1. The operatiorf, :  +— 2 mod p
corresponds to the functioff, : # — 3% modp — 1 (becausez, = Z,y) = Zp-1 WhereZy is the
multiplicative group ofZ,,). Sincefp(Zp_l) = Z,%l, the number ofj € Z,_, that have a preimage under

fp is at most”T‘l. Thus the number af € Z, with a preimage undef, is also at mos%l, and the number
of y € Z, with a preimage undef,, is at mostN := ”T‘l + 1 (sinceZ, \ Z, = {0}). Thus for random
y mod p a preimage undef, exists with probability at mosﬁl and thus a random mod n has a preimage

under f,, with probability at mostg Sincep > 7 we have = p3—*]'02 < 2 = 2. So altogether, when
choosingy such thaty mod n is uniformly distributed o0, ..., n—1}, the probablllty thayy mod n has a
preimage undef,, is at most3 Fix u, v with un 4+ v = 2l andv €{0,...,n— 1}. Since2l» > n we have
u > 1. Lety be randomly chosen frof0, 1}!v. Then with probabllltyP . =1t > 12kl
we have thay € {0,...,un} := M. Under the condition thaj € M we have thay mod n is uniformly
distributed or{0, ...,n — 1}. Thus the probability thag mod n has a preimage undéf, is bounded by

3.P+(1-P)< % (1—2k7l) 42ty = 3 4 4 glly, 0
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Simulating the random oracle. Here and for the rest of the proof, for an integelet m and; always be
integers such thatit; + j =iandj € {1,...,t1}.
In the first step, we replace the random orablén the real execution by a lazily sampled functifh
The real execution witti7 we call thehybrid executionThe oracleH acts as follows:
1. First, for each node” an infinite sequence of random valueS € {0,1}" is randomly chosen.
Further,g? := 1 for all m € N and all nodesP. Initially set H (x) := L for all z. LetG := @ and
N := @. When we say “samplél (z)” we mean “if H(z) = L, choose a randorh € {0,1}"* and

setH (z) := h".
2. Lets” denote the value chosen by nod®. Until s© has been chosen, lef := 1. Letn? denote the
public keyn chosen by nodé and letq, ..., ¢! be the valueg, . .., q;, output byP. As soon as

n” has been output, sampt&(pk, 11, n”) for = 1, ..., to. Check whethef, »(q,) = H(pk, u, n")
forallpy=1,...,t. If so, setN := N U {n”}.
3. Assoon as’ is determined, sampld (P, start, s”), and ses} := H(P,start, s"). Then sample
H(u, P,0,s8) for u=1,...,ts. Then seyl := H*(P,0,s)) andG := G U {(P,0)}.
4. Upon a queryH (z) do the following:
e Check whether: = (P,i,z) or x = (u, P,i,z) such that the following holds: (i) is an
integer andi > 1, (i) P is a node, (iiyn” € N, (iv) (P,m) € G, () 7 € {0,....n"F — 1},
Vi) f5(7) = gl mod n?,
e Ifthis check succeeds, sht(P, i, ) := . Further, if additionallyj = ¢, sampleH (, P, i, %)
forp=1,....tand sey) ,, := H*(P,i,%) andG := G U {(P,m)}.
e Finally, sampleH (x) and returnlfl(x)ﬁ

Events. We define the following events that may occur in the hybridcexien:

Event GQONFLICT: QueriesH (x1), H(z2) are performed withy; = (P,4,%) or z1 = (u, P, 4, %) and
with zo = (P,4,2) or zo = (¢, P,i,2) (note thatP, i, andZ are the same in both queries) such that
during the first query we have?, m) ¢ G and during the second query we hg®m) € G, n”” € N and
fle(2) = gl mod n”.

Event REASSIGN: H (z) is assigned a valugalthough it was already assigned some valug {y, L}.

Event ALIAS: In two queries toH, two triples (P, 4, &) and (P, i, %) with Z # &' (but with the same
P, i) pass the check in St@&p

Event NONINJECTIVE: There exists a nod® such thatn” € N and f,,» is not a permutation on
{0,...,n" —1}.

Event FRREDICT: In some query td, a triple (P, i, z) passes the check in StdpwhereP is an honest
node and theé-th randomness query tB by the environment has not yet been performed. (Here, if the
query toH occursduring thei-th randomness query 18, we consider the-th randomness query as already
performed.)

Event WRONGPROOF. An honest party outputs a triplé;, 7;, b;) in a randomness query with # 1.

Event WRONGRANDOM: A party outputs a triplér;, 7;, b;) with 7; # r; andb; = 1.

Event BaD: One of the events GGNFLICT, REASSIGN, ALIAS, NONINJECTIVE, PREDICT,
WRONGPROOF, or WRONGRANDOM OcCCUrS.

Event probabilities. We will now bound the probabilities of the various events miedi above.

8Note that samplingfl(x) only has an effect iﬁ(x) has not been assigned in the preceding step.
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First, we bound the probability of BNINJECTIVE. A valuen is in N only if E[*(pk,u,n) has a
preimage modula under f,, for all © € {1,...,t2}. Since the valueg,, := H*(pk, j1,n) are uniformly
chosen from{0, 1}l with ¢30; > I > |n| (andn cannot depend on tHe, sincen is given as argument to
H*), we have bfLemma lthat if f,, is not a permutation, the probability that &J| have a preimage under
fnisat mosl(% + % -2k—tslnyt2 Thys, since at mosp different values: can be queried, the probability of
NONINJECTIVE is at most(2 + 2 - 2l2~tsl1)f2(),

Next, we bound the probability of GENFLICT A =NONINJECTIVE. Assume that GONFLICT A
—NONINJECTIVE occurs. Then in the first querﬁ(zl) the valueg? has not yet been chosen. Fur-
ther, in the second query we have thdt ¢ N, thus f,» is a permutation or{0,...,n" — 1} (since
we assume-NONINJECTIVE). Further, in the second query we have tbfé;(j) = g;’,j mod np and
thusi = f,7(g7) mod np whereg” is randomly choserafter i (becausei is already used in the
first query). Sinceg,ﬁ is uniformly distributed on{0, 1}*3"1, we have thay! mod n” is uniformly dis-
tributed on{0, .. — 1} under the condition thag? < 2%+ — (234 mod n). The probability that
gh > otshh (2t3l1 mod n) is atmost i < 212711, thus the statistical distanéeetween the distribution
of g, mod n” and the uniform distribution of0, ..., n" — 1} is at most22~*!1. Sincef { is a permu-

tation, the same holds fof 7 (g,) mod n'”. Thus the probability that a randogd, fulfills = f7,(g%)

is at mostl + 6 < 2~ a1 + 22—tsh - Since at most) different queriesH () can be performed in an
execution, ang can take onlyt; different values (we havg € {1,...,t}), we have that the probability
that GGONFLICT A =NONINJECTIVE occurs is at mos2~/2 ! 4 2l2=t0)Qt,

Now, we show that RASSIGNA—~GCONFLICT does not occurs. By our definition of sampling, sampling
H (z) for somez can never reassigH (). Thus the only place where soniB(z) could be reassigned is in
Stepd, namely the assignmedf (P, i, #) := rI’. However, this assignment can only occutif,m) € G,
nf e N andfip(j) = ¢ mod n”. Further, for this assignment to be a reassignm#itt?, i, z) needs to

have already been assigned a different value,}f{él?, i, ) needs to have been sampled in an earlier query.
For this, in the earlier queryP, m) ¢ G needs to hold (otherwise the check in S#would have been
passed). Thus BassiGNimplies GGONFLICT, and therefore RASSIGN A ~GCONFLICT does not occur.

Now we show that AIAs A =NONINJECTIVE never occurs. AIAS occurs if two triples(P, i,2) and
(P,i,7') with & # :13 pass the test in Stéfd This implies that” € N, thatz, 3’ € {0,...,n" — 1},
and thatfjl () = gb = fj (2'). This is only possible |ffip is not a permutation of0, ..., n" —1}.
However, this would imply MNINJECTIVE sincen” € N. Thus ALIAS A =NONINJECTIVE never occurs.

We now show that event RONGRANDOM A —REASSIGN never occurs. Both honest and malicious ma-
chinesMp setb; := Verify(P,n",s", 7P qf ... ql, s, ... sF) where(FF, sI') are the values chosen
by the adversary in théth randomness query t8. Assume that n(H( ) is ever reassigned a different
value, i.e., that RAsSSIGN does not occur. A comparison of the definition Bérify and StepE] of the
S|mulat|on of H then reveals that Iﬂ/emfy returnsb; = 1, then the simulation off setsH(P,z,sZ ) to

rP. Since Verify only returnsb; = 1 if 77 H(P,z,sZ ), it follows that if b; = 1 then7! = rP. Thus

WRONGRANDOM A —“REASSIGN never occurs.

We now show that WWONGPROOF A —REASSIGN does not occur. By construction of the protocol, as
long as the oraclél always returns the same value on the same input (iEasRIGN does not occur), all

checks in the definition of/erify succeed, thus WONGPROOF A —“REASSIGN does not occur.

Bounding the probability of PREDICT. Now we bound the probability of ®EDICT A “REASSIGN. This
is actually the only place in this proof where the one-wagrey,, comes into play. Let be the probability
that RREDICTA—REASSIGNoOccurs. Then, for arandom honest ndéland a random integére {1,...,Q},
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the probability that REDICT A ~REASSIGN occurs with? = P andi = 7 is at IeastQ#H We can then

transform the whole system consisting of nodes, enviromaeiversary, and/ into one machineSim that
performs the following:
e First, it chooses a random RSA modufusf lengthi, with 3  ¢(n) and arandony € {0,...,n—1}.
e Then it chooses a random honest nddend an integei € {1,...,Q}. It computesn andj €
{1,...,t1} such that = mt; + j.
o |t S|mulates the hybrid execution with the following modéftons:
(i) When P would choose the RSA modulug’, it sets instead” := 7.

(i) WhenH*(pk, p1, ) is to be samplel choose some randome {0,...,7n — 1} and choose a
randomp,, € {0, 1} with f,, = f;(g) mod 7. Store(q, ,,) in some JistL.

(i) When in Ste@] of the simulation off, the valueH*(P,z,x) is to be sampled, do not choose
these values randomly but choose a randgme {0,113 with g,, = ¢ mod 7 whereg is
chosen as follows: lin = m, theng := fg_l(y), and if m # r, choose a randony &
{0,...,n—1} and sey := f;? (v'). In this computation, on each invocation 6f(a) = b, store
(a,b) inthe listL. Then assig@m to H*(P, i, &).

(iv) When M, computesf; ' (b) for somez, search for soméd’, b') with b = &' in L and returna.
Only if no such(a’, V') exists, use the secret key corresponding to computef, L(b).

Note that in this S|mulat|omP is chosen with the same distribution as in the hybrid exeautiurther, the
computation off,- L py M is performed differently, but the result is the same as inhiyigrid execution
since if (a/,b') € L thenb’ = fa(a’) and thusa’ = f,'(¥') (note that since: is chosen honestlyf;, is
a permutation). Now consider the choicedf. These values are not chosen uniformly fr¢fny 1},
but instead they are chosen uniformly under the precomdthat g, = g mod n. The valueg is chosen
uniformly from{0,...,7# — 1} (sincef; is a permutation, angl is each time a fresh random value anid
only used forg,;). Thusg,, is a fresh random value with a distribution that has a steaistlistance) from
the uniform distribution withd < 2 3l;t§}fd L < e <2kl Analogous reasoning holds fby,. Since at
most(Q valuesg,, andh are chosen, the overall error introduced at mogtists! . Q Thus the probability
that PREDICT A —|REASSIGN occurs in the execution simulated Bym is at least~2— Q#H —2k=tsh . The

machine M computesfﬁ dnly in two situations. First, for computing, = f (fo*(pk,,u,ﬁ)) and
second for computingZ = f.7(H*(P,mt Smt)). In the first case, after queryirig:= H*(pk, i1, 1), @ pair
(q, ) With hu = his contained in.. Thusf is computed without accessing the secret key. In the second
case, when computing, as long as RAsSIGNdoes not occur, the valug, := H*(P mt, sme) IS chosenin

Step i) asg,. In this case, foi < i (and thusn < 1 orj < ), we have thatf,” (§m), f, ”1( m)) € L
ands; is computed without accessing the secret keyf. ThusM ; does not use its secret key before the
i-th randomness query unles&&ssIGNoccurs. If REDICT occurs withP? = P andi = i, we have that a
triple (P i,7)is accepted in Sted of the simulation offf before thei-th randomness query Off 5. This
implies thatz = f,° Hgm) = & = = fa (f] Yam)) = fa (7). So, if PREDICT A =REASSIGN, Sim finds

a preimage ofj underfn without accessing the secret key corresponding toPREDICT A =REASSIGN
occurs withP = P andi = 7. Since the probability for this is at Ieag— 2k=tsh . () as seen
above, by definition otsrss we have thatLH — k-t L) < esrsa (l2, S) where S is the size of
the circuit describing the machingm. It can be easily verifiecbim can be described by a circuit of
size O(T + Qtsl; + (Q + #IIt2) X)) where X is the size of a circuit that performs an exponentiation

*When we say thaf *(x) is to be sampled, we mean thétk, z) is to be sampled for somiec {1, ...,t3}. Similarly, when
assigning some valug || . . . v¢, to H*(z), we assignv, to H*(k, z). We use this somewhat sloppy notation for readability.
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modulo a number of lengthls. By [25] and [15, p.295] we haveX € O(I3 loglsloglogls). Thus the
probability v that PREDICT A =REASSIGN occurs is at mosg) - #11 - esgsa (l2, O(T + Qtsly + (Q +

#11t5)12 log Iz log log Io)) + 2271l . Q2 - #1I.

The probability of BAD. The event BD is equivalent to MNINJECTIVE V (GCONFLICT A
—NONINJECTIVE) V (REASSIGNA =G CONFLICT) V (ALIAS A =“NONINJECTIVE) V (WRONGRANDOM A
—REASSIGN) V (WRONGPROOFA =REASSIGN) V (PREDICTA ~REASSIGN). Combining the above bounds
on the probabilities of the various events, we get thab Bccurs with probability at most

Prgap := (% 4+ % . 2l2—t311)t2 Q+ (2—l2+1 + 212—t3l1) - Qt
+ Q- #I1 - e3rsa (lo, O(T + Qt3ly + (Q + #11t2)13 log s log log Is))
+ 2l2—t311 . Q2 X #H

Faithfulness of the oracle simulation. We will now show that the simulation off as described above
is a faithful simulation of the random oraclé. More exactly, we show that unlesSERSSIGN or ALIAS
occurs we have that whéf is queried twice with the same value it returns the same ineggwhen is
queried with a value: that has not yet been queried, a fresh random value {mm}h is returnedd Since
the simulatedd upon query: always returng? () (where the partial functiol is possibly modified first),
H will always return the same values on the same queries UREESSSIGN occurs.

To see that for a value that has not yet been queried, a fresh random value is retunote that there
are only two possibilities hovﬁI( ) gets assigned a value. Flrﬁ,(x) is sampled. In this case, by definition
H(z) is assigned a fresh value. Or secoftl,P, i, %) is assigned-”. Since each! is an independently
chosen random value, and that value is never accessedﬁmﬂhs&gnedH(P, i, ) is assigned only fresh
random values unless somg is assigned to two differerﬂ?(P, i,Z). This again only happens if for two
triples(P, 4, %) and(P, i, z’) with  # 7’ pass the check in St@{(in different queries), i.e., if AIAS occurs.
Thus unless RASSIGNor ALIAS occurs,H is a faithful simulation of a random oracle.

Constructing the simulator. For a given adversaryl that runs with the real machinedp, we now
construct the simulatof that runs with the ideal machinédp in the ideal execution. This simulatet
does the following:

(i) It simulates the random oraclé as described above. However, it does not choose the vaflies
its own but uses the valueschosen by machiné/p. By definition, malicious machines make the
accessible to the simulator. A is honest, and a value is required that\/p has not yet sent to the
simulator, the simulator aborts.

(i) It simulates an instance of the adversaryAny communication from the environment to the simulator
is passed to the simulated adversdry

(i) When an ideal honest machin&/» requests a tuplgn,qi,... ,qt,), the simulator computes
(n,q1,.. ., q,) according to the protocol (i.ez is an RSA modulus ang}, := f, ' (H 1 (pk, 11, 1))).

(iv) When an ideal malicious machmi\ef requests a tuplén, ¢i, . .., ¢, ) that request is forwarded to the
adversaryA.

(v) When the machind/p passes the valueto the simulator, that value is forwarded to the adversary.

0By freshwe mean that this value is uniformly distributed and indefeen of all other values returned so far.
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(vi) When the malicious machink/p requests a triplér;, s;, b;), the simulator requests;, s;) from the
adversaryA, and computes; := Verify(P,n,s,7i,q1,--.,w, 51, - - -, 5;) wheren, s, q,, s, are the
respective values output Wp. Then the simulator returng;, s;, b;) to Mp.

(vii) When the honest machine/p requests a triplé7;, s;, b;), the simulator sets; := 1 and computes
(71, s;) according to the honest protocol (i.&,;= H(P,i,s!) s; is computed recursively && ' (s;_1)
or f-Y(H*(P,i—1,s;_,)) or H*(P, start, s), respectively). Note that the simulator is able to com-

pute f,! for honest machines/p since the simulator has chosen the modulder Mp himself.

Faithfulness of the simulation. We will now show that the view of the environment is identicalin ex-
ecution of the adversaryl and the real machine®/, but with simulatedH (the hybrid execution) and
in an execution of the simulato$ and the ideal machined/p (the ideal execution) unlessREDICT,
WRONGRANDOM or WRONGPROOF occurs. Stepdi—(w) are a direct simulation of the corresponding
actions of the real machines and the adversary unless thdasanaborts in Stefl\ The latter only hap-
pens when a value;D is required that has not yet been given by the hodéstto the simulator, i.e., if
PREDICT occurs.

Consider Ste@M). In the hybrid execution the malicious machihg returns the triplér;, s;, b;) where
b, .= Verify(P,n,s,Ti,q1,-..,q,,5s1,---,5) and(r;, s;) are the values chosen by the adversaryn the
ideal execution, the malicious machinép returns the tripler;, s;, b;) wheres; is the value chosen hyt
andb; is computed as in the hybrid execution. Further we hdve 7; if b, = 0 andr} = r; if b, = 1 (here
r; is the random value chosen By itself). Thus the triples returned in the hybrid and the ige@cution
are equal unless; # 7#; A b; = 1, i.e., unless VRONGRANDOM OcCCUrS.

Consider StepMi). In the hybrid execution the honest machiig returns the triplg7;, s;, b;) where
(7, s;) are computed according to the honest protocol ane= Verify(P,n, s,Ti, q1y .- Qtys S1y - - - 5 Si)-
In the ideal execution the honest machive returns the tripl€r;, s;, 1) (herer; is the random value chosen
by Mp itself). Thus the triples returned in the hybrid and the i@s@cution are equal unless+ 7 \Vb; # 1.
However,r; £ 7; V b; # 1 implies WRONGPROOFV WRONGRANDOM, so the triples returned in the hybrid
and the ideal execution are equal unleseWGPROOFor WRONGRANDOM OCCUrS.

So together, we have that the view of the environment is idalnin the hybrid and the ideal execution
unless REDICT, WRONGRANDOM, or WRONGPROOFOCCUTS.

Putting the pieces together. We have seen so far that the real and the hybrid executiontdethe same
outputs ofH or H, respectively, unless A& occurs. Thus in particulaZ’s output is the same unlessB
occurs. Furthermore, we have shown the same for the hybddhenideal execution. Therefore the output
of Z is the same in the real and the ideal execution unless &curs. Thu$Pr — Pr| < Prgap. Using the
bound forPrg,p derived abovdTheorem Pollows. O
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