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Abstract

We describe a technique that enables accountability in systems that use randomized protocols. Byzan-
tine faults whose effects are observed by a correct node are eventually detected and irrefutably linked
to a faulty node. At the same time, correct nodes are always able to defend themselves against false
accusations. The key contribution is a novel technique for generating cryptographically strong, account-
able randomness. The technique generates a pseudo-random sequence and a proof that the elements of
this sequence have been correctly generated, while avoiding that future values of the sequence can be
predicted. External auditors can check if a node deviates from its expected behavior without learning
anything about the node’s future random choices. In particular, an accountable node does not need to
leak secrets that would make its future actions predictable. The technique is practical and efficient. We
demonstrate that our technique is practical by applying it to a simple server that uses random sampling
for billing purposes.

1 Introduction

Nodes in distributed systems can fail for many reasons: a node can suffer a hardware or software failure; an
attacker can compromise a node; or a node’s operator can deliberately tamper with its software. Moreover,
faulty nodes are not uncommon [22]. In a large scale system, it is increasingly likely that some nodes are
accidentally misconfigured or have been compromised as a result of unpatched security vulnerabilities.

Recent work has explored the use ofaccountabilityto detect and expose node faults in distributed sys-
tems [27, 14]. Accountable systems maintain a tamper-evident record that provides non-repudiable evidence
of all nodes’ actions. Based on this record, a faulty node whose observable behavior deviates from that of a
correct node can be detected eventually. At the same time, a correct node can defend itself against any false
accusations.

PeerReview [14], for instance, creates a per-node secure log, which records the messages a node has
sent and received, and the inputs and outputs of the application. Any nodei can request the log of another
nodej and independently determine whetherj has deviated from its expected behavior. To do this,i replays
j’s log using a reference implementation that definesj’s expected behavior. By comparing the results of the
replayed execution with those recorded in the log, PeerReview can detect Byzantine faults without requiring
a formal specification of the system.
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The approach taken by PeerReview is very general, but it requires that each node’s action be determin-
istic. (Otherwise, divergent actions of a node and its reference implementation may be classified incorrectly
as a fault.) One approach to ensure deterministic behavior is to disclose, as part of a node’s record, the seed
of any pseudo-random number generator used in the node’s program. Unfortunately, disclosing the seed also
reveals any secrets that were randomly chosen by this node and enables prediction of the future sequence
of pseudo-random numbers. We could allow a node to choose a new seed once it has proven that its past
actions were fault-free. However, this would allow a bad node to manipulate seeds strategically, and thus
follow a sequence of actions that is not pseudo-random.

Thus, applying PeerReview’s technique faces us with a choice: we can make a node’s actions (including
its adherence to a pseudo-random sequence) accountable at the expense of revealing the node’s secrets
and making its future actions predictable; or, we can protect a node’s secrets and keep its future actions
unpredictable, but give up the ability to verify that the node is following a pseudo-random sequence of
actions.

Consider, for instance, a distributed algorithm that uses some form of statistical sampling. We would like
to be sure that each node follows a truly random sequence of samples to ensure unbiased results. However,
disclosing a node’s future random samples as a side-effect of auditing the node’s past actions may allow
an attacker to adapt his behavior to the expected samples, thus biasing the results. As a result, existing
accountability techniques are not appropriate for such protocols.

We contribute a protocol for generating cryptographicallystrong,accountablerandomness. The tech-
nique allows us to apply PeerReview to probabilistic protocols without making their actions predictable.
More precisely, we propose a pseudo-random generator that has the following five properties:

1. The pseudo-random generator should output cryptographically strong randomness in the sense that
even the entity that is generating this randomness cannot compute something that could not be com-
puted if those numbers were chosen truly randomly.

2. The pseudo-random generator should support accountability, i.e., after each random valuer is gener-
ated, it should be possible to generate a proof that this value r was indeed correctly derived from a
given seed.

3. Future random values of honest nodes should be unpredictable, i.e., for an entity learning random
valuesr1, . . . , ri and the corresponding proofs, all future random valuesri+1, . . . should still look
random. (In particular, this excludes the obvious solutionof using the random seed as a proof.)

4. The pseudo-random generator should specify a method for choosing the seed such that even if mali-
cious entities are involved in the computation of the seed, the resulting randomness should still fulfill
the properties described above.

5. Both generating the randomness and verifying the corresponding proofs should be highly efficient to
keep the costs of accountability low compared to the actual protocol execution. (In particular, this
excludes solutions based on zero-knowledge proofs.)

We achieve these properties by an initial coin-toss protocol, followed by a novel combination of hashing
(where the hash function is modeled as a random oracle) and a trapdoor one-way permutation. Our construc-
tion essentially constitutes a chain of inverse trapdoor applications starting from the seed derived from the
coin-toss, where the sequence is partitioned into blocks byintermediate applications of the hash function.
The hash function is additionally used to transform elements of this sequence into independent random val-
ues. Elements in the sequence serve as a proof for former sequence elements and hence for the corresponding
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random values, since everybody can use the permutation to compute former sequence values itself and then
compare them with the actually used random values. The hardness of inverting the trapdoor permutation and
the usage of the random oracle prevent a prediction of futuresequence elements, and consequently of the
random values used in the future. This construction turns out to be efficient, and it can be further optimized
by exploiting number-theoretic properties of low-exponent RSA.

The security of our protocol for generating accountable randomness is formally established by compar-
ing it to an ideal specification of its expected behavior, under the additional hypothesis that the surrounding
protocol does not use the same hash function as that used for generating the randomness. This corresponds to
the well-known simulatability paradigm of modern cryptography, out of which the Reactive Simulatability
(RSIM) framework [2] and the Universal Composability (UC) framework [7] constitute the most prominent
representatives that have been used to prove the security ofvarious protocols. In particular, simulatability
offers strong compositionality guarantees.

We implemented our protocol as an extension to the publicly available PeerReview library [23]. Our
evaluation shows that the computational cost of our technique is low: on current hardware and with a1024-
bit RSA modulus, a random number can be generated in less than20µs and verified in less than10µs. We
also show that our protocol is practical, and that its storage and bandwidth costs are low both in relative and
in absolute terms.

The rest of the paper is organized as follows. Section 2 overviews the related work. Section 3 describes
the protocol for generating accountable randomness and states out its correctness properties. Section 4
sketches the implementation of the protocol in the context of PeerReview. Section 5 gives a few examples of
existing and prospective applications of our technique. Section 6 presents the evaluation results. Section 7
concludes the paper. Corresponding security proofs are presented in the appendix.

2 Related Work

On generating accountable randomness A technique that is strongly related to our technique is thatof
Verified Random Functions (VRF) [20] and the stronger simulatable VRFs [11]. However, these fall short
of our requirements in that they do not guarantee that the randomness produced by malicious parties has
strong randomness properties even if the malicious partiesrelease additional information on their seeds.
Furthermore, in particular the simulatable VRFs are much less efficient than our technique. We buy these
advantages by using the random oracle model which is known toallow for very efficient constructions.

On accountability Accountability in distributed systems has been suggested as a means to achieve practi-
cal security [16], to create an incentive for cooperative behavior [13], to foster innovation and competition
in the Internet [17, 1], and even as a general design goal for dependable networkedsystems [26].

Systems have recently been built for adding accountabilityfor deterministic systems by exploiting se-
cure logs that record the messages sent and received by each node. CATS [28] implements a deterministic
network storage service with strong accountability properties. Besides its restriction to deterministic sys-
tems, it depends on a trusted publishing medium that ensuresthe integrity of these logs, and it detects faults
by checking logs against a set of rules that describes the correct behavior of a specific system (a network stor-
age service). Repeat and compare [21] uses accountability to ensure content integrity in a peer-to-peer CDN
built on untrusted nodes; it detects faults by having a set oftrusted verifier nodes locally reproduce a random
sample of the generated content, and by comparing the results to the content returned by the untrusted nodes.
PeerReview [14] offers strong accountability for any distributed system that can be modeled as a collection
of deterministic state machines. Just as CATS, it relies on maintaining secure logs for recording sent and
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received messages, but it does not assume a trusted publishing medium and does not require a specification
of correct behavior; instead, it replays the logs using the systems’s reference implementation.

3 The Protocol for Generating Accountable Randomness

3.1 Cryptographic Assumptions

The Random Oracle Model. The random oracle model [4] constitutes one of the most popular heuristics
in cryptography. The security of virtually all practicallydeployed public-key encryption and signature
schemes relies on the random oracle model, e.g., of the RSA-OAEP encryption scheme [5] specified in the
PKCS #1 standard [24].

The random oracle model formalizes the intuition that a goodcryptographic hash function has essentially
no recognizable structure, i.e., this function can be expected to behave as a completely random function.
Instead of proving the protocol under consideration with respect to some fixed actual hash functionH (e.g.,
SHA-1), proofs in the random oracle model presuppose a function H : {0, 1}∗ → {0, 1}l that is uniformly
chosen from the set of all such functions, i.e., for each valuex, the valueH(x) constitutes a uniformly chosen
value (with two calls toH(x) returning the same value). The security of the protocol under consideration
is then proven by granting the protocol oracle-access toH; the implementation, however, uses the concrete
hash function. Although (pathological) protocols exist that violate the random oracle heuristics [8], no
example of a practical protocol is known to the best of our knowledge that is proven secure within the random
oracle model but whose implementation turns out to be insecure when implemented with a sufficiently good
cryptographic hash function.

The random oracle model is known to allow for very efficient protocol constructions. In our setting, the
random oracle model furthermore enjoys the following advantage: our randomness generation protocol is
only provably secure if it relies on a hash function that is not as well used in the application protocol. For
an actual hash function, this statement is difficult to formalize properly since the application protocol might
only compute parts of the hash function, or the function might be obfuscated. If one relies on the random
oracle model, this statemement can be naturally formalizedby constraining the application protocol to not
query the oracleH.

Low-exponent RSA. In the following, we consider the low-exponent RSA permutation fn(x) := x3 mod
n, wheren is a random RSA-modulus (a product of two random primesp andq of the same length) of some
lengthl with 3 - ϕ(n) = (p − 1) · (q − 1). The low-exponent RSA permutation constitutes a variant ofthe
RSA permutation where the public exponente is instantiated as a small fixed number (in our casee = 3).
While naively using low-exponent RSA in larger protocols (e.g., as an encryption scheme without additional
padding) is known to yield troublesome scenarios, it is a well-accepted assumption that the low-exponent
RSA permutation itself is hard to invert. More exactly, we define the following functionε3RSA.

Definition 1 Let ε3RSA(l, s) be the maximum probability over all circuits of size at mosts that upon input
of a random RSA modulusn of lengthl and a randomy ∈ {0, . . . , n − 1} the circuit outputs somex with
x3 ≡ y mod n.

The low-exponent RSA assumption fore = 3 (abbreviated 3RSA) can be formally stated as follows:

Assumption 1 (3RSA) For l(k) ∈ Ω(k) and any polynomials(k), we have thatε3RSA(l(k), s(k)) is negli-
gible.
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The 3RSA assumption trivially follows from the well-established strong RSA assumption [3]. In addition,
the functionfn can be inverted efficiently if the factorization ofn = pq is known: One computes a secret key
d with 3d ≡ 1 mod n and then computesf−1

n (x) = xd mod n. In other words, under the 3RSA assumption,
fn constitutes a trapdoor one-way permutation.

3.2 The Protocol Idea

We now outline the security properties our protocol aims to achieve as well as the techniques used to achieve
them. The formal description of the protocol, its security guarantees as well as the rigorous security proof
is given in the subsequent sections.

3.2.1 Desired Security Properties

Defining a protocol for generating accountable randomness faces us with the challenge of finding a pseudo-
random generator that achieves the following properties:

1. The pseudo-random generator should guarantee cryptographically strong randomness. This not only
captures that the randomness is uniformly distributed or that no outsider can guess the randomness,
but also that even the entity generating the random numbers cannot compute something that cannot be
computed if those numbers were chosen truly randomly. For instance, generating the random number
r together with its discrete logarithmd should be impossible. Only requiring the randomness to be
uniformly distributed would not exclude this.1

2. The pseudo-random generator should be accountable, i.e., after each random valuer is generated, it
should be possible to generate a proof that this valuer was indeed correctly derived from a given seed.

3. Future random values of honest nodes should be unpredictable, i.e., for an entity learning random
valuesr1, . . . , ri and the corresponding proofs, all future random valuesri+1, . . . should still look
random. This requirement in particular prevents us from using the random seed as a proof.

4. The pseudo-random generator should specify a method for choosing the seed such that even if mali-
cious entities are involved in computing the seed, the resulting randomness still fulfills the properties
described above.

5. Both generating the randomness and verifying the corresponding proofs should be highly efficient
to keep the costs of accountability low compared to the execution of the application protocol. This
requirement in particular excludes solutions based on zero-knowledge proofs. Our protocol will use
only a few hashes and multiplications in an RSA group for eachgeneration of a random value.

3.2.2 Achieving Accountability and Unpredictability

We first concentrate on the accountability and the unpredictability of the pseudo-random generator, i.e., on
Properties2 and3. Assume that a nodeP would like to generate a random value. Our approach presupposes
the existence of a seeds0 that is known to everyone (this will later be guaranteed by aninitial coin-toss) as
well as of a trapdoor one-way permutationf whose secret key is known only toP , i.e., onlyP can invert the
permutation. Consequently,P is able to compute a sequencesi := f−1(si−1) while all other entities are not
capable of computing the valuessi, even givens0, . . . , si−1, since they lack the secret key off . Evaluating
the functionf , however, allows everyone that knowssi−1 andsi to check iff(si) = si−1 holds true. In

1For instance, the following random-number generator for random elements of a groupG would not be cryptographically strong,
although it produces a uniformly distributedr: Chooser′ randomly, setr := gr′

(whereg is a generator ofG), and returnr. The
valuer would be uniformly distributed but the entity computingr would also know its discrete logarithmr′.
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this case, it also holds thatsi = f−1(si−1). Hence we achieve accountability for those values. We note that
the si cannot directly be used as random values sincesi andsi−1 stand in a strong relation (namely, one
is the image of the other underf ); this would not be the case if these values were chosen trulyrandomly.
Therefore, we letri := H(si) and useri as the desired random value. ConsideringH as a random oracle
then allows for concluding thatH(ri) andH(ri−1) have been successfully decoupled. Hence future random
values cannot be predicted (Property3) and accountability for those values is provided (Property2).

3.2.3 Achieving Strong Cryptographic Randomness

Providing strong cryptographic randomness in the sense of Property1 constitutes a difficult task in general.
Fortunately, our construction can be shown to already offerstrong cryptographic randomness as long as
we modelH as a random oracle. To convey the basic idea behind this observation, we first sketch how
cryptographic randomness will be defined. We rely on the well-established approach of defining security
by means of simulation: To show that a sequencer1, even given the side informationsi andf (and if P is
malicious, additionally the secret key forf ), is random we show that there is an efficient machine (called
the simulator) that, given a sequence of valuesri, can simulate a realistically looking protocol execution that
results in exactly these values (in particular, it has to come up with realistic valuessi andf ). The intuition
behind this notion is that if some property holds for theri in the original protocol (called the real execution),
the same property would hold for the truly randomri in the simulation (called the ideal execution). Rigorous
definitions of this idea will be given in Section3.5. For instance, if one could compute the discrete logarithm
of ri in the real execution, one could also compute the discrete logarithm of the truly randomri in the ideal
execution. Since the latter is conjectured infeasible, it follows that the discrete logarithm ofri cannot be
computed in the real execution as well, not even byP itself.

Defining security by means of comparing a protocol against anideal execution has asserted its position as
a salient technique in modern cryptography, and the flavor weare using has been shown to offer very strong
security and compositionality guarantees [2, 7]. In our case, the simulation becomes possible because of the
random oracleH. Since the simulator has to simulateH, it is free to choose the valuesH(x) in a suitable
manner, as long as the distribution ofH(x) is still the uniform distribution. In our case, the simulator can do
this by settingH(si) := ri, provided that the simulator succeeds in recognizing a values = si. The protocol
described so far does not seem to offer an efficient way to recognize such values since arbitrary valuess
may occur,i might be arbitrarily large, and one would have to test for arbitrarily manyi whetherf i(s) = s0

holds. We hence slightly adapt the protocol as follows: In every t1-th step, the valuesi is not computed as
si = f−1(si−1) but assi = f−1(H∗(si−1)) (hereH∗ is a suitably padded version ofH), seeFigure 1. (The
dashed lines can be ignored at this point.) Then anys = si fulfills f j(s) = H∗(x) for somej ≤ t and some
x. Since the simulator simulates the functionH, it knows all valuesH∗(x) that have been queried fromH
so far, and thus he can efficiently check whetherf j(s) = H∗(x) holds for somex that has already been
queried; for valuesx that have not been queried, one can easily show this equationto almost never hold
true. This allows for proving that our protocol indeed givesstrong randomness guarantees, even against a
maliciousP . We note thatt1 = 1 – to hash before every application off−1 – constitutes a perfectly fine
choice from a security point of view. Larger values oft1 allow for more efficient implementations though,
see Section3.4.

3.2.4 Choosing a Suitable Seed

We now turn to the property of suitably choosing the seed (Property4). Our construction presupposes that
the initial seeds0 is chosen randomly and that the functionf is chosen correctly even ifP is malicious.
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Figure 1: The randomness generator fort1 = 3. The dashed lines depict the optimized variant from
subsection 3.4.

A suitable choice ofs0 can be enforced by choosings0 as the result of a coin-toss, which can easily be
implemented using the hash functionH. Enforcing a correct choice off turns out to be more sophisticated.
Since the secret key off must not be disclosed to any participant other thanP , P choosesf on its own. This
opens the following possibilities of a badly-formed choiceof f . First,f might not constitute a permutation.
In this case, the valuessi will not necessarily be uniformly distributed; even worse,some valuesi−1 may
have several preimagessi underf so thatP may be able to choose the next random value from these possible
values. Second, an incorrectly chosenf might have a small period, i.e., for somes0 and someµ, we might
have thatsν+µ = fµ(sν) = sν and consequently thatrν+µ = rν . The first attack can be prevented by
finding a way to prove thatf indeed constitutes a permutation. This is difficult to provein general if the
secret key must not be revealed. In the case of the low-exponent RSA permutation, however, it turns out to
be sufficient to show for a few random valuesyi that all these values have a preimage underf . More exactly,
in order to prove thatf constitutes a permutation, we compute valuesqµ = f−1(H(µ, n)) wheren is the
RSA modulus used byf . The second attack is circumvented by includingP andi in all hash values. Hence
even in the casesν+µ = sν, we still haverν+µ 6= rν .

3.2.5 Towards an Efficient Solution

We finally consider the efficiency of randomness generation and proof validation (Property5). In the proto-
col outlined above, both generation and verification of a random value need one application off or f−1. For
general trapdoor one-way permutations this may be quite expensive. In our particular scheme we propose
to use 3RSA; in this case, an application off can be performed using two multiplications. The inversef−1

still requires one exponentiation, and this is too expensive for our purposes. In Section3.4, we give a batch
evaluation technique that brings the amortized complexityof generating one random value arbitrarily close
to two multiplications. Note that one random value is not a single random bit butl2 bits wherel2 is the
length of the output ofH.

3.3 Description of the Protocol

We now formally describe the protocol for generating accountable randomness. This protocol is designed
as a subprotocol for inclusion in some larger application like PeerReview; we hence only specify the rou-
tines for generating randomness and the corresponding proofs, and for verifying these proofs. Full-scale
accountability is then provided on the next layer, e.g., by PeerReview.
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3.3.1 Protocol Parameters and Additional Notation

Our protocol is parametrized by the following values: The value l1 is the length ofH(x) for anyx. The
value l2 is the length of the RSA modulus used. The valuest1, t2, t3, t4 ≥ 1 denote integers satisfying
t3l1 ≥ l2. The security of the protocol will be guaranteed ift1, t2, t3l1 − l2, andt4 are of at least linear size
in the security parameter (see alsoTheorem 1below).

We use the following notation:H(x) denotes an application of the random oracle. When writing
H(x, y, . . . ) we assume that the tuple(x, y, . . . ) is encoded into a single string in some efficiently decodable
fashion. ByH∗(x) we denoteH(1, x)‖ . . . ‖H(t3, x). Note that the length ofH∗(x) is at leastl2. For an
integern (not necessarily an RSA modulus), we writefn to denote the functionfn(x) := x3 mod n. In
slight abuse of notation, we writef−1

n (x) ∈ {0, . . . , n−1} for the preimage ofx mod n underfn, provided
thatfn constitutes a permutation on{0, . . . , n− 1}. Note though that even iff−1

n is defined, it is the inverse
of fn only on{0, . . . , n − 1}.

3.3.2 The Coin-toss Subprotocol

This auxiliary subprotocol will be used in the main randomness generation protocol to get a random value
s (from which the initial seeds0 is derived). We do not require the values to remain secret; this strongly
facilitates to perform a secure coin-toss, in particular inthe random oracle model. We additionally sign all
messages so that when plugging the protocol into PeerReview, every party can prove that it indeed behaved
correctly.

For nodesP,P1, . . . , Pk to perform a coin-toss, the nodes first choose random valuesr, r1, . . . , rk. Then
each nodePi computesci := H(ri) and produces a signatureσi on ci. Then all(ci, σi) are sent toP . Then
P setsc := H(r), setsh := (c, c1, σ1, . . . , ck, σk), and produces a signatureσ on h. Then eachPi checks
all signatures inh, produces a signatureσ′

i on h, and sends(ri, σ
′

i) to P . P checks all signaturesσ′

i and
sends(r, r1, . . . , rk) to P1, . . . , Pk. The outcome of the coin-toss iss := r ⊕ r1 ⊕ · · · ⊕ rk.

It is easy to show that this protocol produces a random values if at least one party is honest. Moreover,
this protocol will only be invoked once during the setup phase of our protocol; hence the communication
and computation overhead generated in particular by the signatures is acceptable.

3.3.3 The Randomness Generation Subprotocol

We are now ready to formally describe our protocol for generating cryptographically strong, accountable
randomness. The protocol consists of three parts: a setup phase for generating the seed, a function for
generating the random values and the corresponding audit information (proofs), and a function for verifying
these proofs.

In thesetup phaseeach nodeP performs the following steps:
• Choose a random RSA-modulusn such that3 - ϕ(n) and compute the secret keyd with 3d ≡

1 mod ϕ(n). (Do not store the secret key in the audit log.) Then computeqµ := f−1
n (H∗(pk, µ, n))

for µ = 1, . . . , t2 and send a signed message(pk, n, q1, . . . , qt2) to all its witnesses.2

• ThenP,P1, . . . , Pn perform a coin-toss (see Section3.3.2) whereP1, . . . , Pk are the witnesses ofP
(or any other set such that we assume that at least one ofP,P1, . . . , Pn is honest). Lets denote the
outcome of the coin-toss.

• Sets0 := H∗(P, start, s) whereP denotes a string encoding the identity of the nodeP .3

2Here we assume thatpk is some string that is different from the identifier of any node.
3Herestart is some fixed string which is not an integer.
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For generating a random valueri and the corresponding audit information (wherei is a sequential index
startingi = 1), perform the following steps:

• If t1 | i − 1, setsi := f−1
n (H∗(P, i − 1, si−1)).

• If t1 - i − 1, setsi := f−1
n (si−1).

• Let ri := H(P, i, si).
• Storesi, ri in the audit log.

For verifying a random valueri, the following function Verify is evaluated on the values
(P, n, s, ri, q1, . . . , qt2 , s1, . . . , si) whereP is a string encoding the identity of the nodeP , s is the value
computed in the coin-toss,ri is the current random value,q1, . . . , qt2 are the values sent in the setup phase
ands1, . . . , sn are the values found in the audit log.

Definition 2 (Verification function) When invoked asVerify(P, n, s, ri, q1, . . . , qt2 , s1, . . . , si) with i ≥ 1,
the functionVerify performs the following checks:

• sµ

?
∈ {0, . . . , n − 1} for µ = 1, . . . , i.

• fn(qµ)
?
≡ H∗(pk, µ, n) mod n for µ = 1, . . . , t2.

• fn(sµ)
?
= sµ−1 for all µ = 1, . . . , i with t1 - µ − 1.

• fn(sµ)
?
≡ H∗(P, µ − 1, sµ−1) mod n for all µ = 1, . . . , i with t1 | µ − 1 where s0 :=

H∗(P, start, s).

• ri
?
= H(P, i, si mod n).

It is of course not necessary to perform all these checks uponeach invocation ofVerify. Since only one new
valuesi occurs for each new randomness query, each evaluation ofVerify essentially uses one application
of fn (costing two multiplications) and some hashing. Furthermore, at mostt valuessi need to be stored
when such an incremental evaluation ofVerify is used.

3.4 Efficient Implementation

The main computational overhead of the randomness generation protocol stems from the computation of the
one-way permutationfn and of its inversef−1

n . Verifying one random value requires one application offn;
generating one random value requires one application off−1

n . (Such random values are at least not single
bits but an element from the image ofH.) Sincefn has been chosen asfn(x) = x3 mod n, computingfn(x)
requires only two multiplications modulon and is hence efficient. The inversef−1

n , however, is computed
asf−1

n (x) = xd mod n and therefore needs one exponentiation, which is too expensive when invoked for
every new random value. The following technique allows for lowering the amortized computational cost
per random value to approximately two multiplications. We exploit that for anym and anyj ∈ {1, . . . , t1},
we have thatsmt1+j = f−j

n (gm) wheregm := H∗(P,mt1, smt1). In particular,s(m+1)t1 = f−t1
n (gm)

and smt1+j = fn(smt1+j+1) for j = {1, . . . , t1 − 1}. Using this equation, we can compute the block
smt1+1, . . . , s(m+1)t1 using t1 − 1 applications offn and one application off−t1

n (cf. the dashed lines in

Figure 1). Sincef−t1
n (x) ≡ xdt1 ≡ xc mod n with c := dt1 mod ϕ(n) and sincec needs to be computed

only once, the cost forf−t1
n is essentially one exponentiation. Thus for computingt1 valuessi we need

t1 − 1 multiplications and one exponentiation. For sufficiently large values oft1, the amortized complexity
per valuesi hence amounts to only one multiplication. We refer to our benchmarks in Section6.1.
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3.5 Security Guarantees

We now discuss the security guarantees offered by the protocol presented in the previous section. The main
difficulty is to model the fact that the generated randomnessindeed constitutes cryptographically strong
randomness. Such strong guarantees are useful for protocols that use cryptographic primitives: if the ran-
domness contains some structure that becomes apparent given some additional information (namely the
audit information), this may break the proofs of many randomness-based cryptographic protocols.

The basic idea behind our security definition can be summarized as follows. We first define an idealized
version of our protocol. In this idealized version, the protocol does not generate the randomness according
to the protocol description, but it instead uses truly random values. The idealized version ensures that even
malicious nodes cannot lie about their randomness. However, malicious nodes are allowed to predict their
own future random values even if these values have not yet been used by the protocol; moreover, the used
random values of honest nodes get revealed to the adversary.The idealized version of the protocol captures
the properties we want to prove about the randomness generated by our protocol: intuitively, the randomness
generated by our protocol is as good as true randomness up to the two aforementioned imperfections. If
desired, these imperfections can be additionally taken care of at the cost of having a computationally more
expensive solution, cf. Section3.6.

It remains to define a notion that captures that our protocol is as good as its idealized version. This is
formalized by requiring that for any adversaryA that attacks the protocol (i.e., an adversary that controlsthe
malicious nodes and may intercept information) there exists a simulatorS that attacks the idealized version
of the protocol, such that any third entity, called the environment, cannot distinguish between a run of the real
protocol withA and an execution of the idealized version of the protocol with S. In particular, this entails
that for any structure thatA might find or produce in the random values,S is capable of finding the same
structure in the ideal random values. However, since these values are truly random,S will not find any such
structure; consequently, we conclude thatA will not be able to find any structure either. Other properties
carry over to the real protocol in a similar manner, e.g., theunpredictability of the randomness of the honest
nodes or the fact that the randomness of all nodes satisfy anyefficient statistical test for randomness.

This approach for defining the properties of cryptographic systems is widely used in the cryptographic
community, where it is known as UC security (Universal Composability) or as RSIM security (Reactive
Simulatability). Definitions of these kinds have been shownto provide very strong security and composi-
tionality guarantees [2, 7]. Compositionality is particularly important in our setting since we want to use our
protocol as part of a larger context (with PeerReview and theapplication protocol). The underlying reason
why this definition entails such strong compositionality guarantees is that we show that no environment can
distinguish between the real and the idealized protocol; hence in particular the application protocol (which
constitutes a valid environment) cannot distinguish thesetwo protocols, and all properties of the application
protocol (as long as they are observable) are consequently preserved when replacing the idealized protocol
by the real protocol.

We now define the model for the execution of the real protocol.To facilitate the modeling, we include
both the generation of the randomness as well as the verification of the proofs usingVerify into a single
machine. One should keep in mind that in a real implementation, these two algorithms would run on different
machines; in particular,Verify would be evaluated several times.

Definition 3 (Real machine) The real〈honest〉 [dishonest] machineMP for id P performs the following
steps:

• In the first activation by the environment,〈the values(n, q1, . . . , qt2) are generated honestly according
to the randomness generation protocol〉 [the adversary is asked for some values(n, q1, . . . , qt2)]. This
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tuple(n, q1, . . . , qt2) is returned.
• In its second environment activation, a randoms ∈ {0, 1}l1 is chosen and returned. The values is

also given to the adversary.4

• In each further environment activation (thei-th randomness query, starting withi = 1), 〈the values
ri, si are generated according to the randomness generation protocol〉 [the adversary is asked for
valuesri, si]. Thenbi := Verify(P, n, s, ri, q1, . . . , qt2 , s1, . . . , si) is computed.5 The triple(ri, si, bi)
is returned.

We now define the corresponding idealized version ofMP . The idealized version chooses truly random
valuesri, even if it is malicious. The real machine cannot be forced tooutput correct values, but we can
only enforce that if it outputs an incorrect one, then this value will fail the tests. To adaequately model this
situation, the adversary may choose whetherbi (the outcome of the test) is0 or 1. If the adversary chooses
bi = 0, it may choose the randomness to be returned; if the adversary choosesbi = 1, true randomness is
always returned. Furthermore, if the machine is honest, only bi = 1 is allowed. Our security definition in
particular does not require any properties about thesi (only about the result ofVerify , but this is captured
by the value ofbi). The valuessi can consequently be chosen by the adversary even in the case of honest
parties (this is a popular way to model nondeterminism in cryptographic protocols).

Definition 4 (Ideal machine) The ideal〈honest〉 [dishonest] machineM̃P for id P performs the following
steps:

• Before the first activation, it initializes an infinite list of valuesr1, r2, . . . uniformly and independently
distributed over{0, 1}l1 .6 [All valuesri are made accessible to the adversary.7]

• Upon each activation, the inputs to the machine are forwarded to the adversary.
• In its first environment activation, the adversary is asked for some values(n, q1, . . . , qt2). This tu-

ple (n, q1, . . . , qt2) is returned.
• In its second environment activation, a randoms ∈ {0, 1}l1 is chosen and returned. The values is

also given to the adversary.
• In each further environment activation (indexed consecutively, starting withi = 1), the machine sends

ri to the adversary and asks the adversary for a tuple(r̃i, si, bi). 〈Then it returns(ri, si, 1).〉 [Then it
returns(ri, si, 1) if bi = 1 and(r̃i, si, 0) otherwise.]

We can now state the security property of our protocol:

Theorem 1 Let l1, l2, t1, t2, t3,#Π be polynomially bounded in some security parameterk, and
l2, t2, (t3l1 − l2) ∈ Ω(k), and assume that the 3RSA assumption holds.

Let a setΠ of nodes be given of which an arbitrary number may be malicious. Then for any polynomial-
time machineA there exists a polynomial-time machineS such that for any environmentZ that does not
access the random oracleH the following holds: LetPR denote the probability thatZ outputs1 after
running together withA and real machinesMP for all P ∈ Π. LetPI denote the probability thatZ outputs
1 after running together withS and ideal machines̃MP for all P ∈ Π. Then|PR − PI | is negligible in the
security parameterk.

4Here we simplify: Instead of using the coin-toss subprotocol, we assume that the initial seeds is chosen as true randomness.
A complete treatment would have to prove that the coin-toss subprotocol presented above actually returns a truly randoms. At this
point, however, we treat the subprotocol as a black-box since it uses only well-known techniques.

5Note that the valuebi is computed correctly even for maliciousP , sincebi is not part of the output ofP but captures if the
output ofP would pass the tests or not.

6Strictly speaking, the whole infinite list is not initialized at the beginning of the protocol, but it is lazily built up whenever a
valueri is required.

7That is, when the adversary queriesi, the machine returnsri.
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The requirement that the environmentZ is not allowed to access the random oracleH translates into the
requirement that the protocol we wish to make accountable using our randomness generation subprotocol is
not allows to use the hash functionH. However, this does not imply thatH has to be secret, since we allow
the adversary to accessH. (The formal consequence of disallowingZ ’s access toH is that the simulator
now can simulate any valuesH(x) as long as these values look random. This is crucial for our simulation
proof.)

The proof ofTheorem 1as well as concrete security bounds are given in AppendixA.

3.6 Variants of Our Approach

In this section we discuss possible variants and extensionsof our protocol.

Different choice of the trapdoor permutation. The most obvious variation is to use a different trapdoor
one-way permutation. Although this is possible, there are afew caveats. First, our optimization technique
from Section3.4 is specific to 3RSA. Implementations using alternative permutations hence are likely to be
much less efficient. Furthermore, if one replace 3RSA by another functionf , the security of the protocol
will only be guaranteed if the following three properties are ensured byf in addition to being one-way (these
properties are derived from the security proof). First, onemust be able to efficiently prove thatf is indeed a
permutation (this is done in our protocol by sending the valuesqµ). Second, one must be able to efficiently
convert a random bitstringh into an element of the domain off (we did this by computingv mod n), and
it must be efficiently possible to recognize if a given value is indeed in the domain off (we did this by
checking whethersi ∈ {0, . . . , n − 1}). The necessity for the last point is best illustrated by an example.
Consider the functionfn := x2 mod n. If n is a so-called Blum integer, thenfn is a permutation on the
quadratic residues modulon. However, for any given quadratic residuesi there always existsi+1 6= s′i+1

with fn(si+1) = fn(s′i+1) = si wheres′i+1 is not a quadratic residue. This does not contradict the property
that fn is a permutation on the quadratic residues, but it still breaks the security of our protocol: In each
step a malicious node can choose between two values, and since no efficient way is known to tell quadratic
residues from quadratic non-residues, the auditors could not detect an incorrect choice.

Applying a PRG to ri. In highly randomness-consuming protocols, one might be tempted to perform the
following optimization: One generates a newri only when the previousri has been revealed (e.g., since
it was contained in an audit log). Then the randomnessx

(i)
1 , x

(i)
2 , . . . of the protocol is generated with a

classical pseudo-random generator fromri. In this case, however, a malicious node can mount the following
attack: When it is about to perform some action that needs randomness, it first checks what the next value
x

(i)
j would be. If the node does not like this value, the node delaysthat action until the next audit. After that

audit, a new seedri+1 is used and the next value isx(i+1)
1 , which possible suits the node better. Although

the effect of this attack may be small if audits are not too frequent, it is still present and in protocols where
a single random value may have large consequences (e.g., if it decides whether a given sum of money will
be transferred or not) it is indeed harmful.

Using Interaction. One of the limitations of our protocol is that malicious nodes can predict their own
randomness. If the randomness is generated noninteractively, this is necessarily the case, since a node can
always compute that randomness ahead of time. One possibility to get rid of this problem would be to use
interactivity: foreachrandom value, one performs a coin-toss with one’s witnesses(in this case one could
also get rid of the random oracle). Although a coin-toss constitutes a rather efficient protocol, this obviously
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incurs large communication costs (but this might still be feasible for protocols that only rarely need random-
ness). Another solution that springs to mind would be to include the incoming messages in the generation
of the randomness, i.e.,ri := H(P, i, si,m) wherem is the history of communication. Then even a mali-
cious node can only predict its own randomness as far as it canpredict incoming communication. However,
this approach is flawed: If two malicious nodes collude, theycan mutually influence their randomness by
adaptively choosing the messages they exchange.

Using Zero-Knowledge. The second limitation of our protocol (which is already present in the original
PeerReview) is that the auditors learn the state of a node. One can solve this problem by letting a node
send only a hash of its log and then prove using a zero-knowledge proof that the hash contains a valid log.
Although this is possible in theory, general purpose zero-knowledge proofs are extremely inefficient and the
incurred computational and communication costs would be prohibitive for all but very specific applications.

4 Implementation

We implemented our technique as an addition tolibpeerreview, which is an open-source implementa-
tion of PeerReview that was written by the authors of [14] and is publicly available from [23]. In total, we
added or modified1, 984 lines of code.

Our implementation is transparent to the user and works without modifications to existing application
code; it simply replaces the library’sgetRandom function. When our technique is enabled, faulty nodes
can no longer predict future random values of a correct node.In addition, nodes can be exposed as faulty if
they change their random seed after startup.

Internally, our code extends the application’s state machine to (i) run the randomness generation subpro-
tocol when a node is started for the first time, and to (ii) respond to coin-toss messages from other nodes. We
could have added these elements as a meta-protocol instead;however, our approach has the advantage that
the additional steps can be checked natively by PeerReview.Thus, we do not need a separate mechanism to
detect if a node breaks the randomness generation subprotocol or ignores a coin-toss message.

We also extended the log format with additional entries for the si. Checkpoints now include the tuple
(l2, t, i, si), wherei is the index of the last random number generated, as well as the state of the randomness
generation subprotocol (while it is active). This is necessary because the witnesses need to be able to start
auditing from a recent checkpoint.

Our implementation uses SHA-1 hashes forH, which impliesl1 = 160. We further uset2 = 5 and

t4 = 480. t1 andl2 can be chosen freely by the user, andt3 is chosen asl1 ·
(⌈

l2
l1

⌉

+ 1
)

.

Currently, our initial coin-toss protocol requires benignparticipation of every witness. We can relax this
assumption by employing, e.g., the shared-coin protocol with constant bias by Canetti and Rabin [9]. The
protocol may tolerate up to one third of compromised witnesses. We leave this extension up to the future
work.

5 Applications

Randomness is an important instrument in the design of many distributed algorithms. Ensuring accountable
pseudo-randomness is important in systems where (i) it is important to be able to detect when a node deviates
from an expected sequence of pseudo-random values; and, (ii) predicting future values in a node’s pseudo-
random sequence may allow an attacker to gain an advantage.
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In this section, we give a few examples of existing and prospective applications that use randomness in
the aforementioned way. In each case, our technique can be used to add accountability to these applications
without exposing them to attacks.

5.1 Sampling

Some applications use statistical sampling to estimate theproperties of a large system. For example, Mas-
soulié et al. propose a technique to aggregate statistics ofpeers in a peer-to-peer system using random walks
or random samples [19]. A node that performs these samples must follow a pseudo-random sequence, else it
could bias the results. However, if an attacker can predict future pseudo-random values generated by benign
nodes, it can bias the random walk towards nodes under its owncontrol or adjust its response to the sampling
query and thereby influence the sampled value.

Random sampling is also used to measure resource usage. For example, many routers implement Net-
Flow [12], which provides IP flow information that ISPs use for billing purposes. In this case, customers
wish to verify that the sampling is truly random; however, ifcustomers were able to predict the sampling pat-
tern, they could delay their own traffic when the ISP is about to take a sample, and thus make their resource
usage appear lower.

5.2 Randomized replication

LOCKSS [18] is a distributed storage system for long-term data preservation. LOCKSS is randomized so
as to make it difficult for an attacker to target specific replicas. LOCKSS would benefit from accountability
because it could detect and remove faulty nodes early; without our technique, however, this would reveal
information about a node’s future actions.

5.3 Load balancing

Some systems use randomness to distribute the load evenly across a set of servers. For example, the Total-
Recall storage system places replicas of objects on a randomset of nodes [6]. If a node was able to predict
this choice, it could insert a small dummy object whenever itknows that it will be chosen next. Thus, it
could reduce its own storage load at the expense of other nodes.

A similar challenge occurs in anycast services such as [10], where requests are forwarded along a tree.
If a leaf node can predict from the seed values of the interiornodes that the next request will be forwarded
to it, it can insert a particularly cheap request and thus cause the more expensive requests to be forwarded to
other nodes, in order to shed load unfairly.

6 Evaluation

6.1 Microbenchmarks

We begin by discussing the cost of the two fundamental operations in our algorithm, namely (i) generating
a random number on a node, and (ii) verifying a random number that was generated on another node. To
quantify the average cost per operation, we executed each operation10, 000 times in a tight loop, using a
RSA modulus ofl2 = 1024 bits and varying the batching parametert1. The hardware we used was a Sun
V20Z rack server, which has a 2.5 GHz AMD Opteron CPU. Figure2(a) shows our results.
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Figure 2:Microbenchmarks: With t1 = 100 and an RSA modulus ofl2 = 1024 bits, a node can generate
a random number in19µs, and an auditor can verify its choice in6.1µs, given10.2 bits of information.

Without precomputation, it takes1, 200µs to generate a random number, and12.7µs to verify one. The
numbers vary little witht1, which is expected because the cost of exponentiation dominates the cost of
hashing. However, if we compute random numbers in blocks oft1 values as described insubsection 3.4, the
average cost drops quickly witht1. With t1 = 500, a random number can be generated in only9.1µs and
verified in only6.0µs. This shows that our optimization is effective, and it demonstrates that the overhead
from random number generation should be insignificant for most applications.

In Figure2(b), we show the average amount of state that a node must disclose to an auditor for each
random value it generates. If random numbers are generated regularly, the node needs to disclose only
onesi, i.e. l2 bits, for each block oft1 random numbers; hence, the overhead drops quickly witht1. With
t1 = 500, only 2 bits need to be disclosed on average, although one additional si must be disclosed during
each audit ift1 - i. This overhead is insignificant, given that the logs of accountable applications can grow
by several megabytes per hour [14].

 1

 10

 100

 1000

512 1024 2048 4096

T
im

e/
op

er
at

io
n 

[m
ic

ro
se

co
nd

s]

Length of RSA modulus [bits]

Generate (with precomputation)
Verify random number

Figure 3:Key length: The cost per operation increases with the length of the RSA modulus.

Figure3 shows how the average cost per operation increases with the length of the RSA modulus. For
this experiment, we choset1 = 100 and used the same hardware as above.
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6.2 Application-level benchmark

To estimate the overall impact of these costs, we implemented a simple demo application, which consists of
a web server andk clients. The web server allows its clients to store, retrieve, or delete objects in its store,
and it charges them using a simple random sampling technique: At random intervals, it picks a random
file from its store, and it charges the owner one credit point.It is clearly desirable to make such a server
accountable to its clients, since otherwise it might chargearbitrary amounts; however, without our technique,
this is difficult to accomplish because clients would gain the ability to predict when one of their files will be
sampled, and could avoid the charge by temporarily removingthat file.

We performed a simulation experiment in which we ran this server with k = 5 clients for one hour. On
average, the server stored1000 files with an average size of10kB, one of which was requested every second.
The expected number of samples per second was five, i.e. random numbers were used at the rather high rate
of ten per second. The parameters we chose werel2 = 1024 andt1 = 100. We ran the simulation twice,
once using our technique to generate the random numbers and once using thelrand function from GLIBC.
The workload in the two simulations was identical.

We found that our technique changed the server’s on-disk logsize from56.5 MB to 56.7 MB, a 0.3%
increase. The amount of information transmitted to the auditors (the five clients) changed from12.5 MB to
13.1 MB, a 4.2% increase. The difference occurs because the on-disk log contains additional information
(such as checkpoints) which is not normally sent to the auditors. These overheads are small both in relative
and absolute terms, which suggests that our technique is practical.

7 Conclusion

In this paper, we have described a technique that lends accountability to systems that use randomized proto-
cols. The key contribution is a new technique for generatingcryptographically strong, accountable random-
ness, i.e., to generate a pseudo-random sequence that comeswith a proof that the elements of the sequence
have been correctly generated, while avoiding that auditors learn anything that would make the node’s future
actions predictable. We have applied the technique to a simple web server that uses random sampling for
billing purposes. Our experiments indicate that the computational cost of our technique is low and that the
approach is practical: On current hardware and with a1024-bit RSA modulus, a random number can be
generated in less than20µs and verified in less than10µs. We have additionally shown that the storage and
bandwidth costs of our protocol are low both in relative and in absolute terms.
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A Security Proof

Theorem 2 Let a setΠ of nodes be given of which an arbitrary number may be malicious. Then for any
polynomial time machineA there exists a polynomial time machineS such that for any environmentZ that
does not access the random oracleH the following holds: LetPR denote the probability thatZ outputs1
after running together withA and real machinesMP for all P ∈ Π. LetPI denote the probability thatZ
outputs1 after running together withS and ideal machines̃MP for all P ∈ Π. Then

|PR − PI | ≤ (3
7 + 4

7 · 2l2−t3l1)t2 · Q + (2−l2+1 + 2l2−t3l1) · Qt1 + 2l2−t3l1 · Q2 · #Π

+ Q · #Π · ε3RSA(l2, O(T + Qt3l1 + (Q + #Πt2)l
2
2 log l2 log log l2))
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HereQ denotes the number of queries performed byZ andA (both to the randomness generation protocol
and toH), T denotes an upper bound on the size of the circuits describingZ andA (i.e., roughly the running
time) and#Π is the number of nodes.

In particular, if l1, l2, t1, t2, t3,#Π are polynomially bounded in some security parameterk, and
l2, t2, (t3l1 − l2) ∈ Ω(k), and the 3RSA assumption holds, then|PR − PI | is negligible.

Proof plan. To proveTheorem 2, we proceed in three main steps. First, we define a variant of the real
execution where the random oracleH is replaced by a simulatioñH which internally works very different
from H but is designed to still give (almost) uniformly distributed outputsH̃(x). We call the execution using
H̃ the hybrid execution (since it is a mix between the real and the ideal execution). Then several events are
defined that represent various possible failures or imperfections of the simulationH̃ and the probability
PrBAD of these events is then shown to be negligible. It is then shown that unless these events occur, the
outputs ofH̃ have the same distribution as those ofH. We then proceed to construct the simulatorS which
is strongly simplified by the fact that the oraclẽH already computes all values necessary for the execution of
S. When then show that unless one of the above-mentioned events occurs, the hybrid and the ideal execution
have the same distribution. Concluding, we have that the distribution of the output ofZ in the real and the
ideal execution differ only byPrBAD.

Before we present the actual proof, we need the following auxiliary lemma:

Lemma 1 Letn ∈ N be an integer of lengthl2. Let ly ≥ l2. If fn(x) := x3 mod n is not a permutation on
{0, . . . , n−1}, then for randomy ∈ {0, 1}ly the probability that some valueq exists withfn(q) ≡ y mod n
is bounded from above by37 + 4

7 · 2l2−ly .

Proof: For n ≤ 2 the functionfn is always a permutation. Thus assumen ≥ 3. Sincefn is a permutation
iff 3 - ϕ(n) (since exactly in this case3 has a multiplicative inverse moduloϕ(n)) we know that3 | ϕ(n).
Thus there is a primep and ane ∈ N such thatpe | n, pe+1 - n and3 | ϕ(pe). We distinguish two cases,
p = 3 andp 6= 3. If p = 3, we have thatϕ(pe) = 2 · 3e−1, thuse > 2 and9 | n. Thus ifq3 ≡ y mod n, then
q3 ≡ y mod 9. The only solutions to this equation areq ∈ {0, 1, 8} mod 9. Thus, for randomy mod n
(and thus also randomy mod 9), we have that there exists aq with q3 ≡ y mod n with probability 1

3 ≤ 3
7 .

Now we consider the casep 6= 3. Sinceϕ(2e) = 2e−1 andϕ(5e) = 4 · 5e−1, by 3 | ϕ(pe) we havep ≥ 7.
Further, since3 - p and3 | ϕ(pe) = (p − 1)pe−1, we have that3 | p− 1. The operationfp : x 7→ x3 mod p
corresponds to the functioñfp : x̃ 7→ 3x̃ mod p − 1 (becauseZ×

p
∼= Zϕ(p) = Zp−1 whereZ×

p is the

multiplicative group ofZp). Sincef̃p(Zp−1) ∼= Z p−1

3

, the number of̃y ∈ Zp−1 that have a preimage under

f̃p is at mostp−1
3 . Thus the number ofy ∈ Z×

p with a preimage underfp is also at mostp−1
3 , and the number

of y ∈ Zp with a preimage underfp is at mostN := p−1
3 + 1 (sinceZp \ Z×

p = {0}). Thus for random
y mod p a preimage underfp exists with probability at mostN

p
, and thus a randomy mod n has a preimage

underfn with probability at mostN
p

. Sincep ≥ 7 we haveN
p

= p+2
3p

≤ 7+2
3·7 = 3

7 . So altogether, when
choosingy such thaty mod n is uniformly distributed on{0, . . . , n−1}, the probability thaty mod n has a
preimage underfn is at most37 . Fix u, v with un + v = 2ly andv ∈ {0, . . . , n− 1}. Since2ly ≥ n we have
u ≥ 1. Lety be randomly chosen from{0, 1}ly . Then with probabilityP := un

un+v
= 1− v

un+v
≥ 1−2l2−ly

we have thaty ∈ {0, . . . , un} := M . Under the condition thaty ∈ M we have thaty mod n is uniformly
distributed on{0, . . . , n − 1}. Thus the probability thaty mod n has a preimage underfn is bounded by
3
7 · P + (1 − P ) ≤ 3

7 · (1 − 2l2−ly) + 2l2−ly = 3
7 + 4

7 · 2l2−ly . �
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Simulating the random oracle. Here and for the rest of the proof, for an integeri, let m andj always be
integers such thatmt1 + j = i andj ∈ {1, . . . , t1}.

In the first step, we replace the random oracleH in the real execution by a lazily sampled functioñH.
The real execution with̃H we call thehybrid execution. The oracleH̃ acts as follows:

1. First, for each nodeP an infinite sequence of random valuesrP
i ∈ {0, 1}l1 is randomly chosen.

Further,gP
m := ⊥ for all m ∈ N and all nodesP . Initially set H̃(x) := ⊥ for all x. Let G := ∅ and

N := ∅. When we say “samplẽH(x)” we mean “if H̃(x) = ⊥, choose a randomh ∈ {0, 1}l1 and
setH̃(x) := h”.

2. LetsP denote the values chosen by nodeP . Until sP has been chosen, letsP := ⊥. LetnP denote the
public keyn chosen by nodeP and letqP

1 , . . . , qP
n be the valuesq1, . . . , qt2 output byP . As soon as

nP has been output, samplẽH(pk, µ, nP ) for µ = 1, . . . , t2. Check whetherfnP (qµ) = H̃(pk, µ, nP )
for all µ = 1, . . . , t2. If so, setN := N ∪ {nP }.

3. As soon assP is determined, samplẽH(P, start, sP ), and setsP
0 := H̃(P, start, sP ). Then sample

H̃(µ,P, 0, sP
0 ) for µ = 1, . . . , t2. Then setgP

0 := H̃∗(P, 0, sP
0 ) andG := G ∪ {(P, 0)}.

4. Upon a queryH̃(x) do the following:
• Check whetherx = (P, i, x̃) or x = (µ,P, i, x̃) such that the following holds: (i)i is an

integer andi ≥ 1, (ii) P is a node, (iii)nP ∈ N , (iv) (P,m) ∈ G, (v) x̃ ∈ {0, . . . , nP − 1},
(vi) f j

nP (x̃) ≡ gP
m mod nP ,

• If this check succeeds, set̃H(P, i, x̃) := rP
i . Further, if additionallyj = t1, sampleH̃(µ,P, i, x̃)

for µ = 1, . . . , t2 and setgP
m+1 := H̃∗(P, i, x̃) andG := G ∪ {(P,m)}.

• Finally, sampleH̃(x) and returnH̃(x).8

Events. We define the following events that may occur in the hybrid execution:
Event GCONFLICT: QueriesH̃(x1), H̃(x2) are performed withx1 = (P, i, x̃) or x1 = (µ,P, i, x̃) and

with x2 = (P, i, x̃) or x2 = (µ′, P, i, x̃) (note thatP , i, and x̃ are the same in both queries) such that
during the first query we have(P,m) /∈ G and during the second query we have(P,m) ∈ G, nP ∈ N and
f j

nP (x̃) ≡ gP
m mod nP .

Event REASSIGN: H̃(x) is assigned a valuey although it was already assigned some valuey′ /∈ {y,⊥}.
Event ALIAS: In two queries toH̃, two triples(P, i, x̃) and(P, i, x̃′) with x̃ 6= x̃′ (but with the same

P, i) pass the check in Step4.
Event NONINJECTIVE: There exists a nodeP such thatnP ∈ N andfnP is not a permutation on

{0, . . . , nP − 1}.
Event PREDICT: In some query tõH, a triple(P, i, x̃) passes the check in Step4 whereP is an honest

node and thei-th randomness query toP by the environment has not yet been performed. (Here, if the
query toH̃ occursduring thei-th randomness query toP , we consider thei-th randomness query as already
performed.)

Event WRONGPROOF: An honest party outputs a triple(r̃i, πi, bi) in a randomness query withbi 6= 1.
Event WRONGRANDOM: A party outputs a triple(r̃i, πi, bi) with r̃i 6= ri andbi = 1.
Event BAD: One of the events GCONFLICT, REASSIGN, ALIAS , NONINJECTIVE, PREDICT,

WRONGPROOF, or WRONGRANDOM occurs.

Event probabilities. We will now bound the probabilities of the various events defined above.

8Note that sampling̃H(x) only has an effect if̃H(x) has not been assigned in the preceding step.
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First, we bound the probability of NONINJECTIVE. A value n is in N only if H̃∗(pk, µ, n) has a
preimage modulon underfn for all µ ∈ {1, . . . , t2}. Since the valueshµ := H̃∗(pk, µ, n) are uniformly
chosen from{0, 1}t3 l1 with t3l1 ≥ l2 ≥ |n| (andn cannot depend on thehµ sincen is given as argument to
H̃∗), we have byLemma 1that if fn is not a permutation, the probability that allhµ have a preimage under
fn is at most(3

7 + 4
7 · 2l2−t3l1)t2 . Thus, since at mostQ different valuesn can be queried, the probability of

NONINJECTIVE is at most(3
7 + 4

7 · 2l2−t3l1)t2Q.
Next, we bound the probability of GCONFLICT ∧ ¬NONINJECTIVE. Assume that GCONFLICT ∧

¬NONINJECTIVE occurs. Then in the first querỹH(x1), the valuegP
m has not yet been chosen. Fur-

ther, in the second query we have thatnP ∈ N , thusfnP is a permutation on{0, . . . , nP − 1} (since
we assume¬NONINJECTIVE). Further, in the second query we have thatf j

nP (x̃) ≡ gP
m mod nP and

thus x̃ ≡ f−j
nP

(gP
m) mod nP where gP

m is randomly chosenafter x̃ (becausẽx is already used in the
first query). SincegP

m is uniformly distributed on{0, 1}t3 l1 , we have thatgP
m mod nP is uniformly dis-

tributed on{0, . . . , nP − 1} under the condition thatgP
m < 2t3l1 − (2t3l1 mod n). The probability that

gP
m ≥ 2t3l1−(2t3l1 mod n) is at most n

2t3l1
≤ 2l2−t3l1 , thus the statistical distanceδ between the distribution

of gP
m mod nP and the uniform distribution on{0, . . . , nP − 1} is at most2l2−t3l1. Sincef−j

nP is a permu-

tation, the same holds forf−j

nP (gP
m) mod nP . Thus the probability that a randomgP

m fulfills x̃ ≡ f j

nP (gP
m)

is at most1
n

+ δ ≤ 2−l2+1 + 2l2−t3l1 . Since at mostQ different queriesH̃(x1) can be performed in an
execution, andj can take onlyt1 different values (we havej ∈ {1, . . . , t1}), we have that the probability
that GCONFLICT ∧ ¬NONINJECTIVE occurs is at most(2−l2+1 + 2l2−t3l1)Qt1.

Now, we show that REASSIGN∧¬GCONFLICT does not occurs. By our definition of sampling, sampling
H̃(x) for somex can never reassigñH(x). Thus the only place where somẽH(x) could be reassigned is in
Step4, namely the assignment̃H(P, i, x̃) := rP

i . However, this assignment can only occur if(P,m) ∈ G,
nP ∈ N andf j

nP (x̃) ≡ gP
m mod nP . Further, for this assignment to be a reassignment,H̃(P, i, x̃) needs to

have already been assigned a different value, i.e.,H̃(P, i, x̃) needs to have been sampled in an earlier query.
For this, in the earlier query(P,m) /∈ G needs to hold (otherwise the check in Step4 would have been
passed). Thus REASSIGN implies GCONFLICT, and therefore REASSIGN∧ ¬GCONFLICT does not occur.

Now we show that ALIAS ∧ ¬NONINJECTIVE never occurs. ALIAS occurs if two triples(P, i, x̃) and
(P, i, x̃′) with x̃ 6= x̃′ pass the test in Step4. This implies thatnP ∈ N , that x̃, x̃′ ∈ {0, . . . , nP − 1},
and thatf j

nP (x̃) = gP
m = f j

nP (x̃′). This is only possible iff j

nP is not a permutation on{0, . . . , nP − 1}.
However, this would imply NONINJECTIVE sincenP ∈ N . Thus ALIAS ∧ ¬NONINJECTIVE never occurs.

We now show that event WRONGRANDOM ∧¬REASSIGNnever occurs. Both honest and malicious ma-
chinesMP setbi := Verify(P, nP , sP , r̃P

i , qP
1 , . . . , qP

t2
, sP

1 , . . . , sP
i ) where(r̃P

i , sP
i ) are the values chosen

by the adversary in thei-th randomness query toP . Assume that nõH(x) is ever reassigned a different
value, i.e., that REASSIGN does not occur. A comparison of the definition ofVerify and Step4 of the
simulation ofH̃ then reveals that ifVerify returnsbi = 1, then the simulation of̃H setsH̃(P, i, sP

i ) to
rP
i . SinceVerify only returnsbi = 1 if r̃P

i = H̃(P, i, sP
i ), it follows that if bi = 1 then r̃P

i = rP
i . Thus

WRONGRANDOM ∧ ¬REASSIGN never occurs.
We now show that WRONGPROOF∧ ¬REASSIGN does not occur. By construction of the protocol, as

long as the oraclẽH always returns the same value on the same input (i.e., REASSIGN does not occur), all
checks in the definition ofVerify succeed, thus WRONGPROOF∧ ¬REASSIGNdoes not occur.

Bounding the probability of PREDICT . Now we bound the probability of PREDICT∧¬REASSIGN. This
is actually the only place in this proof where the one-wayness offn comes into play. Letγ be the probability
that PREDICT∧¬REASSIGNoccurs. Then, for a random honest nodeP̂ and a random integerı̂ ∈ {1, . . . , Q},
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the probability that PREDICT ∧ ¬REASSIGN occurs withP = P̂ andi = ı̂ is at least γ
Q#Π . We can then

transform the whole system consisting of nodes, environment, adversary, and̃H into one machineSim that
performs the following:

• First, it chooses a random RSA modulusn̂ of lengthl2 with 3 - ϕ(n) and a random̂y ∈ {0, . . . , n−1}.
• Then it chooses a random honest nodeP̂ and an integer̂ı ∈ {1, . . . , Q}. It computesm̂ and ̂ ∈

{1, . . . , t1} such that̂ı = m̂t1 + ̂.
• It simulates the hybrid execution with the following modifications:

(i) WhenP̂ would choose the RSA modulusnP̂ , it sets insteadnP̂ := n̂.
(ii) WhenH∗(pk, µ, x̃) is to be sampled,9 choose some randomq ∈ {0, . . . , n̂ − 1} and choose a

randomĥµ ∈ {0, 1}t3 l1 with ĥµ ≡ fn̂(q) mod n̂. Store(q, ĥµ) in some listL.
(iii) When in Step4 of the simulation ofH̃, the valueH̃∗(P̂ , i, x̃) is to be sampled, do not choose

these values randomly but choose a randomĝm ∈ {0, 1}t3 l1 with ĝm ≡ g mod n̂ whereg is
chosen as follows: Ifm = m̂, theng := f ̂−1

n̂ (ŷ), and if m 6= m̂, choose a randomy′ ∈
{0, . . . , n− 1} and setg := f t1

n̂ (y′). In this computation, on each invocation offn̂(a) = b, store
(a, b) in the listL. Then assign̂gm to H̃∗(P̂ , i, x̃).

(iv) WhenM
P̂

computesf−1
n̂ (b) for somex, search for some(a′, b′) with b = b′ in L and returna.

Only if no such(a′, b′) exists, use the secret key corresponding ton̂ to computef−1
n̂ (b).

Note that in this simulation,nP̂ is chosen with the same distribution as in the hybrid execution. Further, the
computation off−1

n̂ by M
P̂

is performed differently, but the result is the same as in thehybrid execution
since if (a′, b′) ∈ L thenb′ = fn̂(a′) and thusa′ = f−1

n̂ (b′) (note that sincên is chosen honestly,fn̂ is
a permutation). Now consider the choice ofĝm. These values are not chosen uniformly from{0, 1}t3 l1 ,
but instead they are chosen uniformly under the precondition that ĝm ≡ g mod n̂. The valueg is chosen
uniformly from{0, . . . , n̂− 1} (sincefn̂ is a permutation, andy′ is each time a fresh random value andŷ is
only used for̂gm̂). Thusĝm is a fresh random value with a distribution that has a statistical distanceδ from
the uniform distribution withδ ≤ 2t3l1 mod n̂

2t3l1
≤ n̂

2t3l1
≤ 2l2−t3l1 . Analogous reasoning holds forĥµ. Since at

mostQ valuesĝm andĥµ are chosen, the overall error introduced at most is2l2−t3l1 ·Q. Thus the probability
that PREDICT ∧ ¬REASSIGN occurs in the execution simulated bySim is at least γ

Q#Π − 2l2−t3l1 · Q. The

machineM
P̂

computesf−1
n̂ only in two situations. First, for computingqµ = f−1

n̂ (H̃∗(pk, µ, n̂)) and

second for computingsi = f−j
n̂ (H̃∗(P,mt, smt)). In the first case, after queryingh := H̃∗(pk, µ, n̂), a pair

(q, ĥµ) with ĥµ = h is contained inL. Thusf−1
n̂ is computed without accessing the secret key. In the second

case, when computingsi, as long as REASSIGNdoes not occur, the valuegm := H̃∗(P,mt, smt) is chosen in
Step (iii ) asĝm. In this case, fori < ı̂ (and thusm < m̂ or j < ̂), we have that(f−j

n̂ (ĝm), f−j+1
n̂ (ĝm)) ∈ L

andsi is computed without accessing the secret key ofM
P̂

. ThusM
P̂

does not use its secret key before the
i-th randomness query unless REASSIGN occurs. If PREDICT occurs withP = P̂ andi = ı̂, we have that a
triple (P̂ , ı̂, x̃) is accepted in Step4 of the simulation ofH̃ before thei-th randomness query ofM

P̂
. This

implies thatx̃ = f−̂
n̂ (ĝm̂) = x̃ = f−̂

n̂ (f ̂−1
n̂ (ĝm̂)) = f−1

n̂ (ŷ). So, if PREDICT ∧ ¬REASSIGN, Sim finds
a preimage of̂y underfn̂ without accessing the secret key corresponding ton if PREDICT ∧ ¬REASSIGN

occurs withP = P̂ and i = ı̂. Since the probability for this is at leastγ
Q#Π − 2l2−t3l1 · Q as seen

above, by definition ofε3RSA we have that γ
Q#Π − 2l2−t3l1 · Q ≤ ε3RSA(l2, S) whereS is the size of

the circuit describing the machineSim. It can be easily verifiedSim can be described by a circuit of
size O(T + Qt3l1 + (Q + #Πt2)X) whereX is the size of a circuit that performs an exponentiation

9When we say thatH∗(x) is to be sampled, we mean thatH(k, x) is to be sampled for somek ∈ {1, . . . , t3}. Similarly, when
assigning some valuev1‖ . . . vt3 to H∗(x), we assignvk to H∗(k, x). We use this somewhat sloppy notation for readability.
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modulo a numbern of length l2. By [25] and [15, p. 295] we haveX ∈ O(l22 log l2 log log l2). Thus the
probability γ that PREDICT ∧ ¬REASSIGN occurs is at mostQ · #Π · ε3RSA(l2, O(T + Qt3l1 + (Q +
#Πt2)l

2
2 log l2 log log l2)) + 2l2−t3l1 · Q2 · #Π.

The probability of B AD. The event BAD is equivalent to NONINJECTIVE ∨ (GCONFLICT ∧
¬NONINJECTIVE)∨ (REASSIGN∧¬GCONFLICT)∨ (ALIAS ∧¬NONINJECTIVE)∨ (WRONGRANDOM ∧
¬REASSIGN)∨(WRONGPROOF∧¬REASSIGN)∨(PREDICT∧¬REASSIGN). Combining the above bounds
on the probabilities of the various events, we get that BAD occurs with probability at most

PrBAD := (3
7 + 4

7 · 2l2−t3l1)t2 · Q + (2−l2+1 + 2l2−t3l1) · Qt1

+ Q · #Π · ε3RSA(l2, O(T + Qt3l1 + (Q + #Πt2)l
2
2 log l2 log log l2))

+ 2l2−t3l1 · Q2 · #Π

Faithfulness of the oracle simulation. We will now show that the simulation of̃H as described above
is a faithful simulation of the random oracleH. More exactly, we show that unless REASSIGN or ALIAS

occurs we have that wheñH is queried twice with the same value it returns the same image, and whenH̃ is
queried with a valuex that has not yet been queried, a fresh random value from{0, 1}l1 is returned.10 Since
the simulatedH̃ upon queryx always returns̃H(x) (where the partial functioñH is possibly modified first),
H̃ will always return the same values on the same queries unlessREASSIGN occurs.

To see that for a valuex that has not yet been queried, a fresh random value is returned, note that there
are only two possibilities how̃H(x) gets assigned a value. First,H̃(x) is sampled. In this case, by definition
H̃(x) is assigned a fresh value. Or second,H̃(P, i, x̃) is assignedrP

i . Since eachrP
i is an independently

chosen random value, and that value is never accessed untilrP
i is assigned,̃H(P, i, x̃) is assigned only fresh

random values unless somerP
i is assigned to two different̃H(P, i, x̃). This again only happens if for two

triples(P, i, x̃) and(P, i, x̃′) with x̃ 6= x̃′ pass the check in Step4 (in different queries), i.e., if ALIAS occurs.
Thus unless REASSIGN or ALIAS occurs,H̃ is a faithful simulation of a random oracle.

Constructing the simulator. For a given adversaryA that runs with the real machinesMP , we now
construct the simulatorS that runs with the ideal machines̃MP in the ideal execution. This simulatorS
does the following:

(i) It simulates the random oraclẽH as described above. However, it does not choose the valuesrP
i on

its own but uses the valuesri chosen by machinẽMP . By definition, malicious machines make theri

accessible to the simulator. If̃MP is honest, and a valueri is required thatM̃P has not yet sent to the
simulator, the simulator aborts.

(ii) It simulates an instance of the adversaryA. Any communication from the environment to the simulator
is passed to the simulated adversaryA.

(iii) When an ideal honest machinẽMP requests a tuple(n, q1, . . . , qt2), the simulator computes
(n, q1, . . . , qt2) according to the protocol (i.e.,n is an RSA modulus andqµ := f−1

n (H̃(pk, µ, n))).
(iv) When an ideal malicious machinẽMp requests a tuple(n, q1, . . . , qt2) that request is forwarded to the

adversaryA.
(v) When the machinẽMP passes the values to the simulator, that value is forwarded to the adversary.

10By freshwe mean that this value is uniformly distributed and independent of all other values returned so far.
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(vi) When the malicious machinẽMP requests a triple(r̃i, si, bi), the simulator requests(r̃i, si) from the
adversaryA, and computesbi := Verify(P, n, s, r̃i, q1, . . . , qt2 , s1, . . . , si) wheren, s, qµ, sµ are the
respective values output bỹMP . Then the simulator returns(r̃i, si, bi) to M̃P .

(vii) When the honest machinẽMP requests a triple(r̃i, si, bi), the simulator setsbi := 1 and computes
(r̃i, si) according to the honest protocol (i.e.,r̃i := H̃(P, i, sP

i ) si is computed recursively asf−1
n (si−1)

or f−1
n (H̃∗(P, i − 1, si−1)) or H̃∗(P, start, s), respectively). Note that the simulator is able to com-

putef−1
n for honest machines̃MP since the simulator has chosen the modulusn for M̃P himself.

Faithfulness of the simulation. We will now show that the view of the environment is identicalin an ex-
ecution of the adversaryA and the real machinesMP but with simulatedH̃ (the hybrid execution) and
in an execution of the simulatorS and the ideal machines̃MP (the ideal execution) unless PREDICT,
WRONGRANDOM or WRONGPROOF occurs. Steps (i)–(v) are a direct simulation of the corresponding
actions of the real machines and the adversary unless the simulator aborts in Step (i). The latter only hap-
pens when a valuerP

i is required that has not yet been given by the honestM̃P to the simulator, i.e., if
PREDICT occurs.

Consider Step (vi). In the hybrid execution the malicious machineMP returns the triple(r̃i, si, bi) where
bi := Verify(P, n, s, r̃i, q1, . . . , qt2 , s1, . . . , si) and(r̃i, si) are the values chosen by the adversaryA. In the
ideal execution, the malicious machinẽMP returns the triple(r′i, si, bi) wheresi is the value chosen byA
andbi is computed as in the hybrid execution. Further we haver′i = r̃i if bi = 0 andr′i = ri if bi = 1 (here
ri is the random value chosen bỹMP itself). Thus the triples returned in the hybrid and the ideal execution
are equal unlessri 6= r̃i ∧ bi = 1, i.e., unless WRONGRANDOM occurs.

Consider Step (vii ). In the hybrid execution the honest machineMP returns the triple(r̃i, si, bi) where
(r̃i, si) are computed according to the honest protocol andbi := Verify(P, n, s, r̃i, q1, . . . , qt2 , s1, . . . , si).
In the ideal execution the honest machineM̃P returns the triple(ri, si, 1) (hereri is the random value chosen
by M̃P itself). Thus the triples returned in the hybrid and the ideal execution are equal unlessri 6= r̃i∨bi 6= 1.
However,ri 6= r̃i ∨ bi 6= 1 implies WRONGPROOF∨WRONGRANDOM, so the triples returned in the hybrid
and the ideal execution are equal unless WRONGPROOFor WRONGRANDOM occurs.

So together, we have that the view of the environment is identical in the hybrid and the ideal execution
unless PREDICT, WRONGRANDOM, or WRONGPROOFoccurs.

Putting the pieces together. We have seen so far that the real and the hybrid execution leadto the same
outputs ofH or H̃, respectively, unless BAD occurs. Thus in particularZ ’s output is the same unless BAD

occurs. Furthermore, we have shown the same for the hybrid and the ideal execution. Therefore the output
of Z is the same in the real and the ideal execution unless BAD occurs. Thus|PR −PI | ≤ PrBAD. Using the
bound forPrBAD derived above,Theorem 2follows. �
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