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Abstract

To formalize participants in cryptographic protocols, it is common to use probabilis-
tic Turing machines. We point out subtleties in common definitions of probabilistic
Turing machines, which imply that the common cryptographic operation of uniform
random sampling in a finite set {1, . . . , s} ⊆ Z is in general not possible within this
model. From a technical point of view, this invalidates in particular a standard proof
of the perfect zero knowledge property of the popular graph isomorphism proof sys-
tem. The observed limitation appears to be relevant for other cryptographic protocol
analyses as well, and we suggest one possible tweak of the definition of a probabilistic
Turing machine.
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1 Probabilistic Turing machines revisited

Cryptographic protocols and adversary models are almost always probabilistic. There-
fore, the definition of probabilistic Turing machines constitutes the underpinning of most
cryptographic security proofs. There are, however, subtleties in the definition of proba-
bilistic Turing machines that are often ignored or argued to be irrelevant.

To illustrate the problem, consider the popular perfect zero-knowledge proof system
for graph isomorphism [GMW86].

Example 1 (graph isomorphism proof system). Given two graphs G0 and G1 along with
an isomorphism φ : G0 −→ G1, the prover picks a uniformly random permutation ψ on
the vertices of G0 and computes H := ψ(G0). Then the prover sends H to the verifier
(who knows G0 and G1 but not ψ). The verifier picks a bit b ∈ {0, 1} uniformly at random
and sends b to the prover. The prover responds with an isomorphism ψb : Gb−→H which
can be efficiently computed from φ and ψ.

∗Appeared in Theoretical Computer Science [KSU13].
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It is claimed [Gol01] that this proof system is perfect zero-knowledge in the sense of
[Gol01]. That is, there is a polynomial-time simulator that (conditioned on not abort-
ing) produces an execution transcript that has the same distribution as the interaction
between prover and verifier. The simulator only has access to G0 and G1 but not to φ.

A technical point that is important to note here, is that both the honest prover and
the simulator pick a uniformly random permutation on the set of vertices. In other
words, given a number n (of vertices), they have to pick a permutation on n elements.

Can this can be done in polynomial time? The machine model typically used in
cryptography are probabilistic Turing machines (PTM) following Gill [Gil74]. Such
a Gill-PTM is defined like a deterministic Turing machine, except that the Gill-PTM
additionally has access to an infinite sequence of uniformly and independently distributed
bits. It is easy to see that, for a Gill-PTM running in time ≤ t, the probability of any
output is of the form a/2t for some a ∈ N0. In particular, such a probability cannot
be exactly 1/6. Since for n = 3, a uniformly chosen permutation is the identity with
probability 1/(3!) =1/6, it follows that in time t (for any integer t), it is not possible
to pick a uniform permutation on three elements. In particular, the prover and the
simulator for the graph isomorphism protocol cannot be implemented in polynomial-
time.1

Remark 1. Note that it is easy to approximate the prover and the simulator: We can
come arbitrarily close to the right distribution. But for the purposes of perfect zero-
knowledge, approximating the prover and simulator is of no use. We need exact equality
of distributions.

Thus the proof from [Gol01] that there are perfect zero-knowledge proofs for graph-
isomorphism does, strictly speaking, fail. For the perfect zero-knowledge proof system
for Graph 3-Colorability as described in [Gol01] we encounter a similar situation—here
the prover has to select a random element in the symmetric group on three points, and
the verifier has to select uniformly at random an edge of a given graph.

But let us step back and analyze where the problem comes from in the graph iso-
morphism example. We had to construct Turing machines that pick elements with prob-
abilities that are not of the form a/2t. And since a Gill-PTM inherently uses random
bits, this is impossible. So why do Gill-PTMs have this (seemingly arbitrary) restric-
tion to random bits? For example, given unbiased rolls of a fair six-sided die, we could
pick a permutation on three elements. In [Gil74], Gill-PTMs were introduced with the
purpose of defining the complexity class BQP. Since this class considers computations
with bounded errors, assuming uniform bits is no restriction as other probabilities can be
approximated sufficiently closely. Thus using random bits is a justified simplification in
that setting, as well as in most situations in cryptography. When dealing with a setting
where exact probabilities matter, this simplification is not justified. We have to go back

1That is, for any polynomial p, there is no Gill-PTM that, on input n, outputs a uniform permutation
of n elements and that terminates with probability 1 in time ≤ p(n).

It is possible to chose a uniform permutation in expected polynomial time, though. For example,
[GMW86] use expected polynomial-time simulators (for reasons unrelated to the sampling of permuta-
tions). Expected polynomial-time simulators lead to other difficulties though, see, e. g., [Gol07].
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to the way in which PTMs were defined before [Gil74]. The original definition of PTMs
seems to be Santos [San69]. A Santos-PTM is a Turing machine in which the state
transition function (which determines what symbol to write on the tape, and in which
direction to move) is described by a finite probabilistic automaton. That is, for each
state and each symbol under the head, there is a probability distribution that specifies
head movement, new symbol, and new state. When constructing a Santos-PTM, we can
chose an arbitrary such distribution.2 (But that distribution may not depend on the
input of the Santos-PTM, of course.)

The question now arises: Is the proof system from [GMW86] and its simulator
polynomial-time if we assume Santos-PTMs as our machine model? More precisely,
we ask the following question:

Is there a Santos-PTM that on input s outputs 1 with probability 1/s and
that runs in time polynomial in s?

Remark 2. It can be seen that a positive answer to this question is both sufficient and
necessary for being able to pick permutations on n elements.

First, we easily observe that such a Santos-PTM cannot exist if the probabilities
are rational. Assume a Santos-PTM that runs in time p(s). Let a1, . . . , an denote
all probabilities occurring in the probability distribution of that Santos-PTM. Then
the probability of output 1 on input s is the sum of the probabilities of all execution
paths leading to output 1. Each such execution path has a probability which is a
product of ai. Furthermore, since the time is limited to p(s), there are only finitely
many different execution paths. Thus, the probability of output 1 is a polynomial
expression in a1, . . . , an with integer coefficients. In other words, that probability lies in
Z[a1, . . . , an], the ring of all such polynomial expressions, called the Z-algebra generated
by a1, . . . , an. If all ai are rational, then any r ∈ Z[a1, ..., an] can be expressed as a
fraction with denominator which is a product of the denominators of the reduced ai. In
particular, if s is a prime not occurring in those denominators, then 1/s /∈ Z[a1, . . . , an].
Hence for any Santos-PTM with rational probabilities there always is an s such that the
Santos-PTM does not output 1 with probability 1/s. In fact, as there are only finitely
many prime factors in the denominators of the reduced ai, the Santos-PTM fails to
output 1 with probability 1/s for almost all prime numbers s.

However, if we consider a Santos-PTM with irrational probabilities, the situation is
not as simple. Perhaps there is a particular choice of values a1, . . . , an such that any
1/s ∈ Z[a1, . . . , an]? In the next section, we will show that this is not the case and that
thus even Santos-PTMs cannot be used for the proof system of graph isomorphism.

2As Bernstein and Vazirani [BV97, Section 3.1] observe, in a context of polynomial-time computa-
tions, one should however limit the probabilities to numbers that are computable to within 2−n in time
polynomial in n by a deterministic Turing machine.
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2 Impossibility of random selection with arbitrary rational

probabilities

Note that the fractions 1/s, as s ranges over N, generate Q as a Z-algebra. That is,
every polynomial expression in 1/s1, . . . , 1/sn (si ∈ N) with integer coefficients lies in
Q, and each element of Q has such a representation. Thus, to prove that there exists
an s ∈ N with 1/s 6∈ Z[a1, . . . , an], it is sufficient to establish the following result.3

Proposition 1. Let {a1, . . . , an} ⊆ R be a finite set of real numbers. Then Q 6⊆
Z[a1, . . . , an].

Proof. Denote by ϕ the evaluation map from the polynomial ring Z[x1, . . . , xn] to the
Z-algebra Z[a1, . . . , an], that is, the map defined by ϕ(p(x1, . . . , xn)) = p(a1, . . . , an).
Clearly ϕ is a ring homomorphism and maps Z[x1, . . . , xn] onto Z[a1, . . . , an], so by a
standard isomorphism theorem Z[a1, . . . , an] is isomorphic to the factor ring Z[x1, . . . , xn]/ker(ϕ),
where ker(ϕ) denotes the kernel of ϕ, which is the subset of those p ∈ Z[x1, . . . , xn] such
that ϕ(p) = 0. Let M be a maximal ideal of the ring Z[x1, . . . , xn] containing ker(ϕ).4

By a standard homomorphism theorem, there is a ring homomorphism π from the factor
ring Z[x1, . . . , xn]/ker(ϕ) onto the factor ringK := Z[x1, . . . , xn]/M , defined by mapping
the coset p+ ker(ϕ) to the coset p+M .

We claim that Z ∩M 6= {0}. The factor ring K is generated as a Z-algebra by the
finitely many cosets x1 +M, . . . , xn +M , and K is a field (because M is a maximal
ideal). If Z ∩M = {0}, then the cosets of the integers would all be distinct in K, so
that, since K is a field, it would contain a subfield isomorphic to Q. Since K is finitely
generated as a Z-algebra, it would then be finitely generated as a Q-algebra, so [AM69,
Proposition 7.9] would force K to be a finite dimensional vector space over Q. Then
from [AM69, Proposition 7.8], it would follow that the rational numbers are finitely
generated as Z-algebra, which is clearly not the case, as noted above. This proves the
claim that Z ∩M 6= {0}.

Therefore, there is a nonzero integer m ∈ M , which means the coset m + M =
0+M , the zero element of the field K. Then the ring homomorphism π maps the coset
m+ker(ϕ) (the sum of m terms π(1+ker(ϕ))) to m+M (the sum of m terms 1+M), by
definition of a ring homomorphism. That is, π maps m+ ker(ϕ) to the zero element of
K, so that m+ ker(ϕ) can have no reciprocal in Z[x1, . . . , xn]/ker(ϕ), because the ring
homomorphism π must preserve products and the multiplicative identity. Identifying
integers with their cosets in Z[x1, . . . , xn]/ker(ϕ), it follows that m has no reciprocal
in Z[x1, . . . , xn]/ker(ϕ), so that Q cannot be contained in Z[x1, . . . , xn]/ker(ϕ). Since
Z[a1, . . . , an] is isomorphic to Z[x1, . . . , xn]/ker(ϕ), the proposition follows.

3The proof is not difficult, but we did not find it in the literature.
4A maximal ideal is a proper ideal which is not contained in any other proper ideal. The existence

of a maximal ideal containing ker(ϕ) follows from Zorn’s Lemma [AM69, Theorem 1.3].
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3 Conclusion

We have shown that the modeling of probabilistic Turing machines by both Gill [Gil74]
and Santos [San69] do not precisely capture the way Turing machines are used in cryp-
tographic analyses dealing with perfect security. To address this issue, we propose to
use a model of probabilistic Turing machines that allows one to pick random elements
from finite sets whose size is not a power of 2:

Definition 1. A PTM with sampling oracle is a deterministic Turing machine endowed
with a probabilistic oracle O such that, upon invocation O(r, s) with r/s ∈ [0, 1], the
oracle returns 1 with probability r/s; otherwise 0 is returned. Here r and s are assumed
to be encoded in binary, so that invoking the oracle takes time O(log(r) + log(s)).

It is easy to see that with such an oracle, we can pick uniformly random elements from
{1, . . . , s} in time polylog(s), as well as from the set of permutations on s elements in
time poly(s). Thus PTMs with sampling oracle are suitable, e. g., for the zero-knowledge
proof for graph isomorphism.
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