
OAEP is Secure Under Key-dependent MessagesMichael Backes1,2, Markus Dürmuth1 and Dominique Unruh1

1 Saarland University, Saarbrücken, Germany, {b c e , u r u h u r ha k s d e m t , n u }@ s u i s . ec . n - b d
2 Max-Planck-Institute for Software Systems, Saarbrücken, Germany, b c e @ p - w . p . ea k s m i s s m g dFebruary 19, 2008Abstract. Key-dependent message security, short KDM security, was introduced by Black,Rogaway and Shrimpton to address the case where key cycles occur among encryptions, e.g., akey is encrypted with itself. We extend this de�nition to include the cases of adaptive corrup-tions and arbitrary active attacks, called adKDM security incorporating several novel designchoices and substantially di�ering from prior de�nitions for public-key security. We also showthat the OAEP encryption scheme (using a partial-domain one-way function) satis�es thestrong notion of adKDM security. The OAEP construction thus constitutes a suitable can-didate for implementating symbolic abstractions of encryption schemes in a computationallysound manner under active adversaries.Keywords: Key-dependent message security, chosen ciphertext attacks, RSA-OAEP.1 IntroductionEncryption schemes constitute the oldest and arguably the most important cryptographicprimitive. Their security was rigorously studied very early, starting with Shannon's work forthe information-theoretic case [29]. Computational de�nitions for public-key encryption weredeveloped over time, in particular in [21,30,28,17]. For symmetric encryption, the �rst realde�nitions were, to the best of our knowledge, given in [17,26,7], using the same basic ideasas in public-key encryption. While these de�nitions seemed to take care of standard usageof encryption schemes, it was soon recognized that larger protocols might pose additionalrequirements on the encryption schemes, e.g., in multi-party computations with dynamiccorruptions as in [6]. It was also recognized that in some cases, symmetric encryption ini-tially seemed to be the appropriate method to use, but upon study other primitives suchpseudorandom permutations [9,7] or authenticated encryption [11,8] proved to be better.A speci�c additional requirement some larger protocols pose on encryption schemes is theability to securely encrypt key-dependent messages. One speaks of key-dependent messagesif a key K is used to encrypt a message m where m contains or depends on the key K (or thecorresponding secret key in the case of public-key encryption). The �rst concrete use of thiscase seems to have been in [13], where multiple private keys were used to encrypt one anotherin order to implement an all-or-nothing property in a credential system to discourage peoplefrom transferring individual credentials. Such key cycles also occur in implementations ofdisk encryption in, e.g., Windows Vista, that can store an encryption of its own secret keysto the disk in some situations. Key cycles also occur in some naively designed key exchangeprotocols of session keys given master keys shared among the two parties or with a key

distribution center, where at the end of the protocol the newly exchanged key is �con�rmed�by using it to encrypt or authenticate something that might include the master keys.Another area that has brought additional requirements on cryptographic primitives, andin particular that of encryption with key cycles, is the use of formal methods or �symboliccryptography�. Here the question is whether simple abstractions of cryptographic primitivesexist that can be used by automated proof tools (model checkers or theorem provers) to proveor disprove a wide range of security protocols that use cryptography in a blackbox manner.The original abstractions used by this automation community are term algebras constructedfrom certain base types and cryptographic operators such as E and D for encryption anddecryption. They are often called Dolev-Yao models after the �rst such abstraction [18]. Assoon as one has a multi-user variant of such a model, the keys are terms, and from the termalgebra side it is natural that keys can also be encrypted, i.e., most models simply assumethat key cycles are allowed. Once cryptographic justi�cation of such models was startedin [2], it was recognized that key cycles had to be excluded from the original models to getcryptographic results. The same holds for later results [1,24,5,25,27,3,16,15].Motivated primarily by symbolic cryptography, a de�nition of key-dependent messagesecurity (KDM security) was introduced in [12]. It generalizes the de�nition from [13] byallowing arbitrary functions of the keys (and not just individual keys) as plaintexts, and byconsidering symmetric encryption schemes. In [4] it was shown that, in the case of symmetricencryption, an extension of the KDM de�nition that additionally allows for a limited reve-lation of secret keys of honest users, called DKDM security, is suitable for extending resultsabout the justi�cation of Dolev-Yao models to include protocols with key cycles. Security inthe presence of key-dependent messages has so far only been achieved in the random oraclemodel.1 Extensions of KDM security for public-key encryption to active adversaries have notbeen proposed yet, and the establishment of meaningful de�nitions for this case indeed raisesnon-trivial problems.Our Contributions. We �rst propose a new de�nition of security under key-dependentmessages, called adKDM security, that captures security against active attackers and adap-tive corruptions in the case of public-key encryption. This de�nition incorporates severalnovel design choices and substantially di�ers from prior de�nitions for public-key security; inparticular, it allows the adversary to iteratively construct nested encryptions without neces-sarily revealing inner encryptions, and it is required to keep track of the knowledge that theadversary maintains in an ideal setting.We then investigate the OAEP encryption scheme and prove that it satis�es adKDMsecurity in the random oracle model, assuming the partial-domain one-wayness of the under-lying trapdoor-permutation. This in particular shows the OAEP construction to constitutea suitable candidate for soundly implementing symbolic abstractions of cryptography.The need to incorporate key dependencies and the adaptive nature of adKDM securityrequire substantial changes to the CCA2-security proof of OAEP. In particular, adKDM1 In [22] and [23], the problem of implementing KDM secure symmetric encryption schemes without randomoracles is investigated. There, solutions are given for relaxed variants of KDM security, e.g., security againsta bounded number of queries or security with respect to a single key dependency function. No scheme isknown, however, that ful�lls any form of full-�edged KDM security (passive or active) without the use ofrandom oracles. 2

security does not allow for determining in advance which encryptions will be used as challengeencryptions. At the point of construction of these bitstrings, the adversary might not evenknow the challenge encryptions. Consequently, performing the reduction to the underlyingassumption requires us to lazily construct them in order to decide as late as possible whichencryption constitutes a challenge encryption.2 PreliminariesIn this section, we present some de�nitions and conventions that will be used later on in thepaper.Notation. Let ⊕ denote the XOR operation, and let ‖ denote concatenation. For a proba-bilistic algorithm B, let y ← B(x) denote assigning the output of B(x) to y. Let Pr[π : X]denote the probability that π holds after executing the instructions in X (which are of theform y ← B(x)). A function in n is negligible if it is in n−O(1). A function is non-negligibleif it is not negligible. We formulate all our results for uniform adversaries, but they hold fornonuniform adversaries as well.De�nition 1 (Circuit). A circuit is a Boolean circuit with n1+· · ·+nt input bits (t ≥ 0) and
m output bits. The circuit may have arbitrary fan-in and fan-out, AND-, OR- and NOT-gates,and�in the case of an encryption scheme in the random-oracle model�gates for querying therandom oracle(s). We assume that a circuit is always encoded by explicitly specifying all itsgates and the numbers n1, . . . , nt,m. The evaluation f(x1, . . . , xt) of a circuit f on bitstrings
x1, . . . , xt is de�ned as follows: Let x′

i be the result of truncating or padding xi with 0∗ to thelength ni. Then f(x1, . . . , xt) is the result of evaluating f with input x′
1‖ . . . ‖x

′
t.2Convention: Encryption is length-regular. For any encryption scheme, we impose thefollowing assumption on the output of the encryption function Enc and the decryption func-tion Dec: The length of the output of Enc depends only on the public key and the length ofthe message. The length of the output of Dec depends only on the public key and the lengthof the ciphertext. This can easily be achieved by suitable padding and encoding.The OAEP scheme. The optimal asymmetric encryption padding (OAEP) scheme [10]constitutes a widely employed encryption scheme in the random oracle model based on atrapdoor 1-1 function.De�nition 2 (OAEP). Let k denote the security parameter and let k0 and k1 be functionssuch that k0, k1, k − k0 − k1 are superlogarithmic. Assume a 1-1 trapdoor function f withdomain {0, 1}k = {0, 1}k−k0 × {0, 1}k0 . Let G : {0, 1}k0 → {0, 1}k−k0 and H : {0, 1}k−k0 →

{0, 1}k0 denote random oracles. The public and secret key for the OAEP encryption scheme
(Enc,Dec) consists of a public key and a trapdoor for f . An encryption c = Enc(pk ,m) with
|m| = k − k0 − k1 is computed as r ← {0, 1}k0 , s := (m‖0k1) ⊕ G(r), t := r ⊕H(s), c :=
fpk (s‖t).2 Not granting a circuit access to the length of its arguments is not a restriction in our case, since this lengthwill always be known in advance. 3

A decryption Dec(sk , c) is computed as s‖t := f−1
sk

(c), r := t ⊕H(s), m‖z := s ⊕ G(r)with |s| = k − k0, |t| = k0, |m| = k − k0 − k1 and |z| = k1. If z = 0k1 , the plaintext m isreturned, otherwise the decryption fails with output ⊥.It has been shown in [19] that the OAEP scheme is IND-CCA2 secure in the random oraclemodel under the assumption that f ful�lls the following De�nition 3 of partial-domain one-wayness. They further showed that the RSA-trapdoor permutation, which is most commonlyused for the OAEP scheme, is partial-domain one-way.De�nition 3 (Partial-Domain One-Wayness). A 1-1 function f : S×T → range f withkey generation KeyGenf is partial-domain one-way if for any polynomial-time adversary Awe have that
Pr

[

s = s′ : pk ← KeyGenf , (s, t)
$
← S × T, s′ ← A(pk , fpk (s ‖ t))

]is negligible in k, where A,KeyGenf , f, S, T depend on the the security parameter k. Wesometimes call this probability the advantage of A.3 The De�nition of adKDMWe now present our de�nition of adKDM security. Since this de�nition incorporates severalnovel design choices and substantially di�ers from prior security de�nitions for public keysecurity, we do not immediately present the de�nition. Instead, we start with a direct adap-tion of an existing de�nition and show using an example why this adaption is not su�cient.We proceed with several plausible approaches for extending this adaption and explain whythey fail. We �nally present our de�nition of adKDM security and explain why it solves theproblems observed with the tentative de�nitions discussed before.Extending DKDM security. In [4] the security notion DKDM was proposed for the case ofsymmetric key-dependent encryptions. It is the strongest notion of KDM security consideredso far; restating it one-to-one in the public-key setting would yield the following de�nition:3De�nition 4 (DKDM, public key setting � sketch). The DKDM oracle maintainsa sequence of key pairs pk i, sk i and a random challenge bit b. It answers to the followingqueries:� pk(j): Return pk j .� reveal(j) where j has not been used in an enc(j, ·) query: Return sk j .� enc(j, f) where f is a circuit and j has not been used in a reveal(j) query: Compute
m0 := f(sk1, sk2, . . .), m1 := 0|m0| and encrypt c := Enc(pk j,mb). Return c.� dec(j, c) where c has not been returned by an enc(j, ·) query with the same key index j:Return Dec(sk j, c).A public key encryption scheme (Enc,Dec) is DKDM secure if no polynomial time adversaryinteracting with the DKDM-oracle guesses b with probability non-negligibly greater than 1

2 .3 We have omitted one condition of their de�nition, namely that it should not be possible to generate avalid ciphertext without the knowledge of the secret key. This condition is not applicable to the public-keysetting. 4

This de�nition is an almost immediate generalization of the IND-CCA de�nition to themulti-session setting (i.e., with several key pairs instead of only one). DKDM extends IND-CCA in two ways: First, the messages that are contained an enc(·, ·) encryption query maydepend on all secret keys in the system. Second, one can reveal secret keys as long as thecorresponding public keys have not been used for encrypting (otherwise one could decrypt achallenge ciphertext so that the de�nition cannot be met).Although the notion of DKDM has been shown to be useful for soundness results for aspeci�c class of protocols, it has obvious restrictions on the class of protocols considered. Inparticular, it is not allowed to reveal a key that has been used for encryption. The followingsimple protocol illustrates that this indeed constitutes a restriction: Alice holds two secretkeys sk1, sk2 and a secret message m and sends the following messages to Bob:
c1 := Enc(pk 1,Enc(pk 2,m‖sk 1‖sk2)), c2 := Enc(pk 2,Enc(pk 1,m‖sk 1‖sk2))Then Bob chooses a value i = 1, 2 and Alice sends sk i to Bob. We would intuitively expectthe message m to stay secret since Bob learns at most one of the keys sk1, sk2. However, adirect reduction against DKDM security fails. Namely, we have basically three possibilitiesto construct the messages c1, c2 by querying the DKDM oracle (note that enc denotes thequery to the adKDM oracle while Enc is the encryption algorithm):(i) c1 := enc(1, g1), c2 := enc(2, g2) where g1 and g2 are circuits computing

Enc(pk2,m‖sk1‖sk2) and Enc(pk 1,m‖sk 1‖sk2), respectively (given input (sk 1, sk2)).(ii) c1 := Enc(pk 1, enc(2, g)), c2 := Enc(pk 2, enc(1, g)) where g computes m‖sk1‖sk2.(iii) c1 := Enc(pk 1, enc(2, g)), c2 := enc(2, g2) where g and g2 are as before.(iv) c1 := enc(1, g1), c2 := Enc(pk2, enc(1, g)), where g and g1 are as before.Then, depending on the value of i chosen by Bob, we have to issue reveal(i). In cases (i)and (ii), no reveal query is allowed since queries of the forms enc(1, ·) and enc(2, ·) have beenperformed which excludes reveal queries reveal(1) and reveal (2) by De�nition 4. Similarly, incase (iii) we are not allowed to query reveal (2), and in case (iv) we are not allowed to query
reveal (1). Thus in order to perform the �rst step, we have to know in advance what thevalue of i will be and to construct c1, c2 as in case (iii) or (iv), respectively. Of course, in thepresent example it is possible to save the reduction proof by guessing i; however, it is easy tothwart this possibility by performing many such games in parallel.4 A natural approach toextend the de�nition of DKDM to this case would be to allow to even reveal keys sk j that areused in encryption queries enc(j, ·). However, a query enc(j, ·) returns an encryption c of themessage mb. So given the secret key sk j, we could easily determine mb from c and thereforethe challenge bit b. Therefore, we will have to distinguish between two types of encryptionqueries: A normal encryption query enc(j, f) will return the encryption of m0 := f(sk1, . . .)irrespective of the value of b. A challenge encryption query challenge(j, f) returns mb where
m0 is as for enc(j, f) and m1 := 0|m0|. This leads to the following tentative de�nition:4 E.g., Alice sends m

(1)
1 , m

(1)
2 , . . . , m

(n)
1 , m

(n)
2 with m

(µ)
1 := Enc(pk

(µ)
1 , Enc(pk

(µ)
2 , m‖keys)), m

(µ)
2 :=

Enc(pk
(µ)
2 , Enc(pk

(µ)
1 , m‖keys)) and keys := sk

(1)
1 ‖sk

(1)
2 ‖ . . . ‖sk

(n)
1 ‖sk

(n)
2 . Then Bob chooses i1, . . . , in ∈

{1, 2} and Alice sends sk
(1)
i1

, . . . , sk
(n)
in

. The fact that all keys are contained in each encryption also disableshybrid arguments. To the best of our knowledge, the security of this protocol cannot be reduced to DKDMsecurity. 5

De�nition 5 (KDM security � tentative). The oracle T chooses a random bit b andaccepts the following queries.� pk(j) and reveal (j): Return pk j and sk j , respectively. dec(j, c): Return Dec(sk j, c).� enc(j, f(i1, . . . , it)) where f is a circuit: Compute m0 := f(sk i1 , . . . , sk it) and return
Enc(pk j,m0).� challenge(j, f(i1, . . . , it)): Compute m0 as before, m1 := 0|m0| and return Enc(pk j ,mb).The oracle aborts in the following cases: reveal(j) is queried but challenge(j, ·) has beenqueried before. challenge(j, ·) is queried but reveal(j) has been queried. dec(j, c) is queried but

c was produced by challenge(j, ·). A scheme is KDM secure if no polynomial-time adversaryguesses b with probability noticeably larger than 1
2 .This de�nition might look appealing, but it cannot be met: For example, one could encrypt achallenge plaintext under pk1 via the query challenge(1,m), then encrypt the key sk1 under

pk 2 via c := enc(2, sk 1), and �nally reveal sk2 via reveal(2).5 This sequence of queries isnot forbidden by De�nition 5. Now we can compute sk1 from c using sk2 and then decryptthe challenge encryption using sk1. This allows to determine the bit b. Hence no encryptionscheme can ful�ll De�nition 5. We hence have to relax the de�nition by excluding queriesthat would trivially allow to decrypt a challenge ciphertext. For this, we have to reject queriesto the oracle that would allow the adversary to decrypt the challenge even in an ideal setting.For this, we keep track of the keys that the adversary can deduce from the queries madeso far. We call this set know (the knowledge of the adversary) because it represents whatthe adversary knows ideally. The set know is inductively de�ned as follows: (a) If reveal (j)has been queried, then j ∈ know . (b) If j ∈ know , and a enc(j, f(i1, . . . , it)) has beenqueried, then i1, . . . , in ∈ know . (c) If enc(j, f(i1, . . . , it)) has been queried and returned theciphertext c, and dec(j, c) has subsequently been queried, then i1, . . . , it ∈ know . Roughly, wesay that the adversary knows all keys that either were revealed or are contained in ciphertextsit could decrypt using keys it knows. We can now relax De�nition 5 by disallowing queriesthat would allow the adversary to know a secret key for a challenge encryption.De�nition 6 (KDM security � tentative). KDM security is de�ned as in De�nition 5except that the oracle T additionally aborts if a query would lead to the following situation:For some j ∈ know , a query challenge(j, ·) has been performed (or is being performed).Introducing hidden encryptions. De�nition 6, however, is still to weak to allow to adap-tively choose which keys to reveal. In particular, the example protocol given above can stillnot be proven secure: When producing c1, c2 in a reduction proof, we have to decide whichof the ciphertexts will be created by challenge encryptions (challenge(·, ·) queries) and whichwill be created by normal encryptions (enc(·, ·)). Since we might have to invoke reveal (1)later, we may not use challenge(1, ·) queries, and since we might have to invoke reveal (2),we may not use challenge(2, ·) queries. But if no challenge(·, ·) query is issued, the oracle Tnever uses the bit b and thus the adversary cannot guess b.65 We use the shorthand m and sk1 for the circuits outputting m and sk1, respectively.6 Again, this problem might be remedied by guessing in advance whether sk1 or sk2 will be needed, but seefootnote 4 for an example where guessing does not work.6

Handling adaptive revelations of keys hence requires to further extend our approach. Acloser inspection reveals why w we failed to prove the security of the example protocol: Wehad two possible ways to construct the ciphertext c1. Either (a) we could ask the oracleto produce c′1 := Enc(pk2,m‖sk 1‖sk 2) and encrypt it ourselves using pk1 to produce c1.Or (b) we could request the ciphertext c1 directly by sending to the oracle a circuit f thatcomputes c′1 from sk1, sk2. In case (a), we are not allowed to reveal sk2 since this would allowto decrypt c′1 and thus reveal m. In case (b), if we were to reveal sk1 this would allow todecrypt c1. As the plaintext c′1 for c1 has been produced using a circuit f from sk1, sk2 and
m, the oracle has no way of knowing that c′1 is actually an encryption of these values (thiswould require an analysis of the circuit to determine what it does) and thus has to considerthe values sk1, sk2 and m to be leaked when c1 is decrypted. Thus in case (b), we have todisallow the revelation of sk1. This analysis shows that we need a way to send the followinginstructions to the oracle: �First produce the ciphertext c′1 as an encryption of m‖sk1‖sk2(where m‖sk 1‖sk2 is described by a suitable circuit). Do not return the value c′1 (as otherwisewe would be in case (a)). Then produce the ciphertext c1 by encrypting c′1. Return c1.�Given these instructions, the oracle has enough information to deduce that when revealing
sk1, the message m is still protected by the encryption c′1 using pk2 (the details of thisdeduction process are discussed below). And if only sk2 is revealed instead, c1 cannot bedecryption and m is protected. Analogous reasoning applies to the construction of c2.Hence we have to de�ne an oracle T that allows to construct ciphertexts without revealingthem. Instead, for each ciphertext we can adaptively decide whether to reveal it or whether weonly use it inside other ciphertexts (that again may or may not be revealed). More concretely,whenever a query is issued to T , instead of directly returning the result of that query, it isstored in some register bith inside the oracle where h is a handle identifying the register.Only upon a special reveal query, the value bith is returned to the adversary. A challengeencryption (i.e., one whose content depends on the challenge bit b) is then produced as follows:First produce a plaintext m (possibly using a circuit and depending on other hidden strings)and assign it to register bith1 . Then, depending on b, assign bith1 or 0|bith1

|, respectively, toregister bith2 (using a special challenge query h2 ← C(h1)). Encrypt bith2 using some keyand assign the result to bith3 . Finally (optionally) reveal bith3 .7These considerations lead to the following de�nition of the adKDM oracle (however, forthe de�nition of adKDM security we will additionally de�ne which sequences of queries areallowed):De�nition 7 (adKDM Oracle). The adKDM oracle T maintains two partial functions
cmd and bit (to increase readability we write bith for bit(h) and cmdh for cmd(h)), a set Φ, asequence of secret/public key pairs sk i, pk i (i ∈ N) (which are generated when �rst accessed),and a bit b (the challenge bit). The function cmd will store the structure of previous queries,the function bit will store the corresponding bitstrings, and Φ will keep track of query resultsthat are revealed to the adversary. We will refer to the elements in the domain of cmd and7 This is, of course, not the only possible way to model challenge encryptions. One could, e.g., use a specialcommand for producing a challenge encryption. However, we believe that the approach of being able tomake challenge values out of arbitrary messages allows for more direct reductions in proofs. E.g., in ourexample protocol we could directly model the fact that m is the value that should remain hidden by usingoracle call h′ ← C(h) when bith contains m and then using bith′ instead of bith in subsequent encryptions.7

bit as handles in the following. Upon the �rst activation, b is chosen uniformly from {0, 1},
bit and cmd are initially unde�ned, and Φ is empty. The oracle responds to the followingcommands:� Encryption: h′ ← E(j, h) where cmdh′ has not been assigned, cmdh has been assigned,and j is a key index: Set bith′ := Enc(pk j , bith) and cmdh′ := E(j, h).� Decryption: h′ ← D(j, h) where cmdh′ has not been assigned, cmdh has been assigned,and j is a key index: Set bith′ := Dec(pk j, bith), and cmdh′ := D(j, h).� Circuit evaluation: h′ ← F (f, h1, . . . , ht) where cmdh′ has not been assigned, cmdhi

hasbeen assigned for all i, and f is a circuit with t arguments: Set bith′ := f(bith1 , . . . , bitht
)and set cmdh′ := F (f, h1, . . . , ht).� Key request: h′ ← K(j) where cmdh′ has not been assigned and j is a key index: Set

cmdh′ := K(j) and bith′ := sk j.� Challenge: h′ ← C(h) where cmdh′ has not been assigned and cmdh has been assigned:Set cmdh′ := C(h). If b = 1, set bith′ := bith, otherwise set bith′ := 0|bith|.� Reveal: reveal(h) where cmdh has been assigned: Add h to Φ and return bith.� Public key request: pk(j) where j is a key index: Return pk j .The above commands in particular allow to assign a constant c to a handle h′ by issuing
h′ ← F (f) where f is a nullary circuit that returns c. We abbreviate this as h′ ← F (c). Notethat the length of every bitstring is always known to the adversary, because Enc, Dec, andall f are length-regular.The knowledge of the adversary. If T can be accessed in arbitrary ways, it is easy todetermine b, e.g., querying h1 ← F (1), h2 ← C(h1), reveal (h2) will return b. Thus we haveto restrict the adversary to queries that will not trivially allow to deduce b. The necessarycriteria are given below. In analogy to De�nition 6 we do this by deriving a set know thatcharacterizes what the adversary would ideally be able to know after the queries it performed.In contrast to De�nition 6 the set know does not only contain keys, but the handles ofall values produced by the oracle that the adversary would be able to know in an idealsetting. Intuitively, the knowledge know is de�ned by the following rules: All handles that theadversary requested (the set Φ) are considered known. If the decryption of a message is known,then that message is considered known.8 If a circuit evaluation is known, all its argumentsare considered known. If a challenge is known, the underlying message is considered known.If a key is known and an encryption of some message under that key is known, the message isconsidered known. And �nally, if a decryption of some handle h1 is known, and some handle
h2 evaluates to the same bitstring as h1, and that handle h2 resulted from an encryption ofsome message m, then that message m is considered known.The last rule merits some additional explanation: The adversary may, e.g., construct andreveal an encryption c (assigned to some handle h2) of some m. Then it constructs a circuit
f that evaluates to c (by hard-coding c into f) and assigns h1 ← F (f). Now h1 and h2 referto the same bitstring. By revealing the decryption of h1, the adversary will then learn m. Soafter this sequence of queries, we have to ensure that m is considered known to the adversary.8 It may seem surprising that by learning the result of a decryption we may learn something about theciphertext. However, in fact we can get a single bit about the ciphertext, namely whether it is valid or not.Combining this with the application of circuits, we can in principle retrieve the full ciphertext.8

This is ensured by the last of the above rules. The following de�nition formally states thede�nition of the knowledge of the adversary.De�nition 8 (Knowledge). For partial functions cmd , bit and a set Φ, we de�ne theknowledge know = know cmd ,bit,Φ of the adversary to be inductively de�ned as follows:� Φ ⊆ know .� If h′ ∈ know and cmdh′ = D(j, h) then h ∈ know .� If h′ ∈ know and cmdh′ = F (f, h1, . . . , ht) then h1, . . . , ht ∈ know .� If h′ ∈ know and cmdh′ = C(h) then h ∈ know .� If h′ ∈ know and cmdh′ = D(j, h1), bith1 = bith2 and cmdh2 = E(j, h3) then h3 ∈ know .� If h′
1, h

′
2 ∈ know and cmdh′

1
= K(j) and cmdh′

2
= E(j, h) then h ∈ know .Note that know can be e�ciently computed given Φ, cmd , and bit by adding handles to

know according to the rules in De�nition 8 until know does not grow any more. We are nowready to state the �nal de�nition of adKDM security. Intuitively, an encryption scheme isadKDM secure if the probability that the adversary guesses b correctly without performing aquery that would even ideally allow it to retrieve a bitstring constructed using a C(·) query.De�nition 9 (Adaptive KDM Security (adKDM)). An encryption scheme (Enc,Dec)is adKDM secure if for any nonuniform polynomial-time adversary A there is a negligiblefunction µ such that the following holds:
Pr[Guess ∧ ¬Invalid] ≤ 1

2 + µ(k)where the events refer to an execution of A with input 1k and oracle access to T(Enc,Dec) andthe events are de�ned as follows:By Guess we denote the event that the adversary outputs b where b is the challenge bit.By Invalid we denote the event that h ∈ know cmd ,bit,Φ with cmdh being of the form C(·).We will show that this de�nition can be met (at least in the random oracle model) in thenext section. Clearly adKDM security implies DKDM security, since if we can only revealkeys that are not used for decrypting, the plaintexts of the challenge encryptions will neverbe in know .On simulation-based notions.We often motivated our design choices above by comparisonwith an ideal setting in which the adversary knows exactly the bitstrings associated withhandles in know . This leads to the question if it is be possible to instead directly de�nesecurity under key-dependent message attacks using a simulation-based de�nition, i.e., tode�ne an ideal functionality that handles encryption and decryption queries in an idealfashion. This approach has been successfully used to formulate IND-CCA security in the UCframework [14]. Their approach, however, strongly depends on the fact that the functionalityonly needs to output public keys and (fake) encryptions (secret keys are only implicitlypresent due to the ability to use the functionality to decrypt messages).9 It is currently unclear9 Technically, the reason is that a simulator has to be constructed that chooses the outputs of the func-tionality. As long as only public keys and ciphertexts are output, fake ciphertexts can be used since theycannot be decrypted. If the simulator had to generate secret keys, the fake ciphertexts could be decryptedand recognized. 9

how this approach could be extended to a functionality that can output secret keys. (It isof course possible to de�ne a functionality that outputs secret keys as long as no encryptionqueries have been performed for that key, but this lead to a de�nition that is to weak tohandle, e.g., our example protocol and that would roughly correspond to De�nition 4.) Thisdi�culty persists if we do not use the strong UC model [14] but instead the weaker stand-alone model as in [20, Chapter 7]. Consequently, although a simulation-based de�nition ofKDM security might be very useful, it is currently unknown how to come up with such ade�nition.4 OAEP is adKDM-SecureWe now prove the adKDM security of the OAEP scheme for a partial-domain one-way func-tion. In particular, since the RSA permutation is partial-domain one-way under the RSAassumption [19], the adKDM security of RSA-OAEP follows.Theorem 1 (OAEP is adKDM secure). If f is a partial-domain one-way trapdoor 1-1function, then the OAEP scheme (Enc,Dec) based on f is adKDM secure.To show this theorem, we �rst de�ne an alternative characterization of partial-domain one-wayness.De�nition 10 (PD-Oracle). The PD-oracle Pf for a trapdoor 1-1 function f : S × T →
range f (that may depend on a security parameter) maintains sequences of public/secret keypairs sk i, pk i (generated on �rst use). It understands the following queries:� pk(j) and sk(j): Return pk j or sk j, respectively.� challenge(h, j): If h has already been used, ignore this query. Let jh := j. Choose (sh, th)uniformly from S × T . Set ch := fpkjh

(sh, th). Return ch.� decrypt(h): Return (sh, th).� xdecrypt(c, j) where (c, j) 6= (ch, jh) for all h. Check whether f−1
skj

(c) = (sh, th) for some
h. If so, return (sh, th). Otherwise return ⊥.� check(s): Return the �rst h with sh = s. If no such h exists, return ⊥.By PDBreak we denote the event that a query check(s) is performed such that� The query returns h 6= ⊥.� No query sk(jh) and no query decrypt(h) has been performed before the current query.Lemma 1. If f is partial-domain oneway, then for any nonuniform polynomial-time adver-sary A querying Pf we have that Pr[PDBreak] is negligible in the security parameter.The proof is given in Appendix A.2. We additionally de�ne a variant of the notion of knowl-edge as de�ned in De�nition 8. We call this variant lazy knowledge.De�nition 11 (Lazy knowledge). For partial functions cmd , bit and a set Φ, we de�ne thelazy knowledge lknow = lknow cmd ,bit,Φ of the adversary to be inductively de�ned as follows:� Φ ⊆ lknow .� If h′ ∈ lknow and cmdh′ = D(j, h) then h ∈ lknow .� If h′ ∈ lknow and cmdh′ = F (f, h1, . . . , ht) then h1, . . . , ht ∈ lknow .10

� If h′ ∈ lknow and cmdh′ = C(h) then h ∈ lknow .� If h′, h1, h2 ∈ lknow , cmdh′ = D(j, h1), bith1 = bith2 and cmdh2 = E(j, h3) then
h3 ∈ lknow .� If h′

1, h
′
2 ∈ lknow and cmdh′

1
= K(j) and cmdh′

2
= E(j, h) then h ∈ lknow .The only change with respect to De�nition 8 is that in the �fth rule we require that h1, h2 ∈

lknow . In De�nition 11 all rules depend only on values bith for which h ∈ lknow ; thus one cane�ciently compute lknow without accessing bith for values h /∈ lknow by adding handles to
lknow according to these rules until lknow does not grow any further. We call this algorithmthe lazy knowledge algorithm. Note that lknow ⊆ know .Proof sketch (of Theorem 1). To prove Theorem 1 we give a sequence of games that trans-forms an attack against the adKDM security of the OAEP scheme into an attack against thePD-oracle. This proof sketch only contains the proof structure and highlights selected steps.

GAME1. The adversary A runs with access to the unmodi�ed adKDM oracle T . We assume that
T invokes an encryption oracle E for encrypting and a decryption oracle D for decrypting.In particular, the encryption oracle E performs the following actions in the i-th query:

r
$
← {0, 1}k0 , g := G(r), s := (m‖0k1)⊕ g, h := H(s), t := r ⊕ h, c := fpk (s, t).The decryption oracle D acts as follows, assuming key index j and ciphertext c:� (s, t) := f−1

pkj
(c), r := t⊕H(s), (m, z) := s⊕G(r) with |m| = k − k1 − k0 and |z| = k1.� If z = 0k1 , return m, otherwise return ⊥.

GAME4.10 We change the encryption oracle to �rst choose the ciphertext c and then compute thevalues s, t, r, h, t, g from it, i.e., upon the i-th query the encryption oracle does the following:
(s, t)

$
← {0, 1}k−k0 × {0, 1}k0 , c

$
← fpk (s, t), r

$
← {0, 1}k0 , h := r ⊕ t, g := (m‖0k1)⊕ sIn particular, the values h and g are not retrieved from the oracles G and H any more. Inorder to keep the distribution of the values c, s, t, r, h, t, g consistent with the answers of theoracles G and H, the oracles G and H are additionally modi�ed to return the values g and

h chosen by the encryption oracle. We show that the probability of a successful attack ismodi�ed only by a negligible amount with respect to GAME1.
GAME5. We now change the de�nition of what constitutes a successful attack. In GAME1�GAME4,we considered it a successful attack if the adversary guessed the bit b chosen by the adKDMoracle T without performing queries such that the knowledge in the sense of De�nition 8would contain a handle corresponding to a query of the form C(·); see De�nition 9.Now, in GAME5, we consider it to be a successful attack if the adversary guessed b withoutperforming queries such that the lazy knowledge in the sense of De�nition 11 does not containa handle corresponding to a query C(·). Since the lazy knowledge is a subset of the knowledge,this represents a weakening of the restrictions put on the adversary. Thus the probability ofan attack in GAME5 is upper-bound by the probability of an attack in GAME4.10 We keep the numbers of the games in sync with the full proof in the appendix.11

GAME7. This step is arguably the most important step in the proof. In GAME5, bitstrings bithassociated to handles h are often computed but never used. For example, the adversary mightperform a query h ← E(. . .) and never use the handle h again. More importantly, however,even if the adversary performs a query h′ ← E(j, h) for that handle h, the value bith does notneed to be computed due to the following observation: The encryption oracle as introducedin GAME4 chooses the ciphertext c at random. The value g (which is the only value dependingon the plaintext m) is only needed for suitably reprogramming the oracles G (namely suchthat G(r) = g). Thus we can delay the computation of g until G is queried at position r.Thus in case of a query h′ ← E(j, h), the value m = bith is not needed for computing bith′ .We use this fact to rewrite the whole game GAME5 such that it only computes a value bithwhen it is actually needed for computing some output sent to the adversary or for computingthe lazy knowledge.The bit b is only used in this game if a value bith is computed that corresponds to a query h←
C(·). If this is not the case, the communication between the adversary and T is independentof b. Hence, for proving that the probability of attack in the sense of GAME5 is only negligiblylarger than 1

2 (which then shows Theorem 1), it is su�cient to show that only with negligibleprobability, a value bith is computed such that h is not in the lazy knowledge. Namely, aslong as no such value bith is computed, the adversary cannot have a higher probability inguessing b than 1
2 unless h ∈ lknow .

GAME10. Now we replace the decryption oracle by a plaintext extractor. More concretely, thedecryption oracle performs the following steps when given a ciphertext c:(a) First, it checks whether c = fpk (s, t) for some pair (s, t) generated by the encryptionoracle.11 Then values (s, t) are known such that fpk (s, t) = c, and the oracle can decrypt
c without accessing the secret key sk .(b) Otherwise, it checks whether for some s that has been computed by the encryption oracle,there exists a value t such that fpk (s, t) = c. (Doing this e�ciently requires the secretkey; otherwise we had to iterate over all possible values t.) If so, reject the ciphertext.(c) Otherwise, for all values s, r that have been generated so far, compute t := r ⊕ H(s)and (m, z) = s ⊕ G(r). Then check whether fpk (s, t) = c and z = 0k1 . If so, return m.Otherwise reject the ciphertext.We can show that this plaintext extractor is a good simulation of the original decryptionoracle (in particular, the adversary is able to produce an s triggering rejection in (b) only ifthe decryption would fail anyway). Thus the probability that a value bith is computed suchthat h is not in the lazy knowledge does not increase by a non-negligible amount.

GAME11. In this �nal step, we modify GAME10 not to generate the public/secret key pairs onits own, but to use the PD-oracle P de�ned in De�nition 10. In particular, we make thefollowing changes:� When the secret key sk j is needed (for computing bith for a h ← K(j) query), query
sk(j) from P.� When producing a ciphertext bith′ (that are produced just to be random images of fpk),use challenge(h′, j) where j is the corresponding key index.11 This does not imply that c has been generated by the encryption oracle since the encryption oracle mighthave used a di�erent public key pk at that time. 12

� In the decryption oracle, for checking the condition (a) in GAME10, we distinguish twocases. If c was produced by the encryption oracle the decryption oracle sends a decrypt(h)to P where h is the query where c was produced. Otherwise it sends an xdecrypt(c, j)query to P where j is the index of the key used in the decryption query. In both cases, ifthe check in (a) would have succeeded, P will send back a preimage (s, t) of c.� The check (b) is performed by sending check(s) to P.A case analysis reveals that if a value bith is computed such that h is not in the lazyknowledge, then the event PDBreak (as in De�nition 10) occurs. By Lemma 1 this can onlyhappen with negligible probability. Thus no value bith is computed such that h is not in thelazy knowledge, and therefore the advantage of the adversary is negligible (as discussed in
GAME7). ut

13

A Postponed proofsIn this appendix, we give the proofs of Theorem 1 and Lemma 1. These proofs will not appearin the proceedings version of this paper. They are included for the referee's convenience.A.1 Proof of Theorem 1Convention: Encryption is length-regular. For any encryption scheme, we impose thefollowing assumption on the output of the encryption function Enc and the decryption func-tion Dec: The length of the output of Enc depends only on the public key and the length ofthe message. The length of the output of Dec depends only on the public key and the lengthof the ciphertext. In particular, if Dec can output a special symbol ⊥ denoting a failed encryp-tion/decryption, this symbol has to be encoded to have the same length as a valid decryption.This can be assumed without loss of generality since Enc has to be length-regular anyway(otherwise the encryption scheme would not even be IND-CPA secure), and since, given anupper bound l on the length of the plaintext, we can, e.g., let Dec pad its output with 1‖0∗ tolength l+1. Our de�nition below does not require a decryption of an encryption to yield theplaintext, and that the adversary may insert arbitrary (length-regular) conversion functionsto reverse that encoding. In the case of OAEP encryption, we will assume for concretenessthat the encryption Enc �rst applies the function pad to its argument which truncates orpads its argument to length k− k0− k1 with 0∗, and the decryption Dec applies the function
encode to its output that encodes m as 1‖m and ⊥ as 0k−k0−k1+1.Notation. Let A be a polynomial-time adversary. Fix a security parameter k. Assume that
A performs at most q queries (to T , G, and H together). We use the following notation: By
Pri[X] we denote the probability of event X in GAMEi. T is the adKDM oracle. We assumethat T uses oracles E and D for encryption and decryption. E and D access random oracles Gand H for the OAEP construction. Further, T may also access G and H if evaluating a circuitrequires it. Of course, the adversary also has access to G and H. The parameters k0 and k1are as in the de�nition of OAEP. We enumerate all queries made by the adversary using acommon index i = 1, . . . , q, including queries to G and H and to T . By mh, gh, hh, sh, rh, th, chwe denote the corresponding values from the de�nition of the encryption of OAEP used inthe query h ← E(j, h′) to T (the variables are unde�ned if no such query is made), and
jh denotes the key index j used in that query. By qE and qD we denote the number ofencryption and decryption queries performed by the adversary. By qG and qH we denote thenumber of queries to G and H performed by the adversary and by circuits evaluated by T(but not queries made by E or D). Note that the encryption pads its input using the function
pad and the decryption encodes its output using the function encode (see the discussionafter De�nition 1). For readability, we omit these function applications, the reader shouldkeep in mind that values m and mh (denoting plaintexts) are implicitly subjected to thesetransformations.Proof (of Theorem 1). To prove Theorem 1 we will give a sequence of games that transformsan attack against the adKDM security of the OAEP scheme into an attack against thePD-oracle. In each game, we highlight the changed parts using a bold font.14

GAME1. The adversary A runs with access to the unmodi�ed adKDM oracle T . In particular,the encryption oracle performs the following actions in a query h← E(j, h):
rh

$
← {0, 1}k0 , gh := G(rh), sh := (mh‖0

k1)⊕gh, hh := H(sh), th := rh⊕hh, ch := fpkj
(sh, th).The decryption oracle does, assuming key index j and ciphertext c, the following:� (s, t) := f−1

pkj
(c), r := t⊕H(s), (m, z) := s⊕G(r) with |m| = k − k1 − k0 and |z| = k1.� If z = 0, return m, otherwise return ⊥.

GAME2. We now modify the encryption oracle not to use the oracle G any more but to choose ghuniformly at random. That is, the encryption oracle performs the following steps in a query
h← E(j, h′) with mh := bith′ :

rh
$
← {0, 1}k0 , gh

$
← {0, 1}k−k0gh
$
← {0, 1}k−k0gh
$
← {0, 1}k−k0 , sh := (mh‖0

k1)⊕ gh,

hh := H(sh), th := rh ⊕ hh, ch := fpkj
(sh, th).Furthermore, we modify the oracle G to match the choice of gh, that is, the oracle G ismodi�ed as follows:� If r = rh for some h, return gh.� Otherwise, return a lazily sampled value (i.e., if r has been queried before, return thevalue returned before, otherwise, return fresh randomness).It is easy to see that GAME1 and GAME2 di�er only if some rh is queried from G before theencryption query h← E(·, ·) has been performed (i.e., if G is queried at a position that willlater be assigned another value). Since rh will be randomly chosen in the encryption query,the probability that in a given G-query we query G(rh) is bounded by 1/2k−k0 . Since thereare at most qG + qD such G-queries, we have that

∣

∣Pr1[Guess ∧ ¬Invalid]− Pr2[Guess ∧ ¬Invalid]∣∣ ≤ qG + qD

2k−k0
. (1)

GAME3. We now modify the encryption oracle not to use the oracle H any more but to choose
hi uniformly at random, i.e., the encryption oracle performs the following steps in a query
h← E(j, h′):

rh
$
← {0, 1}k0 , gh

$
← {0, 1}k−k0 , sh := (mh‖0

k1)⊕ gh,

hh
$
← {0, 1}k0hh
$
← {0, 1}k0hh
$
← {0, 1}k0 , th := rh ⊕ hh, ch := fpkjh

(sh, th).Furthermore, we modify the oracle H to match the choice of hh, i.e., the oracle H is modi�edas follows:� If s = sh for some h, return hh.� Otherwise, return a lazily sampled value.Again, it is easy to see that GAME2 and GAME3 di�er only if some sh is queried from H beforethe encryption query h← E(·, ·). Since sh = (mh‖0
k1)⊕ gh and gh will be randomly chosenin the encryption query, the probability that in that H-query we query H(sh) is bounded by

1/2k1 . Since there are at most qH + qD such H-queries, we have that
∣

∣Pr2[Guess ∧ ¬Invalid]− Pr3[Guess ∧ ¬Invalid]∣∣ ≤ qH + qD

2k1
. (2)15

GAME4. We change the encryption oracle to �rst choose the ciphertext ch and then compute thevalues sh, th, rh, hh, th, gh from it, i.e., upon the i-th query the encryption oracle does thefollowing:
(sh, th)

$
← {0, 1}k−k0 × {0, 1}k0(sh, th)
$
← {0, 1}k−k0 × {0, 1}k0(sh, th)
$
← {0, 1}k−k0 × {0, 1}k0 , ch

$
← fpkjh

(sh, th), rh
$
← {0, 1}k0 ,

hh := rh ⊕ thhh := rh ⊕ thhh := rh ⊕ th, gh := (mh‖0
k1)⊕ shThis does not change the distribution of any of ch, sh, th, rh, hh, th, gh. Thus we have

Pr3[Guess ∧ ¬Invalid] = Pr4[Guess ∧ ¬Invalid]. (3)
GAME5. We modify GAME4 by adding the following: For each i, after the i-th query, T computesthe lazy knowledge using the lazy knowledge algorithm and assigns that lazy knowledge (i.e.,a set of handles) to LKnowi. Denote by Invalid2 the event that for some i and some handle

h, we h ∈ LKnowi and cmdh = C(·). Let lknow denote the lazy knowledge and know theknowledge after the execution of GAME5. Then LKnowi ⊆ lknow ⊆ know , thus Invalid2 impliesInvalid. Since the output of the lazy knowledge algorithm is not used and the algorithm hasno side e�ects, we have
Pr4[Guess ∧ ¬Invalid] = Pr5[Guess ∧ ¬Invalid] ≤ Pr5[Guess ∧ ¬Invalid2]. (4)

GAME6. Let H be some set of handles (that may depends on the state of the oracle T at thebeginning of the query). We will specify H only when we de�ne GAME7 below. We now letthe decryption oracle D check whether H is queried with a value s such that s = sh for some
h ∈ H. In this case we reject the query. However, we perform this only for ciphertexts thatdo not have the same preimage as some other ciphertext generated by T .12 We perform thischeck before querying G or H. That is, the decryption oracle performs the following actionsupon a query with key index j and ciphertext c:� Compute (s, t) := f−1

pkj
(bith).� Check whether (s, t) = (sh̃, th̃) for some h̃ ∈ H. If so, compute

r := t⊕H(s), (m, z) := s⊕G(r) with |m| = k − k1 − k0 and |z| = k1.If z = 0k1 , return m. Otherwise return ⊥.� Otherwise, perform the following steps:(i) Check whether s = s
h̃

s = s
h̃s = s
h̃
for some h̃ ∈ Hh̃ ∈ Hh̃ ∈ H. If so, return ⊥⊥⊥.(ii) Compute

r := t⊕H(s), (m, z) := s⊕G(r) with |m| = k − k1 − k0 and |z| = k1.(iii) Check whether z = 0k1 . If not, return ⊥.(iv) Return m.12 This is not the same as saying that the ciphertexts are equal since both ciphertexts may have beengenerated using di�erent keys. 16

Let E denote the event that in some query to D, we have that (s, t) 6= (s
h̃
, t

h̃
) for all

h̃ ∈ H, s = s
h̃
for some h̃ ∈ H and z = 0k1 . Since this is the only case in which the newcheck (i) returns ⊥ although the check (iii) would not return ⊥, we have that ∣

∣Pr5[Guess ∧
¬Invalid2]−Pr6[Guess ∧ ¬Invalid2]∣∣ ≤ Pr6[E]. We therefore have to bound Pr6[E]. Assume that
E occurs. For some x ∈ {0, 1}k−k0 , let x′ denote the last two bits of x. Since z = 0k1 ,we have that G(rh̃)′ = 0k1 ⊕ s′

h̃
= z ⊕ s′ = G(r)′. Furthermore, since t 6= th̃, we have

r = t + H(s) = t + H(sh̃) 6= th̃ + H(sh̃) = rh̃. Thus E only occurs if G(rh̃)′ = G(r)′but r
h̃
6= r. Since the values of G are independently uniformly chosen for di�erent r, theprobability that the last k1 bits of two of the images collide is bounded by t2/2k1 where tis the number of images that are sampled for G. Since G is queried at most qD + qG timesand in each encryption query at most one value g

h̃
is �xed for G (see GAME2), we have

t ≤ qD + qG + qE. Therefore we have that
∣

∣Pr5[Guess ∧ ¬Invalid2]− Pr6[Guess ∧ ¬Invalid2]∣∣ ≤ Pr6[E] ≤
(qD + qG + qE)2

2k1
. (5)

GAME7. We now change GAME6 such that the values ch, sh, th, rh, hh, th, gh,mh, as well as thebitstrings bith are computed lazily (on-demand). More exactly, T is changed to behave asfollows:� Upon a query X where X is one of h′ ← E(j, h), h′ ← D(j, h), h′ ← F (f, h1, . . . , ht),
h′ ← K(j), h′ ← C(h), add X to the trace but do not compute the correspondingbitstring bith′ .� Upon a query reveal (h), request the value bith (see below), and return bith.� Upon a query pk(j), return pk j .� If G is queried with some value r, check whether r = rh for some h such that rh hasalready been set. If so, return gh. Otherwise, return a lazily sampled value G(r).� If H is queried with some value s, check whether s = sh′ for some h′ such that sh′ hasalready been set (note that in this case, ch′ and th′ have also been set). If so, we have
cmdh′ = E(j, h). Let h be the handle occurring in cmdh′ = E(j, h), and request bith andcompute

mh′ := bith, rh′

$
← {0, 1}k0 , hh′ := rh′ ⊕ th′ , gh′ := (mh′‖0k1)⊕ sh′ .Then return hh′ . On the other hand, if no such h′ exists, return a lazily sampled value

H(s).� When the value bith′ is requested that has not been requested before, do the following:
• If cmdh′ = E(j, h), choose (sh, th)

$
← {0, 1}k−k0 × {0, 1}k0 and set bith′ := ch :=

fpkj
(sh, th) and return bith′ .

• If cmdh′ = D(j, h), request bith and invoke the decryption oracle D with inputs jand c := bith.
• If cmdh′ = F (f, h1, . . . , ht), request bith1 , . . . , bitht

and set bith′ := f(bith1, . . . , bitht
).

• If cmdh′ = K(j), set bith′ := sk j .
• If cmdh′ = C(h), request bith and let bith′ := bith if b = 1 and bith′ := 0|bith| if b = 0.� After the i-th query, T computes LKnowi using the lazy knowledge algorithm (and re-questing bith only when the lazy knowledge algorithm needs to access bith).17

Furthermore, now specify the set of handles H introduced in GAME6. In a query to thedecryption oracle, we let H be those handles h̃ such that s
h̃
and t

h̃
have already been de�ned(i.e., have already been needed for the lazy evaluation). Note that H is also well-de�ned in

GAME6, since in GAME6, one can simulate the whether s
h̃
or t

h̃
would already have been setin GAME7 and thus whether h̃ should be in H.With this choice of H, D is de�ned as in GAME6, except that we can now omit the condition

h̃ ∈ H for h̃ since now only those s
h̃
are de�ned that satisfy h̃ ∈ H, so h̃ ∈ H is automaticallysatis�ed.Let b denote the challenge bit chosen by T . Let b′ denote the output of the adversary. LetPredictG denote the event that at some point, a query G(r) is executed and that later some

rh will be assigned a value r′ with r = r′. Let PredictH denote the event that at some point,a query H(s) is executed and that later some sh will be assigned a value s′ with s = s′.Fix a random tape for the adversary, and �x an outcome for each random choice performedin the games GAME6 and GAME7 (e.g., choice of pk i, choice of rh, etc.)Then GAME7 computes the same values LKnow1, . . . ,LKnowq, b, b′ as does GAME6 un-less PredictG or PredictH occur in GAME7. Thus in particular, over all random choices,
LKnow1, . . . ,LKnowq, b, b′ have the same distribution in GAME6 and GAME7 unless PredictGor PredictH occur in GAME7. Since the event Invalid2 is de�ned only in terms of LKnowi, andsince the event Guess is de�ned only in terms of b and b′, it follows that

∣

∣Pr6[Guess ∧ ¬Invalid2]− Pr7[Guess ∧ ¬Invalid2]∣∣ ≤ Pr7[PredictG] + Pr7[PredictH].We now bound Pr7[PredictG] and Pr7[PredictH]. The event PredictG occurs if a query G(r) isperformed such that later some rh will be assigned the value r. Since the rh will then bechosen uniformly with |rh| = k0, and since there are at most qG + qD queries of G and atmost qE di�erent rh will be assigned, we have Pr7[PredictG] ≤ qG+qD

2k0
. Similarly, we have that

Pr7[PredictH] ≤ qH+qD

2k−k0
. We hence altogether obtain

∣

∣Pr6[Guess ∧ ¬Invalid2]− Pr7[Guess ∧ ¬Invalid2]∣∣ ≤ qG + qD

2k0
+

qH + qD

2k−k0
. (6)By ComputeUnknown we denote the event that in the i-query, bith is requested for some h /∈

LKnowi.If ¬Invalid2, then there will be no h, i with h ∈ LKnowi such that cmdh is of the form C(·). Thus
¬ComputeUnknown∧¬Invalid2 implies that no bith will be requested where cmdh is of the form
C(·). Since in GAME7 the challenge bit b is only used when bith is requested for some h with
cmdh of the form C(·), it follows that b will only be used if ComputeUnknown∨ Invalid2. Let BUseddenote the event that the challenge bit is used. We have ¬ComputeUnknown∨¬Invalid2⇒ ¬BUsed18

and Pr7[Guess|¬BUsed] = 1
2 , thus

Pr7[Guess ∧ ¬Invalid2] = Pr7[Guess ∧ ¬Invalid2 ∧ ¬BUsed]
+ Pr7[Guess ∧ ¬Invalid2 ∧ ComputeUnknown∧ BUsed]
+ Pr7[Guess ∧ ¬Invalid2 ∧ ¬ComputeUnknown∧ BUsed] }

= 0

= Pr7[Guess ∧ ¬Invalid2 | ¬BUsed] · Pr7[¬BUsed]
+ Pr7[Guess ∧ ¬Invalid2 ∧ ComputeUnknown∧ BUsed]
≤ 1

2 Pr7[¬BUsed] + Pr7[ComputeUnknown]
≤ 1

2 + Pr7[ComputeUnknown]. (7)
GAME8. We now add another check to the decryption oracle D: We check whether the value roccurring during decryption has been queried from G before (by someone other than D). Ifnot, the ciphertext is rejected. However, we do this only for ciphertexts that do not have thesame preimage as some other ciphertext generated by T . More exactly, the decryption oracleperforms the following actions upon a query with key index j and ciphertext c:� Compute (s, t) := f−1

pkj
(bith).� Check whether (s, t) = (sh̃, th̃) for some handle h̃. If so, compute

r := t⊕H(s), (m, z) := s⊕G(r) with |m| = k − k1 − k0 and |z| = k1.If z = 0k1 , return m. Otherwise return ⊥.� Otherwise, perform the following steps:(i) Check whether s = sh̃ for some handle h̃. If so, return ⊥.(ii) Compute r := t⊕H(s).(iii) Check whether r = r
h̃

r = r
h̃r = r
h̃
for some h̃̃h̃h or G(r)G(r)G(r) has been queried before. If not,return ⊥⊥⊥. Otherwise, let g∗g∗g∗ denote g

h̃
g
h̃gh̃
or the value that was returned bythe last query of G(r)G(r)G(r), respectively.(iv) Compute (m, z) := s⊕ g∗ with |m| = k − k1 − k0 and |z| = k1.(v) Check whether z = 0k1 . If not, return ⊥.(vi) Return m.To bound ∣

∣Pr7[ComputeUnknown] − Pr8[ComputeUnknown]∣∣ we �rst introduce a hybrid game
GAME

m
8 for i = 0, . . . , q. The �rst m queries, this game acts like GAME8 (i.e., the check (iii)is performed). In the remaining queries, the game acts like GAME7 (i.e., the check (iii) is notperformed). Obviously, GAME

0
8 is equivalent to GAME7 and GAME

q
8 to GAME8. Let Prm[X] de-note the probability of an event X in GAME

m
8 . Fix some m = 1, . . . , q and compare GAME

m−1
8and GAME

m
8 . To bound ∣

∣Prm[ComputeUnknown] − Prm−1[ComputeUnknown]∣∣ by some δ, we haveto see two things. First, the probability of the following event is bounded by δ: In the m-thquery we have r 6= r
h̃
for all h̃ and G(r) has never been queried before but the check whether

z = 0k1 would succeed. Second, in case we return ⊥ in (iii), G(r) is not queried in (iv).So we have to see that the remainder of the execution is independent of any side e�ects ofquerying G. The �rst follows from the fact that if r 6= r
h̃
for all h̃ and G(r) has never beenqueried before, then G(r) will return a fresh random value, so the probability that z = 0k1 isbounded by δ := 2−k1 . To show the second fact, note that querying G only has a side e�ect19

if some part of T depends on the list of queries performed so far. Since in the hybrid game
GAME

m+1
8 only the check (iii) depends on that list, and this check is not executed after the

m-th query, omitting the query to G in the m-th query has no e�ect on the later execution.Thus we have
∣

∣Pr7[ComputeUnknown]− Pr8[ComputeUnknown]∣∣ ≤ q

2k1
. (8)

GAME9. We now add another check to the decryption oracle D, namely whether the value soccurring during decryption has been queried from H before (by someone other than D). Ifnot, the ciphertext is rejected. Again, we do this only for ciphertexts that do not have thesame preimage as some other ciphertext generated by T . More exactly, the decryption oracleperforms the following actions upon a query with key index j and ciphertext c:� Compute (s, t) := f−1
pkj

(bith).� Check whether (s, t) = (s
h̃
, t

h̃
) for some handle h̃. If so, compute

r := t⊕H(s), (m, z) := s⊕G(r) with |m| = k − k1 − k0 and |z| = k1.If z = 0k1 , return m. Otherwise return ⊥.� Otherwise, perform the following steps:(i) Check whether s = s
h̃
for some handle h̃. If so, return ⊥.(ii) Check whether H(s)H(s)H(s) has been queried before. If not, return ⊥⊥⊥. Otherwise,let h∗h∗h∗ denote the value that was returned by the last query of H(s)H(s)H(s).(iii) Compute r := t⊕ h∗.(iv) Check whether r = r

h̃
for some h̃ or G(r) has been queried before. If not, return

⊥. Otherwise, let g∗ denote g
h̃
or the value that was returned by the last query of

G(r), respectively.(v) Compute (m, z) := s⊕ g∗ with |m| = k − k1 − k0 and |z| = k1.(vi) Check whether z = 0k1 . If not, return ⊥.(vii) Return m.Note that a query of H(s) only leads to requesting bith if s = s
h̃
for some h̃ (see thedescription of GAME7). However, we exclude this condition by the check (i). Further, notethat if H(s) is a fresh random value, then r is also a fresh random value. In this casethe probability that r has been queried from G or that r = r

h̃
for some h̃ is bounded by

(qG + qD + qE)/2k0 (since there are at most qG + qD queries to G and at most qE values r
h̃are de�ned and |r| = k0). Thus, analogously as for (8) we get

∣

∣Pr8[ComputeUnknown]− Pr9[ComputeUnknown]∣∣ ≤ q · (qG + qD + qE)

2k0
. (9)

GAME10. We now modify D as follows: For ciphertexts c that do not have the same preimageas some other ciphertext generated by T , we loop over all s, t that have been queried from
G and H, and check whether c = fpkj

(s, t). This will later allow to remove the invocationof f−1
pkj

(c). More exactly, the decryption oracle performs the following actions upon a querywith key index j and ciphertext c:� Check whether f−1
pkj

(c) = (sh̃, th̃) for some handle h̃. If so, compute
r := t

h̃
⊕H(s

h̃
), (m, z) := s

h̃
⊕G(r) with |m| = k − k1 − k0 and |z| = k1.20

If z = 0k1 , return m. If z 6= 0k1 , return ⊥.� Otherwise, perform the following steps:
• Check whether s = s

h̃
for some handle h̃. If so, return ⊥.

• Let Qr be the set of all r that have been queried from G before by someone otherthan D and of all r such that r = r
h̃
for some handle h̃.

• Let Qs be the set of all s that have been queried from H before by someone otherthan D.
• For all (r, s) ∈ Qr ×Qs, perform the following steps:
∗ Let g∗ denote gh̃ or the value returned by the last query G(r), respectively, andlet and h∗ denote the value returned by the last query H(s).
∗ Compute t := r ⊕ h∗ and check whether fpkj

(s, t) = c. If not, continue with thenext pair (r, s).
∗ Compute (m, z) := s⊕ g∗ with |m| = k − k1 − k0 and |z| = k1.
∗ If z = 0k1 , return m. Otherwise return ⊥.

• If none of the (r, s) satis�ed all conditions in the loop (i.e., if the loop is left withoutincurring a return statement), return ⊥.It is easy to see that this oracle D returns ⊥ if and only if the oracle D from GAME9 returns
⊥. Further, if this oracle D returns some m 6= ⊥, then it is the same m that the oracle Dfrom GAME9 would have returned, since the values r, s, t,m, z are uniquely determined by c(although it may be computationally hard to �nd them).Since the output of D did not change, and since in both games D has no side e�ects forciphertexts that do not have the same preimage as some other ciphertext generated by T ,we have

Pr9[ComputeUnknown] = Pr10[ComputeUnknown]. (10)
GAME11. We now modify the GAME10 not to generate the private and public keys by itself, andnot to apply fpk and f−1

sk
by itself, but to invoke an instance of the PD-oracle P instead(De�nition 10). More exactly, the oracle T now performs as follows:� Upon a query X where X is one of h′ ← E(j, h), h′ ← D(j, h), h′ ← F (f, h1, . . . , ht),

h′ ← K(j), h′ ← C(h), add X to the trace but do not compute the correspondingbitstring bith′ .� Upon a query reveal (h), request the value bith (see below), and return bith.� Upon a query pk(j), query pk(j)pk(j)pk(j) from PPP, let pk jpk jpk j be the response, and return pk j .� If G is queried with some value r, check whether r = rh for some h such that rh hasalready been set. If so, return gh. Otherwise, return a lazily sampled value G(r).� If H is queried with some value s, query check(s)check(s)check(s) from PPP and let the answer be
h′h′h′. If h′ 6= ⊥h′ 6= ⊥h′ 6= ⊥, retrieve (sh′ , th′)(sh′ , th′)(sh′ , th′) from PPP using query decrypt(h′)decrypt(h′)decrypt(h′). Since sh′ is de�ned,
cmdh′ = E(j, h). Let h be the handle occurring in cmdh′ = E(j, h). Then request bithand compute

mh′ := bith, rh′

$
← {0, 1}k0 , hh′ := rh′ ⊕ th′ , gh′ := (mh′‖0k1)⊕ sh′ .Then return hh′ . On the other hand, if h′ = ⊥h′ = ⊥h′ = ⊥, return a lazily sampled value H(s).� When the value bith′ is requested that has not been requested before, do the following:21

• If cmdh′ = E(j, h), query ch′ch′ch′ from PPP using the query challenge(h′, j)challenge(h′, j)challenge(h′, j) and return
ch′ch′ch′.
• If cmdh′ = D(j, h), �rst request bith. and invoke the decryption oracle D with inputs

j and c := bith.
• If cmdh′ = F (f, h1, . . . , ht), request bith1 , . . . , bitht

and set bith′ := f(bith1, . . . , bitht
).

• If cmdh′ = K(j), request sk jsk jsk j from PPP using the query sk(j)sk(j)sk(j) and set bith′ := sk j.
• If cmdh′ = C(h), request bith and let bith′ := bith if b = 1 and bith′ := 0|bith| if b = 0.� After the i-th query, T computes LKnowi using the lazy knowledge algorithm.Furthermore, the decryption oracle D performs the following actions:� If (c, j) = (c

h̃
, j

h̃
)(c, j) = (c

h̃
, j

h̃
)(c, j) = (c

h̃
, j

h̃
) for some h̃̃h̃h, retrieve (s, t)(s, t)(s, t) from TTT using the query decrypt (h̃)decrypt (h̃)decrypt (h̃).� If (c, j) 6= (c

h̃
, j

h̃
)(c, j) 6= (c

h̃
, j

h̃
)(c, j) 6= (c

h̃
, j

h̃
) for all h̃̃h̃h, retrieve (s, t)(s, t)(s, t) from TTT using the query xdecrypt(c, j)xdecrypt(c, j)xdecrypt(c, j).� If (s, t) 6= ⊥(s, t) 6= ⊥(s, t) 6= ⊥ compute

r := t⊕H(s), (m, z) := s⊕G(r) with |m| = k − k1 − k0 and |z| = k1.If z = 0k1 , return m. Otherwise return ⊥.� Otherwise, perform the following steps:
• Query check(c)check(c)check(c) from PPP. If the answer is a handle h̃ 6= ⊥h̃ 6= ⊥h̃ 6= ⊥, then return ⊥.
• Let Qr be the set of all r that have been queried from G before by someone otherthan D and of all r such that r = r

h̃
for some handle h̃.

• Let Qs be the set of all s that have been queried from H before by someone otherthan D.
• For all (r, s) ∈ Qr ×Qs, perform the following steps:
∗ Let g∗ denote g

h̃
or the value returned by the last query G(r), respectively, andlet and h∗ denote the value returned by the last query H(s).

∗ Compute t := r ⊕ h∗, request pkpkpk using the query pk(j)pk(j)pk(j) from PPP and checkwhether fpk (s, t) = c. If not, continue with the next pair (r, s).
∗ Compute (m, z) := s⊕ g∗ with |m| = k − k1 − k0 and |z| = k1.
∗ If z = 0k1 , return m. Otherwise return ⊥.

• If none of the (r, s) satis�ed all conditions in the loop (i.e., if the loop is left withoutincurring a return statement), return ⊥.Since the only modi�cation was to outsource all operations involving the secret and publickeys into P, we have that
Pr10[ComputeUnknown] = Pr11[ComputeUnknown].Let PDBreak be the event de�ned in De�nition 10, i.e., PDBreak occurs if a query check(s) to

P returns h 6= ⊥ such that no query sk(jh) or decrypt(h) precedes it (where jh is the keyindex j used in the query challenge(h, j)).We will now show that in GAME11 the event ComputeUnknown implies the event PDBreak. Assumetherefore that in an execution of GAME11 the event ComputeUnknown occurs. By de�nition, thisimplies for some h that bith is requested in the i-th query such that h /∈ LKnowi. Let the hbe the handle such that bith is the �rst request satisfying this condition. The request of bithcan have the following causes (see the construction of GAME11):(i) A query reveal (h) is performed. 22

(ii) A query H(s) is performed.(iii) bith′ is requested with cmdh′ being one of D(j, h), C(h), F (f, h1 , . . . , ht) with h ∈
{h1, . . . , ht}.(iv) The lazy knowledge algorithm requests bith while computing LKnowi.We can exclude three of these possibilities in the present case. Case (i) is excluded becauseafter a query reveal(h), we will have h ∈ LKnowi. Case (iv) is excluded since the lazyknowledge algorithm never accesses bith for some h /∈ LKnowi when computing LKnowi.Furter, assume case (iii). Since we assumed that bith was the �rst request with h /∈ LKnowi,it follows that h′ ∈ LKnowi, otherwise the request of bith′ would have been an earlier one.But then h ∈ LKnowi by De�nition 11. Thus we conclude that case (ii) occurred.The query H(s) will only request bith in the following case: It queried check(s) from P andgot a handle h′ such that cmdh′ = E(j, h) for some j. Thus in order to show that PDBreakoccurred, it remains to show that no query sk(j) or decrypt(h′) has been sent to P.Note that bith′ must have been queried earlier, since otherwise the query challenge(h′) wouldnot have been send to P and thus P would not have answered h′ to check(s). Since bith′ hasbeen queried earlier, we know that h′ ∈ LKnowi (again since otherwise bith′ would be the�rst request with h′ /∈ LKnowi).Assume that sk(j) has been queried earlier from P. This only happens if bit h̃ is requestedwith bit

h̃
= K(j). Since bit

h̃
was requested earlier than bith, we have that h̃ ∈ LKnowi. Thus,since cmdh′ = E(j, h) and h′ ∈ LKnowi, we have that h ∈ LKnowi in contradiction to ourchoice of h. Thus sk(j) has not been queried before check(s).Assume that decrypt(h′) has been queried before check(s). There are two possible causes:(a) H(s′) for some s′ was queried before the present query of H(s).(b) The decryption oracle was queried (before the present query of H(s)) with key index jh′and ciphertext ch′ .In case (a), a query of decrypt(h′) is only executed if the query check(s) returned h′. However,in this case the query H(s′) would already have requested bith, contradicting the assumptionthat H(s) was the earliest query requesting bith.Consider case (b). In this case, the decryption oracle D has been invoked by some requestfor bith1 with cmdh1 = D(jh′ , h2) and with bith2 = ch′ = bith′ . By the usual argument,

h1, h2 ∈ LKnowi. Further, above we saw that cmdh′ = E(j, h) and that h′ ∈ LKnowi. Since
jh is de�ned as the key index j used in the query h′ ← E(j, h), we have j = jh′ . Fromthis, by the de�nition of the lazy knowledge algorithm, it follows that h ∈ LKnowi. This is acontradiction to the choice of h, so case (b) can also be excluded.Thus we have that PDBreak occurred. Therefore ComputeUnknown implies PDBreak and we havethat

Pr11[ComputeUnknown] ≤ Pr11[PDBreak]. (11)By collecting the bounds in Equations 1�11, we get
Pr1[Guess ∧ ¬Invalid] ≤ 1

2 + Pr11[PDBreak] + µ1,where µ1 = | qG+qH+2qD

2k−k0
+ qH+qD+(qD+qG+qE)2+q

2k1
+ qG+qD+q(qG+qD+qE)

2k0
| is negligible. Since fis partial-domain oneway, and GAME11 runs in polynomial time, by Lemma 1 we have that

Pr11[PDBreak] is negligible. Thus Pr1[Guess∧¬Invalid] ≤ 1
2 +µ2 for a negligible function µ2 andtherefore (Enc,Dec) is adKDM secure. This proves Theorem 1. ut23

A.2 Proof of Lemma 1Proof. Given an adversary A against the PD-Oracle P we construct an adversary B againstpartial-domain one-wayness of the underlying function f as follows.The machine B that implements the PD-oracle with slight changes: Let q be an upperbound on the number of queries performed by A. Then B gets as input a key pair pk∗, sk ∗,values (s∗, t∗) ∈ S × T and a value c∗. Let j∗ be the i1-th key index that is used in A'squeries, and let h∗ the i2-th handle that is used in a query of the form challenge(h, j∗). Then
B answers to A's queries as follows (for simplicity, if we write f−1

pk we mean an applicationof the secret key sk):� pk(j): If j = j∗, return pk∗, otherwise return pk j .� sk(j): If j = j∗, return sk∗, otherwise return sk j.� challenge(h, j): If h has already been used, ignore this query.
• If h = h∗ (and thus also j = j∗) then set ch := c∗ and return ch.
• If h 6= h∗ then choose (sh, th) uniformly from S × T . Set ch := fpkjh

(sh, th). Return
ch.� decrypt(h): If h = h∗, return (s∗, t∗). Otherwise return (sh, th).� xdecrypt(c, j) where (c, j) 6= (ch, jh) for all h. This is equivalent to the following:

• If j 6= j∗ then check whether f−1
pkj

(c) = (sh, th) for some h 6= h∗ or fpkj∗
(f−1

pk j
(c)) = ch∗ .If so, return f−1

pkj
(c). Otherwise, return ⊥.

• If j = j∗ then test if fpkj
(sh, th) = c for any h 6= h∗. If such an h exists, output

(sh, th). Otherwise, return ⊥.� check(s): If s = sh for some h, return the �rst h with sh = s. If sk(j∗) or decrypt(h∗) hasbeen queried, check whether s = s∗. If so, return h∗.We claim that this machine B behaves identically to the PD-oracle P until the eventPDBreak occurs and that A's view is independent of i1, i2 until the event PDBreak occurs(assuming that the inputs sk∗, pk ∗ are an honestly generated key pair, (s∗, t∗) is uniformlydistributed on S × T and c∗ = fpk∗(s∗, t∗)). For the queries pk , sk , challenge, and decryptthis is straightforward. In the case of xdecrypt we distinguish two cases: For j 6= j∗, thecheck performed is equivalent to checking whether f−1
pkj

(c) = (sh, th) for some h 6= h∗ or
f−1
pkj

(c) = (s∗, t∗) and then returning h or h∗, respectively. Thus in this case the answer tothe query xdecrypt is the same as that the PD-oracle P would give. For j = j∗, in comparisonto P, the check whether fpkj
(s∗, t∗) = c is missing. However, if this check held true, we wouldhave that (c, j) = (c∗, j∗) which is excluded. To see that the query check(s) gives the sameanswers in B and P until PDBreak occurs, note that the only case where check(s) would giveanother answer in P is when s = s∗ but neither sk(j∗) nor decrypt(h∗) have been queried.However, in this case h∗ would be returned in P, thus PDBreak occurs.13 So altogether, wehave that B behaves identically to P and A's view is independent of i1, i2 until the eventPDBreak occurs. By PDBreaki′1,i′2
, denote the event that check(s) is queried with s = sh where

h is the i′2-th handle used by A, and no query sk(jh) or decrypt(h) has been performed13 In slight abuse of notation, we denote by PDBreak not the event that h 6= ⊥ is returned without a query of
sk(jh) or decrypt(h), but that some check (s) is queried such that s = sh and no query sk(jh) or decrypt (h)has been performed. Since for P these are equivalent, it is enough to show the lemma w.r.t. this slightlychanged de�nition. 24

where jh is the i′1-th key index used by A. Obviously, if PDBreak occurs, then PDBreaki′1,i′2occurs for some i′1, i
′
2 ∈ {1, . . . , q}. Since the view of A is independent of i1, i2, we have that

Pr[PDBreaki1,i2] ≥
1
q2 Pr[PDBreak]. So it is enough to show that Pr[PDBreaki1,i2] =: ε is negligible.Observe that in the description of B, in case of the event PDBreaki1,i2 the inputs sk∗, s∗, h∗are never accessed. So if we run B with the inputs sk∗, s∗, h∗ set to ⊥, PDBreaki1,i2 still occurswith probability at least ε. Further, PDBreaki1,i2 implies that check(s) is called an s satisfying

f−1(c∗) = ⊥. So if let B output one of the values s used in check(s) queries (randomlychosen), we break the partial-domain one-wayness of f with probability at least ε/q. Thusby contradiction, ε must be negligible. Thus Pr[PDBreak] is negligible in an execution of Band thus also in one of P. utReferences1. M. Abadi and J. Jürjens. Formal eavesdropping and its computational interpretation. In Proc. 4thInternational Symposium on Theoretical Aspects of Computer Software (TACS), pages 82�94, 2001.2. M. Abadi and P. Rogaway. Reconciling two views of cryptography: The computational soundness offormal encryption. In Proc. 1st IFIP International Conference on Theoretical Computer Science, volume1872 of Lecture Notes in Computer Science, pages 3�22. Springer, 2000.3. M. Backes and B. P�tzmann. Symmetric encryption in a simulatable Dolev-Yao style cryptographiclibrary. In Proc. 17th IEEE Computer Security Foundations Workshop (CSFW), pages 204�218, 2004.4. M. Backes, B. P�tzmann, and A. Scedrov. Key-dependent message security under active attacks �BRSIM/UC-soundness of symbolic encryption with key cycles. In Proc. of 20th IEEE Computer SecurityFoundation Symposium (CSF), June 2007. Preprint on IACR ePrint 2005/421.5. M. Backes, B. P�tzmann, and M. Waidner. A composable cryptographic library with nested operations(extended abstract). In Proc. 10th ACM Conference on Computer and Communications Security, pages220�230, 2003. Full version in IACR Cryptology ePrint Archive 2003/015, Jan. 2003.6. D. Beaver and S. Haber. Cryptographic protocols provably secure against dynamic adversaries. InAdvances in Cryptology: EUROCRYPT '92, volume 658 of Lecture Notes in Computer Science, pages307�323. Springer, 1992.7. M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treatment of symmetric encryption.In Proc. 38th IEEE Symposium on Foundations of Computer Science (FOCS), pages 394�403, 1997.8. M. Bellare and C. Namprempre. Authenticated encryption: Relations among notions and analysis of thegeneric composition paradigm. In Advances in Cryptology: ASIACRYPT 2000, volume 1976 of LectureNotes in Computer Science, pages 531�545. Springer, 2000.9. M. Bellare and P. Rogaway. Entity authentication and key distribution. In Advances in Cryptology:CRYPTO '93, volume 773 of Lecture Notes in Computer Science, pages 232�249. Springer, 1994.10. M. Bellare and P. Rogaway. Optimal asymmetric encryption. In Advances in Cryptology: EUROCRYPT'94, volume 950 of Lecture Notes in Computer Science, pages 92�111. Springer, 1994.11. M. Bellare and P. Rogaway. Encode-then-encipher encryption: How to exploit nonces or redundancyin plaintexts for e�cient constructions. In Advances in Cryptology: ASIACRYPT 2000, volume 1976 ofLecture Notes in Computer Science, pages 317�330. Springer, 2000.12. J. Black, P. Rogaway, and T. Shrimpton. Encryption-scheme security in the presence of key-dependentmessages. In Proc. 9th Annual Workshop on Selected Areas in Cryptography (SAC), pages 62�75, 2002.13. J. Camenisch and A. Lysyanskaya. An e�cient system for non-transferable anonymous credentials withoptional anonymity revocation. In Advances in Cryptology: EUROCRYPT 2001, volume 2045 of LectureNotes in Computer Science, pages 93�118. Springer, 2001.14. R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. In Proc. 42ndIEEE Symposium on Foundations of Computer Science (FOCS), pages 136�145, 2001. Extended versionin Cryptology ePrint Archive, Report 2000/67.15. R. Canetti and J. Herzog. Universally composable symbolic analysis of mutual authentication and keyexchange protocols. In Proc. 3rd Theory of Cryptography Conference (TCC), volume 3876 of LectureNotes in Computer Science, pages 380�403. Springer, 2006.25

16. V. Cortier and B. Warinschi. Computationally sound, automated proofs for security protocols. In Proc.14th European Symposium on Programming (ESOP), pages 157�171, 2005.17. D. Dolev, C. Dwork, and M. Naor. Nonmalleable cryptography. SIAM Journal on Computing, 30(2):391�437, 2000.18. D. Dolev and A. C. Yao. On the security of public key protocols. IEEE Transactions on InformationTheory, 29(2):198�208, 1983.19. E. Fujisaki, T. Okamoto, D. Pointcheval, and J. Stern. RSA-OAEP is secure under the RSA assumption.Journal of Cryptology, 17(2):81�104, 2004.20. O. Goldreich. Foundations of Cryptography � Volume 2 (Basic Applications). Cambridge UniversityPress, May 2004.21. S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and System Sciences,28:270�299, 1984.22. S. Halevi and H. Krawczyk. Security under key-dependent inputs. To appear in Proc. of the 14th ACMConference on Computer and Communications Security, 2007. Preprint on IACR ePrint 2007/315.23. D. Hofheinz and D. Unruh. Towards key-dependent message security in the standard model, August2007. Preprint on IACR ePrint 2007/333.24. P. Laud. Semantics and program analysis of computationally secure information �ow. In Proc. 10thEuropean Symposium on Programming (ESOP), pages 77�91, 2001.25. P. Laud. Symmetric encryption in automatic analyses for con�dentiality against active adversaries. InProc. 25th IEEE Symposium on Security & Privacy, pages 71�85, 2004.26. M. Luby. Pseudorandomness and Cryptographic Applications. Princeton Computer Society Notes, Prince-ton, 1996.27. D. Micciancio and B. Warinschi. Soundness of formal encryption in the presence of active adversaries. InProc. 1st Theory of Cryptography Conference (TCC), volume 2951 of Lecture Notes in Computer Science,pages 133�151. Springer, 2004.28. C. Racko� and D. R. Simon. Non-interactive zero-knowledge proof of knowledge and chosen ciphertextattack. In Advances in Cryptology: CRYPTO '91, volume 576 of Lecture Notes in Computer Science,pages 433�444. Springer, 1992.29. C. E. Shannon. Communication theory of secrecy systems. Bell System Technical Journal, 28(4):656�715,1949.30. A. C. Yao. Theory and applications of trapdoor functions. In Proc. 23rd IEEE Symposium on Foundationsof Computer Science (FOCS), pages 80�91, 1982.

26

	Introduction
	Preliminaries
	The Definition of adKDM
	OAEP is adKDM-Secure
	Appendix
	Postponed proofs
	Proof of Theorem 1
	Proof of Lemma 1

