HaXML: Haskell and XML

Jevgeni Vossotski

21.05.2007

Declarative nature

Meta-language features(a language to build
domain-specific language on top of)

XML defines documents in terms of their logical
features rather than particular rendering
procedures, FP strives to specify computations
iIn mathematical terms rather than machine- or
recipe-oriented terms.

XSLT is a subset of Scheme

= Combinators - a combinator library for generic
XML document processing, including
transformation, editing, and generation

= DtdToHaskell - a tool for translating any valid
XML DTD into equivalent Haskell types.

= Data modelling

data Element = Elem Name [Attribute] [Content]
data Content = CElem Element
| CText String

= The filter type

type CFilter = Content -> [Content]

= Program wrapper
processXmlWith :: CFilter -> IO ()

= Predicates

none,

Keep,
elm,
txt
;. CFilter
tag,
attr

zero/failure
identity/success
tagged element?

plain text?

named element?

element has attribute?

:: String -> CFilter

attrval

element has attribute/value?

(String,String) -> CFilter

= Selection

children :: CFilter
showAttr, (?) :: String -> Cfilter

= Construction
literal, (!) :: String -> CFilter
mkElem :: String -> [CFilter] -> CFilter
mkElemAttrs :: String -> [(String,CFilter)]
-> [CFilter] -> CFilter

0, Irish composition
(111), append results
with, guard
without, negative guard
(/>), interior search
(</), exterior search
(|>1]) directed choice

:: CFilter -> CFilter -> CFilter
f o g=concat . map f . g
f ||l g=\c ->fc++gc
f "with® g = filter (not.null.g) . f
f "without g = filter (null.g) . f
f />g=9g o children o f
f </ g=f with (g o children)
f|>l g=1~1f7>f :>9¢

cat --concatenate results
[CFilter] -> CFilter

cat fs = \c -> concat . map (\f -> f c) fs

(?7>) --if-then-else choice
:: CFilter -> ThenElse CFilter -> CFilter

data ThenElse a = a :> a

p ?>f :>qg =\c -> 1if (not.null.p) c
then f ¢
else g C

chip,
deep,
deepest,
multi,
foldXml

““in-place'' application to children
recursive search (topmost)

recursive search (deepest)

recursive search (all)

recursive application

:: CFilter -> CFilter

deep f = f |>| (deep f "o children)
deepest f = (deepest f o children) |>| f
multi f = f ||| (multi f "o children)
foldXml f = f "o (chip (foldXml f))

= Copying Elements to the Output

<xsl:template match="title">
<xsl:copy>
<xsl:apply-templates/>
</xsl:copy>
</xsl:template>
->
multi(tag "title")

= Deleting Elements

<xsl:template match="nickname">
</xsl:template>

->

foldXml (keep "without tag "nickname")

= Changing Element Names

<xsl:template match="article">

<html>

<xsl:apply-templates/>

</html>
</xsl:template>
->
foldXml(mkElem "html" [children] "when tag "article")
OR

foldXml(replaceTag "html" "o tag "article")

! Irish composition

f "o (g o h)=(f o g) o h (associativity)
none o f =f 0o none = none (zero)

keep o f =f o keep = f (identity)

" Guards

f "with keep = f (identity)

f "with none = none with f = none (zero)

(f with g) with g = f "with g (idempotence)
(f "'with® g) with" h = (f "with" h) "with g (promotion)
(f "o g) with h = (f 'with" h) "o ¢ (promotion)
f "without keep = none "without f = none (zero)

f "without none = keep (identity)

(f "without g) without g = f "without g (idempotence)

(f "without g) without h = (f "without h) "without g
(promotion)

(f "o g) without h = (f without h) o g (promotion)

= Path selectors

f /> (g />h)=(f/>q9) />h
none /> f = f /> none = none
keep /> f = f "o children

f /> keep = children o f
keep /> keep = children

none </ f = f </ none = none
f </ keep = f "with children
(f </ g) </ g=TF</g
(f</qg) />g=TF/>9g

= Directed choice

(f [>] 9) |>] h=11]>] (g |>] h)
keep |>| f = keep

none |>| f =f |>| none = f

fl>] f=f°

(associativity)
(zero)

(zero)
(idempotence)
(1dempotence)
(associativity)

(identity)
(idempotence)

= Recursion

deep keep = keep (simplification)

deep none = none (simplification)

deep children = children (simplification)

deep (deep f) = deep f (depth law)

! Misc

elm |>]| txt = txt [>| elm = keep (completeness)
elm o txt = txt o elm = none (excl. middle)

children
none

children "o elm
children "o txt

type LabelFilter a = Content -> [(a,Content)]

numbered :: CFilter -> LabelFilter Int
interspersed :: a -> CFilter -> a
-> LabelFilter a

tagged :: CFilter -> LabelFilter String
attributed .. CFilter ->

LabelFilter [(String,String)]
o0 :: (a->CFilter) -> LabelFilter a -> Cfilter
Example

catno "0oo0 numbered (deep (tag "catalogno"))
catno n =
mkElem "LI"
[((show n++". ")!), ("label"?), ("number"?)
, ("), ("format"?), (")"!)]

<?xml version='1.0'7?>

<!DOCTYPE album SYSTEM "album.dtd" [

<!ELEMENT album (title, artist, recordingdate?,
coverart, (catalogno)+,
personnel, tracks, notes) >

<!ELEMENT title #PCDATA>

<!ELEMENT artist #PCDATA> ...

->

module AlbumDTD where
data Album =
Album Title Artist (Maybe Recordingdate)
Coverart [Catalogno] Personnel
Tracks Notes
newtype Title = Title String
newtype Artist = Artist String

= Statically typed functional languages which
have XML documents as their basic data types:
XMA, XDuce, Cduce

= XMLambda example

myTitle :: title
myTitle = <title>Hello world in XMLambda</title>
<html>
<head>
<%= myTitle %>
</head>
<body>
<hl>Hello world</h2>
</body>
</html>

module Main where

import Text.XML.HaXml

main = processXmlWith (wrap (img oo
allImgs = multi(tag "img")
wrap f = html [hbody [htable [f]]]

numbered allImgs))

img n = hrow [hcol [(n!')], hcol [("src"?) 1]

