

HaXML: Haskell and XML

Jevgeni Võssotski

21.05.2007

Why Functional Programming

 Declarative nature
 Meta-language features(a language to build

domain-specific language on top of)
 XML defines documents in terms of their logical

features rather than particular rendering
procedures, FP strives to specify computations
in mathematical terms rather than machine- or
recipe-oriented terms.

 XSLT is a subset of Scheme

HaXML components

 Combinators - a combinator library for generic
XML document processing, including
transformation, editing, and generation

 DtdToHaskell - a tool for translating any valid
XML DTD into equivalent Haskell types.

Combinators

 Data modelling
 data Element = Elem Name [Attribute] [Content]

 data Content = CElem Element

 | CText String

 The filter type
 type CFilter = Content -> [Content]

 Program wrapper
 processXmlWith :: CFilter -> IO ()

Basic filters

 Predicates
 none, zero/failure

 keep, identity/success

 elm, tagged element?

 txt plain text?

 :: CFilter

 tag, named element?

 attr element has attribute?

 :: String -> CFilter

 attrval element has attribute/value?

 :: (String,String) -> CFilter

Basic filters

 Selection
 children :: CFilter

 showAttr, (?) :: String -> Cfilter

 Construction
 literal, (!) :: String -> CFilter

 mkElem :: String -> [CFilter] -> CFilter

 mkElemAttrs :: String -> [(String,CFilter)]

 -> [CFilter] -> CFilter

Filter combinators

 o, Irish composition
 (|||), append results
 with, guard
 without, negative guard
 (/>), interior search
 (</), exterior search
 (|>|) directed choice
 :: CFilter -> CFilter -> CFilter

 f `o` g = concat . map f . g
 f ||| g = \c -> f c ++ g c
 f `with` g = filter (not.null.g) . f
 f `without` g = filter (null.g) . f
 f /> g = g `o` children `o` f
 f </ g = f `with` (g `o` children)
 f |>| g = f ?> f :> g

Filter combinators

 cat --concatenate results
 :: [CFilter] -> CFilter

 cat fs = \c -> concat . map (\f -> f c) fs

 (?>) --if-then-else choice
 :: CFilter -> ThenElse CFilter -> CFilter

 data ThenElse a = a :> a
 p ?> f :> g = \c -> if (not.null.p) c
 then f c
 else g c

Recursive combinators

 chip, ``in-place'' application to children
 deep, recursive search (topmost)
 deepest, recursive search (deepest)
 multi, recursive search (all)
 foldXml recursive application
 :: CFilter -> CFilter

 deep f = f |>| (deep f `o` children)
 deepest f = (deepest f `o` children) |>| f
 multi f = f ||| (multi f `o` children)
 foldXml f = f `o` (chip (foldXml f))

Examples (XSL -> HaXML)

 Copying Elements to the Output
<xsl:template match="title">
 <xsl:copy>
 <xsl:apply-templates/>
 </xsl:copy>
</xsl:template>
->
multi(tag "title")

 Deleting Elements
<xsl:template match="nickname">
</xsl:template>
->
foldXml(keep `without` tag "nickname")

Examples (XSL -> HaXML)

 Changing Element Names
<xsl:template match="article">
 <html>
 <xsl:apply-templates/>
 </html>
</xsl:template>
->
foldXml(mkElem "html" [children] `when` tag "article")
OR
foldXml(replaceTag "html" `o` tag "article")

Algebraic properties of
combinators

 Irish composition
f `o` (g `o` h) = (f `o` g) `o` h (associativity)
none `o` f = f `o` none = none (zero)
keep `o` f = f `o` keep = f (identity)

 Guards
f `with` keep = f (identity)
f `with` none = none `with` f = none (zero)
(f `with` g) `with` g = f `with` g (idempotence)
(f `with` g) `with` h = (f `with` h) `with` g (promotion)
(f `o` g) `with` h = (f `with` h) `o` g (promotion)
f `without` keep = none `without` f = none (zero)
f `without` none = keep (identity)
(f `without` g) `without` g = f `without` g (idempotence)
(f `without` g) `without` h = (f `without` h) `without` g

 (promotion)
(f `o` g) `without` h = (f `without` h) `o` g (promotion)

Algebraic properties of
combinators

 Path selectors
f /> (g /> h) = (f /> g) /> h (associativity)
none /> f = f /> none = none (zero)
keep /> f = f `o` children
f /> keep = children `o` f
keep /> keep = children
none </ f = f </ none = none (zero)
f </ keep = f `with` children
(f </ g) </ g = f </ g (idempotence)
(f </ g) /> g = f /> g (idempotence)

 Directed choice
(f |>| g) |>| h = f |>| (g |>| h) (associativity)
keep |>| f = keep
none |>| f = f |>| none = f (identity)
f |>| f = f (idempotence)

Algebraic properties of
combinators

 Recursion
deep keep = keep (simplification)
deep none = none (simplification)
deep children = children (simplification)
deep (deep f) = deep f (depth law)

 Misc
elm |>| txt = txt |>| elm = keep (completeness)
elm `o` txt = txt `o` elm = none (excl. middle)
children `o` elm = children
children `o` txt = none

Labellings

 type LabelFilter a = Content -> [(a,Content)]
 numbered :: CFilter -> LabelFilter Int
 interspersed :: a -> CFilter -> a
 -> LabelFilter a
 tagged :: CFilter -> LabelFilter String
 attributed :: CFilter ->
 LabelFilter [(String,String)]
 `oo` :: (a->CFilter) -> LabelFilter a -> Cfilter
 Example
 catno `oo` numbered (deep (tag "catalogno"))
 catno n =
 mkElem "LI"
 [((show n++". ")!), ("label"?), ("number"?)
 , (" ("!), ("format"?), (")"!)]

DdtToHaskell & Xml2Haskell

<?xml version='1.0'?>
<!DOCTYPE album SYSTEM "album.dtd" [
<!ELEMENT album (title, artist, recordingdate?,
 coverart, (catalogno)+,
 personnel, tracks, notes) >
<!ELEMENT title #PCDATA>
<!ELEMENT artist #PCDATA> ...

->

module AlbumDTD where
data Album =
 Album Title Artist (Maybe Recordingdate)
 Coverart [Catalogno] Personnel
 Tracks Notes
newtype Title = Title String
newtype Artist = Artist String ...

Alternatives: special purpose
languages

 Statically typed functional languages which
have XML documents as their basic data types:
XMλ, XDuce, Cduce

 XMLambda example
myTitle :: title
myTitle = <title>Hello world in XMLambda</title>
<html>
<head>
 <%= myTitle %>
</head>
<body>
 <h1>Hello world</h2>
</body>
</html>

More HaXml examples

module Main where

import Text.XML.HaXml

main = processXmlWith (wrap (img `oo` numbered allImgs))

allImgs = multi(tag "img")

wrap f = html [hbody [htable [f]]]

img n = hrow [hcol [(n!)], hcol [("src"?)]]

