
Functional Programming

IO Monad

Jevgeni Kabanov

Department of Computer Science

University of Tartu

Overview

1 Functional IO

2 Monadic IO

3 Higher Order IO

Outline

1 Functional IO

2 Monadic IO

3 Higher Order IO

Lazy Pure Haskell

Haskell is a pure and lazy language

Pure

Purity means that every function result is uniquely
determined by its parameters

Compiler is free to inline any function as it pleases

Runtime can cache any function call

Lazy

Laziness means that values are computed on need

If they are not needed, they are not computed

Runtime is free to precompute them or reorder
computations

Lazy Pure Haskell

Haskell is a pure and lazy language

Pure

Purity means that every function result is uniquely
determined by its parameters

Compiler is free to inline any function as it pleases

Runtime can cache any function call

Lazy

Laziness means that values are computed on need

If they are not needed, they are not computed

Runtime is free to precompute them or reorder
computations

Lazy Pure Haskell

Haskell is a pure and lazy language

Pure

Purity means that every function result is uniquely
determined by its parameters

Compiler is free to inline any function as it pleases

Runtime can cache any function call

Lazy

Laziness means that values are computed on need

If they are not needed, they are not computed

Runtime is free to precompute them or reorder
computations

Lazy Pure Haskell

Haskell is a pure and lazy language

Pure

Purity means that every function result is uniquely
determined by its parameters

Compiler is free to inline any function as it pleases

Runtime can cache any function call

Lazy

Laziness means that values are computed on need

If they are not needed, they are not computed

Runtime is free to precompute them or reorder
computations

Lazy Pure Haskell

Haskell is a pure and lazy language

Pure

Purity means that every function result is uniquely
determined by its parameters

Compiler is free to inline any function as it pleases

Runtime can cache any function call

Lazy

Laziness means that values are computed on need

If they are not needed, they are not computed

Runtime is free to precompute them or reorder
computations

Lazy Pure Haskell

Haskell is a pure and lazy language

Pure

Purity means that every function result is uniquely
determined by its parameters

Compiler is free to inline any function as it pleases

Runtime can cache any function call

Lazy

Laziness means that values are computed on need

If they are not needed, they are not computed

Runtime is free to precompute them or reorder
computations

Lazy Pure Haskell

Haskell is a pure and lazy language

Pure

Purity means that every function result is uniquely
determined by its parameters

Compiler is free to inline any function as it pleases

Runtime can cache any function call

Lazy

Laziness means that values are computed on need

If they are not needed, they are not computed

Runtime is free to precompute them or reorder
computations

Pure IO

The following function should read a character from standard
input

getChar ::Char

Let's see an example:

get2chars = [getChar ; getChar]

Questions

How many characters will be read?

In what order will they be read?

Pure IO

The following function should read a character from standard
input

getChar ::Char

Let's see an example:

get2chars = [getChar ; getChar]

Questions

How many characters will be read?

In what order will they be read?

Pure IO

The following function should read a character from standard
input

getChar ::Char

Let's see an example:

get2chars = [getChar ; getChar]

Questions

How many characters will be read?

In what order will they be read?

Pure IO

The following function should read a character from standard
input

getChar ::Char

Let's see an example:

get2chars = [getChar ; getChar]

Questions

How many characters will be read?

In what order will they be read?

Pure IO

Problem 1

Let's try to solve these problems:

getChar :: Int ! Char

get2chars = [getChar 1; getChar 2]

Now the values are distinct, yet the order is still unde�ned

Problem 2

Also we now need to add the same Int argument to get2chars
for the same reason:

get4chars :: Int ! [Char]

get4chars = get2chars 1 ++ get2chars 2

Pure IO

Problem 1

Let's try to solve these problems:

getChar :: Int ! Char

get2chars = [getChar 1; getChar 2]

Now the values are distinct, yet the order is still unde�ned

Problem 2

Also we now need to add the same Int argument to get2chars
for the same reason:

get4chars :: Int ! [Char]

get4chars = get2chars 1 ++ get2chars 2

Pure IO

Problem 1

Let's try to solve these problems:

getChar :: Int ! Char

get2chars = [getChar 1; getChar 2]

Now the values are distinct, yet the order is still unde�ned

Problem 2

Also we now need to add the same Int argument to get2chars
for the same reason:

get4chars :: Int ! [Char]

get4chars = get2chars 1 ++ get2chars 2

Lazy IO

Problem 3

getChar :: Int ! Char

get2chars = [getChar 1; getChar 2]

What will be called �rst?

What we really need is some kind of dependency!

The only kind of runtime dependency Haskell provides is
value dependency:

getchar :: Int ! (Char ; Int)

get2chars = [a ; b] where (a ; i) = getChar 1
(b;) = getChar i

Lazy IO

Problem 3

getChar :: Int ! Char

get2chars = [getChar 1; getChar 2]

What will be called �rst?

What we really need is some kind of dependency!

The only kind of runtime dependency Haskell provides is
value dependency:

getchar :: Int ! (Char ; Int)

get2chars = [a ; b] where (a ; i) = getChar 1
(b;) = getChar i

Lazy IO

Problem 3

getChar :: Int ! Char

get2chars = [getChar 1; getChar 2]

What will be called �rst?

What we really need is some kind of dependency!

The only kind of runtime dependency Haskell provides is
value dependency:

getchar :: Int ! (Char ; Int)

get2chars = [a ; b] where (a ; i) = getChar 1
(b;) = getChar i

Lazy IO

Problem 4

The problem now is get2chars � the parameter is neither used
nor unique and compiler might still reorder or omit it.

get4chars = [get2chars 1; get2chars 2]

What we need is a unique parameter associated with every IO
action:

get2chars :: Int ! (String ; Int)
get2chars i0 = ([a ; b]; i2) where (a ; i1) = getChar i0

(b; i2) = getChar i1

get4chars i0 = (a ++ b; i2) where (a ; i1) = get2chars i0

(b; i2) = get2chars i1

Lazy IO

Problem 4

The problem now is get2chars � the parameter is neither used
nor unique and compiler might still reorder or omit it.

get4chars = [get2chars 1; get2chars 2]

What we need is a unique parameter associated with every IO
action:

get2chars :: Int ! (String ; Int)
get2chars i0 = ([a ; b]; i2) where (a ; i1) = getChar i0

(b; i2) = getChar i1

get4chars i0 = (a ++ b; i2) where (a ; i1) = get2chars i0

(b; i2) = get2chars i1

Lazy IO

Problem 5

However there is still one problem left, can you see it?:

get2chars i0 = ([a ; b]; i2) where (a ; i1) = getChar i0

(b; i2) = getChar i0

A simple mistake and our carefully built up IO is ruined!

NB!

What we need is a way for compiler to ensure that the value is
unique!

Lazy IO

Problem 5

However there is still one problem left, can you see it?:

get2chars i0 = ([a ; b]; i2) where (a ; i1) = getChar i0

(b; i2) = getChar i0

A simple mistake and our carefully built up IO is ruined!

NB!

What we need is a way for compiler to ensure that the value is
unique!

Lazy IO

Problem 5

However there is still one problem left, can you see it?:

get2chars i0 = ([a ; b]; i2) where (a ; i1) = getChar i0

(b; i2) = getChar i0

A simple mistake and our carefully built up IO is ruined!

NB!

What we need is a way for compiler to ensure that the value is
unique!

Outline

1 Functional IO

2 Monadic IO

3 Higher Order IO

Some History

When Haskell was created three main ways for doing pure, lazy
IO were known.

1 Input-output streams

2 Continuations

3 Threaded unique value

Of course Haskellers chose the fourth way!

Clean

Interestingly enough a Haskell-like language Clean chose to
introduce uniqueness typing that made the third way possible
directly

Some History

When Haskell was created three main ways for doing pure, lazy
IO were known.

1 Input-output streams

2 Continuations

3 Threaded unique value

Of course Haskellers chose the fourth way!

Clean

Interestingly enough a Haskell-like language Clean chose to
introduce uniqueness typing that made the third way possible
directly

Some History

When Haskell was created three main ways for doing pure, lazy
IO were known.

1 Input-output streams

2 Continuations

3 Threaded unique value

Of course Haskellers chose the fourth way!

Clean

Interestingly enough a Haskell-like language Clean chose to
introduce uniqueness typing that made the third way possible
directly

Some History

When Haskell was created three main ways for doing pure, lazy
IO were known.

1 Input-output streams

2 Continuations

3 Threaded unique value

Of course Haskellers chose the fourth way!

Clean

Interestingly enough a Haskell-like language Clean chose to
introduce uniqueness typing that made the third way possible
directly

Some History

When Haskell was created three main ways for doing pure, lazy
IO were known.

1 Input-output streams

2 Continuations

3 Threaded unique value

Of course Haskellers chose the fourth way!

Clean

Interestingly enough a Haskell-like language Clean chose to
introduce uniqueness typing that made the third way possible
directly

Some History

When Haskell was created three main ways for doing pure, lazy
IO were known.

1 Input-output streams

2 Continuations

3 Threaded unique value

Of course Haskellers chose the fourth way!

Clean

Interestingly enough a Haskell-like language Clean chose to
introduce uniqueness typing that made the third way possible
directly

Real World IO

We continue the previous example by interpreting the threaded
value as the token of the world state:

getChar ::RealWorld ! (Char ;RealWorld)

In that case the program is of type

main ::RealWorld ! (();RealWorld)

We can introduce a type synonym and rewrite it as:

type IO a = RealWorld ! (a ;RealWorld)

main :: IO ()
getChar :: IO Char

Real World IO

We continue the previous example by interpreting the threaded
value as the token of the world state:

getChar ::RealWorld ! (Char ;RealWorld)

In that case the program is of type

main ::RealWorld ! (();RealWorld)

We can introduce a type synonym and rewrite it as:

type IO a = RealWorld ! (a ;RealWorld)

main :: IO ()
getChar :: IO Char

Hello, Monad!

Let's see a program reading two characters from input:

main world0 = let (a ;world1) = getChar world0

(b;world2) = getChar world1

in ([a ; b];world2)

We could hide the token from the programmer by threading it
automatically:

(>>=) :: IO a ! (a ! IO b)! IO b

(action1 >>= action2) world0 =
let (a ;world1) = action1 world0

(b;world2) = action2 a world1

in (b;world2)

main =
getChar >>= �a ! getChar >>= �b ! (�w ! ([a ; b];w))

Hello, Monad!

Let's see a program reading two characters from input:

main world0 = let (a ;world1) = getChar world0

(b;world2) = getChar world1

in ([a ; b];world2)

We could hide the token from the programmer by threading it
automatically:

(>>=) :: IO a ! (a ! IO b)! IO b

(action1 >>= action2) world0 =
let (a ;world1) = action1 world0

(b;world2) = action2 a world1

in (b;world2)

main =
getChar >>= �a ! getChar >>= �b ! (�w ! ([a ; b];w))

Doing It with Class

Now we can make IO a a monad!

instance Monad (IO a) where
(>>=) :: IO a ! (a ! IO b)! IO b

(action1 >>= action2) world0 =
let (a ;world1) = action1 world0

(b;world2) = action2 a world1

in (b;world2)

return :: a ! IO a

return a = (�world ! (a ;world))

We can now use the do-notation so the previous example
becomes

main = do
a getChar

b getChar

return [a ; b]

Doing It with Class

Now we can make IO a a monad!

instance Monad (IO a) where
(>>=) :: IO a ! (a ! IO b)! IO b

(action1 >>= action2) world0 =
let (a ;world1) = action1 world0

(b;world2) = action2 a world1

in (b;world2)

return :: a ! IO a

return a = (�world ! (a ;world))

We can now use the do-notation so the previous example
becomes

main = do
a getChar

b getChar

return [a ; b]

Interlude

Re�ections

It is logical to make IO a abstract, so that programmer
would be protected from making mistakes.

Then a value of IO a is nothing more than an action or a
computation to be executed.

However this also means that all IO functions must be
prede�ned with priority access to IO monad.

IO functions

IO module necessarily contains functions for working with:

Files and �le systems

Mutable variables

Random numbers

System clock

Which makes it pretty big!

Interlude

Re�ections

It is logical to make IO a abstract, so that programmer
would be protected from making mistakes.

Then a value of IO a is nothing more than an action or a
computation to be executed.

However this also means that all IO functions must be
prede�ned with priority access to IO monad.

IO functions

IO module necessarily contains functions for working with:

Files and �le systems

Mutable variables

Random numbers

System clock

Which makes it pretty big!

Interlude

Re�ections

It is logical to make IO a abstract, so that programmer
would be protected from making mistakes.

Then a value of IO a is nothing more than an action or a
computation to be executed.

However this also means that all IO functions must be
prede�ned with priority access to IO monad.

IO functions

IO module necessarily contains functions for working with:

Files and �le systems

Mutable variables

Random numbers

System clock

Which makes it pretty big!

Interlude

Re�ections

It is logical to make IO a abstract, so that programmer
would be protected from making mistakes.

Then a value of IO a is nothing more than an action or a
computation to be executed.

However this also means that all IO functions must be
prede�ned with priority access to IO monad.

IO functions

IO module necessarily contains functions for working with:

Files and �le systems

Mutable variables

Random numbers

System clock

Which makes it pretty big!

Outline

1 Functional IO

2 Monadic IO

3 Higher Order IO

Console Operations

De�nition

Most of console functions are self-explanatory:

putChar ::Char ! IO ()
putStr :: String ! IO ()
putStrLn :: String ! IO ()

print :: Show a) a ! IO ()
readLn ::Read a) IO a

getChar :: IO Char

getLine :: IO String

getContents :: IO String

Console Operations

Example

main = do
putStr "What is your name?"
a readLn

putStr "How old are you?"
b readLn

print (a ; b)

IO Actions as Values

Example

Let's de�ne a list of IO actions:

ioActions :: [IO ()]
ioActions =

[(print "Hello!");
(putStr "just kidding");
(getChar >> return ())]

Remember, that IO a = RealWorld ! (a ;RealWorld), so
these are usual functional values.

IO Actions as Values

Example

However these IO actions can also be used directly:

main = do
head ioActions

ioActions !! 1
last ioActions

Output:

"Hello!"
just kidding(Wait for input)

IO Action Lists

De�nition

Sequencing a list of actions can be reused (foldr is just a
reminder):

foldr :: (a ! b ! b)! b ! [a]! b

foldr f z [] = z

foldr f z (x : xs) = f x (foldr f z xs)

sequence_ ::Monad m) [m a]! m ()
sequence_ = foldr (>>) (return ())

A lot more interesting monad combinators are available and we
will examine them later.

IO Action Lists

De�nition

The previous example then becomes:

ioActions :: [IO ()]
ioActions =

[(print "Hello!");
(putStr "just kidding");
(getChar >> return ())]

main = do sequence_ ioActions

Output:

"Hello!"
just kidding(Wait for input)

File Operations

De�nition

Files are opened as Handles and can be used accordingly:

openFile :: String ! IOMode ! IO Handle

hSeek ::Handle ! SeekMode ! Integer ! IO ()
hGetChar ::Handle ! IO Char

hPutChar ::Handle ! Char ! IO ()
hClose ::Handle ! IO ()

data SeekMode

= AbsoluteSeek

j RelativeSeek
j SeekFromEnd

File Operations

Example

Let's de�ne a function reading one character from a given
handle and position:

readi h i = do
hSeek h i AbsoluteSeek

hGetChar h

Next we want to open the �le and just read characters from it:

read�lei :: String ! IO (Integer ! IO Char)
read�lei name = do
h openFile name ReadMode

return (readi h)

File Operations

Example

Let's de�ne a function reading one character from a given
handle and position:

readi h i = do
hSeek h i AbsoluteSeek

hGetChar h

Next we want to open the �le and just read characters from it:

read�lei :: String ! IO (Integer ! IO Char)
read�lei name = do
h openFile name ReadMode

return (readi h)

File Operations

Example

Since IO functions can be higher order we can apply readi
repeatedly:

main = do
my�le read�lei "test"
a my�le 0
b my�le 1
print (a ; b)

IORef

De�nition

IORef a allows to create mutable variables:

data IORef a
newIORef :: a ! IO (IORef a)
readIORef :: IORef a ! IO a

writeIORef :: IORef a ! a ! IO ()
modifyIORef :: IORef a ! (a ! a)! IO ()

IORef

Example

main = do
varA newIORef 0
a0 readIORef varA

writeIORef varA 1
a1 readIORef varA

print (a0 ; a1)

Haskell Objects

Figure

Let's try to de�ne a Figure object:

data Figure = Figuref
draw :: IO ();move ::Displacement ! IO ()g

type Displacement = (Int ; Int)

We will de�ne only one �gure � a circle:

circle :: Point ! Radius ! IO Figure

type Point = (Int ; Int) -- point coordinates
type Radius = Int -- circle radius in points

Haskell Objects

Drawing

We can test the objects when we de�ne them with this code:

main = do
�gures sequence [circle (10; 10) 5;
rectangle (10; 10) (20; 20)]

drawAll �gures

mapM_ (��g ! move �g (10; 10)) �gures
drawAll �gures

drawAll :: [Figure]! IO ()
drawAll �gures = do
putStrLn "Drawing figures:"
mapM_ draw �gures

Circle

circle center radius = do
centerVar newIORef center

let drawF = do
center readIORef centerVar

putStrLn (" Circle at "++ show center

++ " with radius "++ show radius)

let moveF (addX ; addY) = do
(x ; y) readIORef centerVar

writeIORef centerVar (x + addX ; y + addY)

return $ Figurefdraw = drawF ;move = moveF g

Rectangle

rectangle from to = do
fromVar newIORef from

toVar newIORef to

let drawF = do
from readIORef fromVar

to readIORef toVar

putStrLn (" Rectangle "++ show from

++ "-"++ show to)

let moveF (addX ; addY) = do
(fromX ; fromY) readIORef fromVar

(toX ; toY) readIORef toVar

writeIORef fromVar (fromX + addX ; fromY + addY)
writeIORef toVar (toX + addX ; toY + addY)

return $ Figurefdraw = drawF ;move = moveF g

Higher Order IO

Lazy IO

How lazy is the IO monad?

list1 ; list2 :: IO [Int]
list1 = return � repeat $ 0
list2 = sequence � repeat � return $ 0

main = do
lst list1

putStrLn � show � take 10 $ lst
readLn

lst2 list2

putStrLn � show � take 10 $ lst2

Higher Order IO

Lazy IO

How lazy is the IO monad?

list1 ; list2 :: IO [Int]
list1 = return � repeat $ 0
list2 = sequence � repeat � return $ 0

main = do
lst list1

putStrLn � show � take 10 $ lst
readLn

lst2 list2

putStrLn � show � take 10 $ lst2

The �rst list will show the �rst 10 elements, while the second
one will go in�nite.

Conclusions

Advantages

IO in Haskell is pure and lazy

The order of operations that end up executed is guaranteed
by the compiler

IO actions are treated in Haskell �rst-class, they can be
passed around, combined and curried

Disadvantages

Every new function that needs to do side-e�ects needs
access to IO monad implementation

IO actions tend to contaminate pure code, lifting it to IO
monad because some particular parts need to do IO

Since IO operations are the fastest, a large portion of a
program may end up under IO monad

Conclusions

Advantages

IO in Haskell is pure and lazy

The order of operations that end up executed is guaranteed
by the compiler

IO actions are treated in Haskell �rst-class, they can be
passed around, combined and curried

Disadvantages

Every new function that needs to do side-e�ects needs
access to IO monad implementation

IO actions tend to contaminate pure code, lifting it to IO
monad because some particular parts need to do IO

Since IO operations are the fastest, a large portion of a
program may end up under IO monad

Conclusions

Advantages

IO in Haskell is pure and lazy

The order of operations that end up executed is guaranteed
by the compiler

IO actions are treated in Haskell �rst-class, they can be
passed around, combined and curried

Disadvantages

Every new function that needs to do side-e�ects needs
access to IO monad implementation

IO actions tend to contaminate pure code, lifting it to IO
monad because some particular parts need to do IO

Since IO operations are the fastest, a large portion of a
program may end up under IO monad

Conclusions

Advantages

IO in Haskell is pure and lazy

The order of operations that end up executed is guaranteed
by the compiler

IO actions are treated in Haskell �rst-class, they can be
passed around, combined and curried

Disadvantages

Every new function that needs to do side-e�ects needs
access to IO monad implementation

IO actions tend to contaminate pure code, lifting it to IO
monad because some particular parts need to do IO

Since IO operations are the fastest, a large portion of a
program may end up under IO monad

Conclusions

Advantages

IO in Haskell is pure and lazy

The order of operations that end up executed is guaranteed
by the compiler

IO actions are treated in Haskell �rst-class, they can be
passed around, combined and curried

Disadvantages

Every new function that needs to do side-e�ects needs
access to IO monad implementation

IO actions tend to contaminate pure code, lifting it to IO
monad because some particular parts need to do IO

Since IO operations are the fastest, a large portion of a
program may end up under IO monad

Conclusions

Advantages

IO in Haskell is pure and lazy

The order of operations that end up executed is guaranteed
by the compiler

IO actions are treated in Haskell �rst-class, they can be
passed around, combined and curried

Disadvantages

Every new function that needs to do side-e�ects needs
access to IO monad implementation

IO actions tend to contaminate pure code, lifting it to IO
monad because some particular parts need to do IO

Since IO operations are the fastest, a large portion of a
program may end up under IO monad

	Functional IO
	Monadic IO
	Higher Order IO

