Functional Programming
Monadic Prelude

Jevgeni Kabanov

Department of Computer Science
University of Tartu



Introduction

Previously on Functional Programming

Monadic laws

Monad class (>= and return)
MonadPlus class (mzero and mplus)
do-notation

Maybe monad

List monad

State monad

IO monad




Overview

@ List functions

© Conditionals

© Lifting

@ MonadPlus functions



Introduction

Overview
@ Monad power comes from very high degree of abstraction




Introduction

Overview
@ Monad power comes from very high degree of abstraction

@ Haskell comes with a library of functions that are defined
across all monads




Introduction

Overview
@ Monad power comes from very high degree of abstraction

@ Haskell comes with a library of functions that are defined
across all monads

@ These functions correspond to control structures in most
imperartive languages




Introduction

Overview
@ Monad power comes from very high degree of abstraction

@ Haskell comes with a library of functions that are defined
across all monads

@ These functions correspond to control structures in most
imperartive languages

o In fact given the do-notation and these functions we can
program in Haskell using imperative approach




Outline

@ List functions



Monadic Prelude

sequence definition

sequence :: Monad m = [m a] — m ()
sequence = foldr (>) (return ())
sequence :: Monad m = [m a] — m [a]
sequence = foldr mcons (return [])

where mcons p g =
p>=Az — g >= Ay — return (z: y)




sequence

sequence example

Monads> sequence [print 1, print 2, print ’a’]

*Monads> it
[O,0,0]

*Monads> sequence_ [print 1, print 2, print ’a’]

*Monads> it

O




sequence

sequence example 3
Prelude> sequence [Just 1, Just 2, Nothing, Just 3]




sequence

sequence example 3
Prelude> sequence [Just 1, Just 2, Nothing, Just 3]
Nothing

Maybe is assymmetrical with respect to nothing!




mapM
mapM definition

mapM :: Monad m = (a - m b) — [a] = m [b]
mapM f as = sequence (map f as)
mapM :: Monad m = (a — m b) — [a] > m ()
mapM _ f as = sequence (map f as)




mapM

mapM example 1
Monads> mapM_ print [1,2,3,4,5]

vl B W N

mapM example 2

putString :: [Char] — IO ()
putString s = mapM  putChar s




forM

forM definition

forM :: Monad m = [a] — (a — m b) — m [b]
forM = flip mapM

forM _:: Monad m = [a] — (a = m b) — m ()
forM = flip mapM

forM  example

main = do
forM [1..10] (A7 — print 1)




filterM

filter M definition

filterM :: Monad m = (a — m Bool) — [a] — m [a]
filterM p [] = return []
filterM p(z:2zs)=do b+« pz

ys « filterM p zs

return (if b then (z : ys) else ys)

filterM example

main = do
names < getArgs
dirs < filterM doesDirectoryEzist names
mapM _ putStrLn dirs




foldM

foldM definition

foldl t(a—b—a)—>a—[b]—a

foldl f z[] = z

foldl f z (z:zs) = foldl f (f z z) zs

foldM :: (Monad m) = (a -b—>ma)—> a—[b]oma
foldM f a [] = return a

foldM fa(z:zs)=f az>=Ay — foldM f y zs

Note that we lift the result of all functions under the monad.




foldM

foldM explanation

foldM f al [z1,22,...,2n] = do
a2 < f al z1
a3 «— f a2 z2

fan zn




foldM

foldM example

Monads> foldM (\a b ->

putStrLn (show a ++ "+" ++ show b ++
"=" ++ show (at+b)) »

return (a+b)) 0 [1..5]

0+1=1

1+2=3

3+3=6

6+4=10

10+5=15

Monads> it

15




foldM
foldM example 2

data Sheep = Sheep{name :: String,
mother :: Maybe Sheep, father :: Maybe Sheep }

dolly :: Sheep
dolly = let
adam = Sheep "Adam" Nothing Nothing
eve = Sheep "Eve" Nothing Nothing
uranus = Sheep "Uranus" Nothing Nothing
gaea = Sheep "Gaea" Nothing Nothing
kronos = Sheep "Kronos" (Just gaea) (Just uranus)
holly = Sheep "Holly" (Just eve) (Just adam)
roger = Sheep "Roger" (Just eve) (Just kronos)
molly = Sheep "Molly" (Just holly) (Just roger)
in Sheep "Dolly" (Just molly) Nothing




foldM

foldM example 2

traceFamaly
[(Sheep — Maybe Sheep)] — Sheep — Maybe Sheep
traceFamily 1 s = foldM (flip ($)) s I

paternalGrandmother =
traceFamily [father, mother]
mothersPaternalGrandfather =
traceFamily [mother, father, father|

OQutput:

*Main> paternalGrandmother dolly
Nothing

*Main> mothersPaternalGrandfather dolly
Just "Kronos"




foldM

Map definition

data Map k a

empty :: Map k a

msert : Ord k = k — a — Map k a — Map k a
lookup :: (Monad m,Ord k) = k — Map k a - m a
toList :: Map k a — [(k,a)]




foldM

foldM example 3

data Entry = Entry{key :: String, value :: String}
type Dict = Map String String
addEntry :: Dict — Entry — Dict
addEntry d e = insert (key e) (value e) d
addDataFromkFile :: Dict — Handle — IO Dact
addDataFromFile dict hdl = do
contents < hGetContents hdl
entries < return (map read (ltnes contents))
return (foldl (addEntry) dict entries)




foldM

foldM example 3

main :: IO ()
main = do
files < getArgs
handles <+ mapM openForReading files
dict < foldM addDataFromFEile empty handles
print (toList dict)




join
join definition

join i (Monad m)=m (ma) > ma
jomn ¢ = >=1d

Note that z >=f = (join o fmap f) z.

join example

Monads> join (Just (Just ’a’))

Just ’a’

Monads> join (return (putStrLn "hello"))
hello

Monads> return (putStrLn "hello™)
Monads> join [[1,2,3]1,[4,5]]

[1,2,3,4,5]




Outline

© Conditionals



when

when and unless definition

when :: (Monad m) = Bool - m () = m ()
when p s = if p then s else return ()

unless :: (Monad m) = Bool - m () = m ()
unless p s = when (- p) s

when example

Monads> mapM_ (\1 -> when (not $ null 1) (putStrLn 1))
["","abc","def","","","ghi"]

abc

def

ghi




Outline

© Lifting



LiftM
lift M and l1ft M2 definition

LftM :: (Monad m) = (a —» b) - (m a — m b)
LftM f = Aa — do {a' « a;return (f a')}
LftM2 :: (Monad m) =
(a—=b—>c)—>(ma—>mb—mc)
LftM2 f =
Aab—do{a « a;b « b;return (f a’ V') }




LiftM
lift M and l1ft M2 definition

LftM :: (Monad m) = (a —» b) - (m a — m b)
LftM f = Aa — do {a' « a;return (f a')}
LftM2 :: (Monad m) =
(a—=b—>c)—>(ma—>mb—mc)
LftM2 f =
Aab—do{a « a;b « b;return (f a’ V') }

o Lifting allows to apply pure functions point-free to
monadic values




LiftM
lift M and l1ft M2 definition

LftM :: (Monad m) = (a —» b) - (m a — m b)
LftM f = Aa — do {a' « a;return (f a')}
LftM2 :: (Monad m) =
(a—=b—>c)—>(ma—>mb—mc)
LftM2 f =
Aab—do{a « a;b « b;return (f a’ V') }

o Lifting allows to apply pure functions point-free to
monadic values

@ Together with monadic bind it constitutes a functional
approach as apposed to the do-notation




LiftM
lift M example 1

getName :: String — Maybe String
getName name = do
let db =
[("John", "Smith, John"),
("Mike", "Caine, Michael")]
tempName < lookup name db
return (swapNames tempName)

Can be rewritten as:

getName name = do
let db = ...
liftM swapNames (lookup name db)




LiftM
lift M example 2

addDataFromPFile :: Dict — Handle — IO Dict
addDataFromFile dict hdl = do
contents < hGetContents hdl
entries < return (map read (lines contents))
return (foldl (addEntry) dict entries)

Can be rewritten as:

addDataFromFile dict =
liftM (foldl addEntry dict o map read o lines)
o hGetContents




lift M
lift M2 example 1
What does this do?

allCombinations :: (a — a — a) — [[a]] — [a]
allCombinations fn [] =[]
allCombinations fn (1:1s) = foldl (luftM2 fn) 1 ls




lift M
lift M2 example 1
What does this do?

allCombinations :: (a — a — a) — [[a]] — [a]
allCombinations fn [] =[]
allCombinations fn (1:1s) = foldl (luftM2 fn) 1 ls

Output

Main> allCombinations (+) [[®,1],[1,2,3]]
[0+1,0+2,0+3,1+1,1+2,1+3] = [1,2,3,2,3,4]
Main> allCombinations (*) [[®,1]1,[1,2]1,[3,5]1]
[0+1,0+2,0+3,1+1,1+2,1+3] = [0,0,0,0,3,5,6,10]




ap

ap definition
ap helps when both function and argument are in the monad.

ap :: (Monad m)=m (a—b) >ma—mb
ap = LiftM2 ($)

Note that isft M2 f z y is equivalent to return f ‘ap‘ = ‘ap‘ y.

Output
Main> [(*2),(+3)] ‘ap‘ [0,1,2]
[®!2!4’3!4,5]

Main> (Just (*2)) ‘ap‘ (Just 3)
Just 6




ap

ap example

words :: String — [ String]
lookup :: (Eq a) = a — [(a,b)] = Maybe b
ap :: (Monad m) = m (a - b) > ma—>mb
man = do
let fns =
[("double", (2%)), ("halve", (‘div‘2)),
("square", (Az — z * z)), ("negate", negate),
(“incr”, (+1)), ("decr™, (+(~1))]
args < getArgs
let val = read (args ' 0)
cmds = map ((flep lookup) fns) (words (args !! 1))
print § foldl (flip ap) (Just val) cmds




Outline

@ MonadPlus functions



msum

msum definition

class Monad m = MonadPlus m where
mzero::m a
mplus::ma—>ma—ma

msum :: MonadPlus m = [m a] - m a
msum s = foldr mplus mzero s




msum

msum example

type Variable = String
type Value = String
type EnvironmentStack = [[( Variable, Value)]]
lookupVar ::

Variable — EnvironmentStack — Maybe Value
lookup Var var stack =

msum § map (lookup var) stack




guard

guard definition

guard :: MonadPlus m = Bool — m ()
guard p = if p then return () else mzero

guard example

data Record = Rec{name :: String, age :: Int}
type DB = [ Record|

getYoungerThan :: Int — DB — | Record]
getYoungerThan limit db =
mapMaybe (Ar —
do {guard (age r < limit); return r}) db




List comprehensions

Syntax 1
list = [r | x1 <- xsl, x2 <- xs2, ..., bl, b2, ...]

Syntax 2
list = do x1 <- xsl

X2 <- XS2
guard bl
guard b2

return r




	List functions
	Conditionals
	Lifting
	MonadPlus functions

