
Functional Programming

Monadic Prelude

Jevgeni Kabanov

Department of Computer Science

University of Tartu

Introduction

Previously on Functional Programming

Monadic laws

Monad class (>>= and return)

MonadPlus class (mzero and mplus)

do-notation

Maybe monad

List monad

State monad

IO monad

Overview

1 List functions

2 Conditionals

3 Lifting

4 MonadPlus functions

Introduction

Overview

Monad power comes from very high degree of abstraction

Haskell comes with a library of functions that are de�ned
across all monads

These functions correspond to control structures in most
imperartive languages

In fact given the do-notation and these functions we can
program in Haskell using imperative approach

Introduction

Overview

Monad power comes from very high degree of abstraction

Haskell comes with a library of functions that are de�ned
across all monads

These functions correspond to control structures in most
imperartive languages

In fact given the do-notation and these functions we can
program in Haskell using imperative approach

Introduction

Overview

Monad power comes from very high degree of abstraction

Haskell comes with a library of functions that are de�ned
across all monads

These functions correspond to control structures in most
imperartive languages

In fact given the do-notation and these functions we can
program in Haskell using imperative approach

Introduction

Overview

Monad power comes from very high degree of abstraction

Haskell comes with a library of functions that are de�ned
across all monads

These functions correspond to control structures in most
imperartive languages

In fact given the do-notation and these functions we can
program in Haskell using imperative approach

Outline

1 List functions

2 Conditionals

3 Lifting

4 MonadPlus functions

Monadic Prelude

sequence de�nition

sequence_ ::Monad m) [m a]! m ()
sequence_ = foldr (>>) (return ())

sequence ::Monad m) [m a]! m [a]
sequence = foldr mcons (return [])

where mcons p q =
p >>= �x ! q >>= �y ! return (x : y)

sequence

sequence example

Monads> sequence [print 1, print 2, print ’a’]
1
2
’a’
*Monads> it
[(),(),()]
*Monads> sequence_ [print 1, print 2, print ’a’]
1
2
’a’
*Monads> it
()

sequence

sequence example 3

Prelude> sequence [Just 1, Just 2, Nothing, Just 3]

sequence

sequence example 3

Prelude> sequence [Just 1, Just 2, Nothing, Just 3]
Nothing

Maybe is assymmetrical with respect to nothing!

mapM

mapM de�nition

mapM ::Monad m) (a ! m b)! [a]! m [b]
mapM f as = sequence (map f as)

mapM_ ::Monad m) (a ! m b)! [a]! m ()
mapM_ f as = sequence_ (map f as)

mapM

mapM example 1

Monads> mapM_ print [1,2,3,4,5]
1
2
3
4
5

mapM example 2

putString :: [Char]! IO ()
putString s = mapM_ putChar s

forM

forM de�nition

forM ::Monad m) [a]! (a ! m b)! m [b]
forM =
ip mapM

forM_ ::Monad m) [a]! (a ! m b)! m ()
forM_ =
ip mapM_

forM_ example

main = do
forM_ [1 : : 10] (�i ! print i)

�lterM

�lterM de�nition

�lterM ::Monad m) (a ! m Bool)! [a]! m [a]
�lterM p [] = return []
�lterM p (x : xs) = do b p x

ys �lterM p xs

return (if b then (x : ys) else ys)

�lterM example

main = do
names getArgs

dirs �lterM doesDirectoryExist names

mapM_ putStrLn dirs

foldM

foldM de�nition

foldl :: (a ! b ! a)! a ! [b]! a

foldl f z [] = z

foldl f z (x : xs) = foldl f (f z x) xs

foldM :: (Monad m)) (a ! b ! m a)! a ! [b]! m a

foldM f a [] = return a

foldM f a (x : xs) = f a x >>= �y ! foldM f y xs

Note that we lift the result of all functions under the monad.

foldM

foldM explanation

foldM f a1 [x1 ; x2 ; :::; xn] = do
a2 f a1 x1

a3 f a2 x2

:::

f an xn

foldM

foldM example

Monads> foldM (\a b ->
putStrLn (show a ++ "+" ++ show b ++

"=" ++ show (a+b)) »
return (a+b)) 0 [1..5]

0+1=1
1+2=3
3+3=6
6+4=10
10+5=15
Monads> it
15

foldM

foldM example 2

data Sheep = Sheepfname :: String ;
mother ::Maybe Sheep; father ::Maybe Sheepg

dolly :: Sheep
dolly = let
adam = Sheep "Adam" Nothing Nothing
eve = Sheep "Eve" Nothing Nothing
uranus = Sheep "Uranus" Nothing Nothing
gaea = Sheep "Gaea" Nothing Nothing
kronos = Sheep "Kronos" (Just gaea) (Just uranus)
holly = Sheep "Holly" (Just eve) (Just adam)
roger = Sheep "Roger" (Just eve) (Just kronos)
molly = Sheep "Molly" (Just holly) (Just roger)

in Sheep "Dolly" (Just molly) Nothing

foldM

foldM example 2

traceFamily ::
[(Sheep !Maybe Sheep)]! Sheep !Maybe Sheep

traceFamily l s = foldM (
ip ($)) s l

paternalGrandmother =
traceFamily [father ;mother]

mothersPaternalGrandfather =
traceFamily [mother ; father ; father]

Output:

*Main> paternalGrandmother dolly
Nothing
*Main> mothersPaternalGrandfather dolly
Just "Kronos"

foldM

Map de�nition

data Map k a

empty ::Map k a

insert ::Ord k) k ! a !Map k a !Map k a

lookup :: (Monad m ;Ord k)) k !Map k a ! m a

toList ::Map k a ! [(k ; a)]

foldM

foldM example 3

data Entry = Entryfkey :: String ; value :: String g
type Dict = Map String String

addEntry ::Dict ! Entry ! Dict

addEntry d e = insert (key e) (value e) d

addDataFromFile ::Dict ! Handle ! IO Dict

addDataFromFile dict hdl = do
contents hGetContents hdl

entries return (map read (lines contents))
return (foldl (addEntry) dict entries)

foldM

foldM example 3

main :: IO ()
main = do
�les getArgs

handles mapM openForReading �les

dict foldM addDataFromFile empty handles

print (toList dict)

join

join de�nition

join :: (Monad m)) m (m a)! m a

join x = x >>= id

Note that x >>= f = (join � fmap f) x .

join example

Monads> join (Just (Just ’a’))
Just ’a’
Monads> join (return (putStrLn "hello"))
hello
Monads> return (putStrLn "hello")
Monads> join [[1,2,3],[4,5]]
[1,2,3,4,5]

Outline

1 List functions

2 Conditionals

3 Lifting

4 MonadPlus functions

when

when and unless de�nition

when :: (Monad m)) Bool ! m ()! m ()
when p s = if p then s else return ()

unless :: (Monad m)) Bool ! m ()! m ()
unless p s = when (: p) s

when example

Monads> mapM_ (\l -> when (not $ null l) (putStrLn l))
["","abc","def","","","ghi"]

abc
def
ghi

Outline

1 List functions

2 Conditionals

3 Lifting

4 MonadPlus functions

liftM

liftM and liftM2 de�nition

liftM :: (Monad m)) (a ! b)! (m a ! m b)
liftM f = �a ! do fa 0 a ; return (f a 0)g

liftM2 :: (Monad m))
(a ! b ! c)! (m a ! m b ! m c)

liftM2 f =
�a b ! do fa 0 a ; b0 b; return (f a 0 b0)g

Lifting allows to apply pure functions point-free to
monadic values

Together with monadic bind it constitutes a functional
approach as apposed to the do-notation

liftM

liftM and liftM2 de�nition

liftM :: (Monad m)) (a ! b)! (m a ! m b)
liftM f = �a ! do fa 0 a ; return (f a 0)g

liftM2 :: (Monad m))
(a ! b ! c)! (m a ! m b ! m c)

liftM2 f =
�a b ! do fa 0 a ; b0 b; return (f a 0 b0)g

Lifting allows to apply pure functions point-free to
monadic values

Together with monadic bind it constitutes a functional
approach as apposed to the do-notation

liftM

liftM and liftM2 de�nition

liftM :: (Monad m)) (a ! b)! (m a ! m b)
liftM f = �a ! do fa 0 a ; return (f a 0)g

liftM2 :: (Monad m))
(a ! b ! c)! (m a ! m b ! m c)

liftM2 f =
�a b ! do fa 0 a ; b0 b; return (f a 0 b0)g

Lifting allows to apply pure functions point-free to
monadic values

Together with monadic bind it constitutes a functional
approach as apposed to the do-notation

liftM

liftM example 1

getName :: String !Maybe String

getName name = do
let db =

[("John"; "Smith, John");
("Mike"; "Caine, Michael")]

tempName lookup name db

return (swapNames tempName)

Can be rewritten as:

getName name = do
let db = :::

liftM swapNames (lookup name db)

liftM

liftM example 2

addDataFromFile ::Dict ! Handle ! IO Dict

addDataFromFile dict hdl = do
contents hGetContents hdl

entries return (map read (lines contents))
return (foldl (addEntry) dict entries)

Can be rewritten as:

addDataFromFile dict =
liftM (foldl addEntry dict �map read � lines)
� hGetContents

liftM

liftM2 example 1

What does this do?

allCombinations :: (a ! a ! a)! [[a]]! [a]
allCombinations fn [] = []
allCombinations fn (l : ls) = foldl (liftM2 fn) l ls

liftM

liftM2 example 1

What does this do?

allCombinations :: (a ! a ! a)! [[a]]! [a]
allCombinations fn [] = []
allCombinations fn (l : ls) = foldl (liftM2 fn) l ls

Output

Main> allCombinations (+) [[0,1],[1,2,3]]
[0+1,0+2,0+3,1+1,1+2,1+3] = [1,2,3,2,3,4]
Main> allCombinations (*) [[0,1],[1,2],[3,5]]
[0+1,0+2,0+3,1+1,1+2,1+3] = [0,0,0,0,3,5,6,10]

ap

ap de�nition

ap helps when both function and argument are in the monad.

ap :: (Monad m)) m (a ! b)! m a ! m b

ap = liftM2 ($)

Note that liftM2 f x y is equivalent to return f `ap` x `ap` y .

Output

Main> [(*2),(+3)] ‘ap‘ [0,1,2]
[0,2,4,3,4,5]
Main> (Just (*2)) ‘ap‘ (Just 3)
Just 6

ap

ap example

words :: String ! [String]
lookup :: (Eq a)) a ! [(a ; b)]!Maybe b

ap :: (Monad m)) m (a ! b)! m a ! m b

main = do
let fns =

[("double"; (2�)); ("halve"; (`div `2));
("square"; (�x ! x � x)); ("negate";negate);
("incr"; (+1)); ("decr"; (+(�1)))]

args getArgs

let val = read (args !! 0)
cmds = map ((
ip lookup) fns) (words (args !! 1))

print $ foldl (
ip ap) (Just val) cmds

Outline

1 List functions

2 Conditionals

3 Lifting

4 MonadPlus functions

msum

msum de�nition

class Monad m)MonadPlus m where
mzero ::m a

mplus ::m a ! m a ! m a

msum ::MonadPlus m) [m a]! m a

msum xs = foldr mplus mzero xs

msum

msum example

type Variable = String

type Value = String

type EnvironmentStack = [[(Variable ;Value)]]

lookupVar ::
Variable ! EnvironmentStack !Maybe Value

lookupVar var stack =
msum $map (lookup var) stack

guard

guard de�nition

guard ::MonadPlus m) Bool ! m ()
guard p = if p then return () else mzero

guard example

data Record = Recfname :: String ; age :: Int g
type DB = [Record]

getYoungerThan :: Int ! DB ! [Record]
getYoungerThan limit db =
mapMaybe (�r !

do fguard (age r < limit); return r g) db

List comprehensions

Syntax 1

list = [r | x1 <- xs1, x2 <- xs2, ..., b1, b2, ...]

Syntax 2

list = do x1 <- xs1
x2 <- xs2
...
guard b1
guard b2
...
return r

	List functions
	Conditionals
	Lifting
	MonadPlus functions

