
Functional Programming

Continuation Monad and Monad Transformers

Jevgeni Kabanov

Department of Computer Science

University of Tartu

Introduction

Previously on Functional Programming

Monadic laws

Monad class (>>= and return)

MonadPlus class (mzero and mplus)

do-notation

Maybe, List and State monads

IO monad

Monadic Prelude

Introduction

Previously on Functional Programming

Monadic laws

Monad class (>>= and return)

MonadPlus class (mzero and mplus)

do-notation

Maybe, List and State monads

IO monad

Monadic Prelude

Overview

1 Cont monad

2 Monadic Transformers

Outline

1 Cont monad

2 Monadic Transformers

Continuations

square example 1

No continuations:

square :: Int ! Int

square x = x " 2

main = do
let x = square 4
print x

Continuations

square example 2

Continuation-passing style:

square :: Int ! (Int ! a)! a

square x k = k (x " 2)

main = square 4 print

Cont

Cont de�nition

newtype Cont r a = ContfrunCont :: (a ! r)! r g

square example 3

Continuation hidden behind a monad:

square :: Int ! Cont r Int

square x = return (x " 2)

main = runCont (square 4) print

Cont

Cont de�nition

newtype Cont r a = ContfrunCont :: (a ! r)! r g

instance Monad (Cont r) where
return a = �k ! k a

m >>= f = �k ! m (�a ! f a k)

Cont

Cont de�nition

newtype Cont r a = ContfrunCont :: (a ! r)! r g

instance Monad (Cont r) where
return a = Cont $ �k ! k a

(Cont c) >>= f =
Cont $ �k ! c (�a ! runCont (f a) k)

Since Cont is a newtype!

Cont

square example 4

What is the result?

square :: Int ! Cont r Int

square x = return (x " 2)

addThree :: Int ! Cont r Int

addThree x = return (x + 3)

main = runCont (square 4 >>= addThree) print

Cont

square example 4

What is the result?

square :: Int ! Cont r Int

square x = return (x " 2)

addThree :: Int ! Cont r Int

addThree x = return (x + 3)

main = runCont (square 4 >>= addThree) print

Output

Main> main
19

callCC

callCC de�nition

callCC captures the current continuation and passes it as an
argument.

callCC :: ((a ! Cont r b)! Cont r a)! Cont r a

callCC

callCC example 1

k is the current continuation, calling k causes immediate return.

callCC :: ((a ! Cont r b)! Cont r a)! Cont r a

bar ::Cont r Int
bar = callCC $ �k ! do

let n = 5
k n

return 25

main = runCont bar print

Always prints 5.

callCC

callCC example 2

foo :: Int ! Cont r String

foo n =
callCC $ �k ! do

let n 0 = n " 2 + 3
when (n 0 > 20) $ k "over twenty"
return (show $ n 0 � 4)

Output

Main> runCont (foo 5) print
over twenty
Main> runCont (foo 4) print
15

callCC

callCC example 3

Exceptions are simpler than continuations:

divExcpt x y handler =
callCC $ �ok ! do
err callCC $ �notOk ! do
when (y � 0) $ notOk "Denominator 0"
ok $ x `div ` y

handler err

Output

Main> runCont (divExcpt 10 2 error) id
5
Main>runCont (divExcpt 10 0 error) id
*** Exception: Denominator 0

callCC

callCC example 4

fun :: Int -> String
fun n = (‘runCont‘ id) $ do
str <- callCC $ \exit1 -> do
when (n < 10) (exit1 (show n))
let ns = map digitToInt (show (n ‘div‘ 2))
n’ <- callCC $ \exit2 -> do
when ((length ns) < 3) (exit2 (length ns))
when ((length ns) < 5) (exit2 n)
when ((length ns) < 7) $ do
let ns’ = map intToDigit (reverse ns)
exit1 (dropWhile (==’0’) ns’)

return $ sum ns
return $ "(ns = " ++ (show ns) ++ ") " ++ (show n’)

return $ "Answer: " ++ str

callCC

callCC example 4

Input (n) Output List Shown

0-9 n none
10-199 number of digits in (n/2) digits of (n/2)
200-19999 n digits of (n/2)
20000-1999999 (n/2) backwards none
>= 2000000 sum of digits of (n/2) digits of (n/2)

callCC

callCC de�nition 2

class (Monad m))MonadCont m where
callCC :: ((a ! m b)! m a)! m a

instance MonadCont (Cont r) where
callCC f =
Cont $ �k ! runCont (f (�a ! Cont $ � ! k a)) k

Outline

1 Cont monad

2 Monadic Transformers

Monadic Transformers

Outline

We will begin by simplifying the previous example

Then we will try to enhance it by adding some IO

Finally we will generalize the approach to arbitrary monads

Monadic Transformers

Outline

We will begin by simplifying the previous example

Then we will try to enhance it by adding some IO

Finally we will generalize the approach to arbitrary monads

Monadic Transformers

Outline

We will begin by simplifying the previous example

Then we will try to enhance it by adding some IO

Finally we will generalize the approach to arbitrary monads

IO + Cont

Example 1

fun :: Int -> String
fun n = (‘runCont‘ id) $ do
str <- callCC $ \exit1 -> do
when (n < 10) (exit1 (show n))
let ns = map digitToInt (show (n ‘div‘ 2))
n’ <- callCC $ \exit2 -> do
when ((length ns) < 5) (exit2 n)
return $ sum ns

return $ "(ns = " ++ (show ns) ++ ") " ++ (show n’)
return $ "Answer: " ++ str

IO + Cont

Example 1

Input (n) Output List Shown

0-9 n none
10-199 number of digits in (n/2) digits of (n/2)
10-19999 n digits of (n/2)
20000-1999999 (n/2) backwards none
>= 20000 sum of digits of (n/2) digits of (n/2)

IO + Cont

Example 2

The easiest way to add IO is to nest Cont inside IO :

fun :: IO String
fun = do n <- (readLn::IO Int)
return $ (‘runCont‘ id) $ do
str <- callCC $ \exit1 -> do
when (n < 10) (exit1 (show n))
let ns = map digitToInt (show (n ‘div‘ 2))
n’ <- callCC $ \exit2 -> do
when ((length ns) < 5) (exit2 n)
return $ sum ns

return $ "(ns = " ++ (show ns) ++ ") " ++ (show n’)
return $ "Answer: " ++ str

IO + Cont

Adding IO

What do we do when we need to use IO inside Cont
monad?

We could try to just lift the continuation result value into
IO

toIO de�nition

toIO :: a ! IO a

toIO x = return x

IO + Cont

Adding IO

What do we do when we need to use IO inside Cont
monad?

We could try to just lift the continuation result value into
IO

toIO de�nition

toIO :: a ! IO a

toIO x = return x

IO + Cont

Adding IO

What do we do when we need to use IO inside Cont
monad?

We could try to just lift the continuation result value into
IO

toIO de�nition

toIO :: a ! IO a

toIO x = return x

IO + Cont

Example 1

fun :: Int -> String
fun n = (‘runCont‘ id) $ do
str <- callCC $ \exit1 -> do
when (n < 10) (exit1 (show n))
let ns = map digitToInt (show (n ‘div‘ 2))
n’ <- callCC $ \exit2 -> do
when ((length ns) < 5) (exit2 n)
return $ sum ns

return $ "(ns = " ++ (show ns) ++ ") " ++ (show n’)
return $ "Answer: " ++ str

IO + Cont

Example 4

fun :: Int -> IO String
fun n = (‘runCont‘ id) $ do
str <- callCC $ \exit1 -> do
when (n < 10) (exit1 $ toIO (show n))
let ns = map digitToInt (show (n ‘div‘ 2))
n’ <- callCC $ \exit2 -> do
when ((length ns) < 5) (exit2 $
do putStrLn "Enter a number:"
x <- (readLn::IO Int)
return x)

return (toIO (sum ns))
return $
do num <- n’
return $ "(ns = " ++ (show ns) ++ ") " ++ (show num)

return $ do s <- str
return $ "Answer: " ++ s

IO + Cont

Adding IO 2

This adds useless conversions to/from IO

We would IO only where actually needed

This is where monadic transformers come in

liftIO de�nition

liftIO allows to run IO code inside a monad.

class (Monad m))MonadIO m where
liftIO :: IO a ! m a

IO + Cont

Adding IO 2

This adds useless conversions to/from IO

We would IO only where actually needed

This is where monadic transformers come in

liftIO de�nition

liftIO allows to run IO code inside a monad.

class (Monad m))MonadIO m where
liftIO :: IO a ! m a

IO + Cont

Adding IO 2

This adds useless conversions to/from IO

We would IO only where actually needed

This is where monadic transformers come in

liftIO de�nition

liftIO allows to run IO code inside a monad.

class (Monad m))MonadIO m where
liftIO :: IO a ! m a

IO + Cont

Adding IO 2

This adds useless conversions to/from IO

We would IO only where actually needed

This is where monadic transformers come in

liftIO de�nition

liftIO allows to run IO code inside a monad.

class (Monad m))MonadIO m where
liftIO :: IO a ! m a

IO + Cont

Example 2

fun :: IO String
fun = do n <- (readLn::IO Int)
return $ (‘runCont‘ id) $ do
str <- callCC $ \exit1 -> do
when (n < 10) (exit1 (show n))
let ns = map digitToInt (show (n ‘div‘ 2))
n’ <- callCC $ \exit2 -> do
when ((length ns) < 5) (exit2 n)
return $ sum ns

return $ "(ns = " ++ (show ns) ++ ") " ++ (show n’)
return $ "Answer: " ++ str

IO + Cont

Example 5

fun :: IO String
fun = (‘runContT‘ return) $ do
n <- liftIO (readLn::IO Int)
str <- callCC $ \exit1 -> do
when (n < 10) (exit1 (show n))
let ns = map digitToInt (show (n ‘div‘ 2))
n’ <- callCC $ \exit2 -> do
when ((length ns) < 5) $ do
liftIO $ putStrLn "Enter a number:"
x <- liftIO (readLn::IO Int)
exit2 x

return $ sum ns
return $ "(ns = " ++ (show ns) ++ ") " ++ (show n’)

return $ "Answer: " ++ str

Transformers

MonadTrans

class MonadTrans t where
lift :: (Monad m)) m a ! t m a

class (Monad m))MonadIO m where
liftIO :: IO a ! m a

Instances

Monad Transformer Original Combined

Error ErrorT Either e a m (Either e a)

State StateT s ! (a ; s) s ! m (a ; s)

Reader ReaderT r ! a r ! m a

[] ListT [a] m [a]

Cont ContT (a ! r)! r (a ! m r)! m r

Transformers

StateT de�nition

newtype StateT s m a =
StateTfrunStateT :: (s ! m (a ; s))g

instance (Monad m))Monad (StateT s m) where
return a = StateT $ �s ! return (a ; s)
(StateT x) >>= f = StateT $ �s ! do

(v ; s 0) x s

(StateT x 0) return $ f v
x 0 s 0

instance (Monad m))MonadState s (StateT s m) where
get = StateT $ �s ! return (s ; s)
put s = StateT $ � ! return ((); s)

instance MonadTrans (StateT s) where
lift c = StateT $ �s ! c >>= (�x ! return (x ; s))

Transformers

Intermission

Transformers wrap monads to create combined monads

Transformer combined with Identity monad is same as
original. E.g. StateT s Identity is same as State s

Order is important. StateT s (Either e) with type
s ! Either e (a ; s) is di�erent from ErrorT e (State s)
with type s ! (Either e a ; s)

Transformer bind is combined, so all monads end up
bound. E.g. StateT s [] with type s ! [(a ; s)] will bind
both state and list, producing a list of both values and
state on every bind.

We still need to run inner monads. ContT r IO a will
produce (a ! IO r)! IO r , so we need to runContT
�rst and bind IO later

liftIO is just lift specialized for IO monad

Transformers

Intermission

Transformers wrap monads to create combined monads

Transformer combined with Identity monad is same as
original. E.g. StateT s Identity is same as State s

Order is important. StateT s (Either e) with type
s ! Either e (a ; s) is di�erent from ErrorT e (State s)
with type s ! (Either e a ; s)

Transformer bind is combined, so all monads end up
bound. E.g. StateT s [] with type s ! [(a ; s)] will bind
both state and list, producing a list of both values and
state on every bind.

We still need to run inner monads. ContT r IO a will
produce (a ! IO r)! IO r , so we need to runContT
�rst and bind IO later

liftIO is just lift specialized for IO monad

Transformers

Intermission

Transformers wrap monads to create combined monads

Transformer combined with Identity monad is same as
original. E.g. StateT s Identity is same as State s

Order is important. StateT s (Either e) with type
s ! Either e (a ; s) is di�erent from ErrorT e (State s)
with type s ! (Either e a ; s)

Transformer bind is combined, so all monads end up
bound. E.g. StateT s [] with type s ! [(a ; s)] will bind
both state and list, producing a list of both values and
state on every bind.

We still need to run inner monads. ContT r IO a will
produce (a ! IO r)! IO r , so we need to runContT
�rst and bind IO later

liftIO is just lift specialized for IO monad

Transformers

Intermission

Transformers wrap monads to create combined monads

Transformer combined with Identity monad is same as
original. E.g. StateT s Identity is same as State s

Order is important. StateT s (Either e) with type
s ! Either e (a ; s) is di�erent from ErrorT e (State s)
with type s ! (Either e a ; s)

Transformer bind is combined, so all monads end up
bound. E.g. StateT s [] with type s ! [(a ; s)] will bind
both state and list, producing a list of both values and
state on every bind.

We still need to run inner monads. ContT r IO a will
produce (a ! IO r)! IO r , so we need to runContT
�rst and bind IO later

liftIO is just lift specialized for IO monad

Transformers

Intermission

Transformers wrap monads to create combined monads

Transformer combined with Identity monad is same as
original. E.g. StateT s Identity is same as State s

Order is important. StateT s (Either e) with type
s ! Either e (a ; s) is di�erent from ErrorT e (State s)
with type s ! (Either e a ; s)

Transformer bind is combined, so all monads end up
bound. E.g. StateT s [] with type s ! [(a ; s)] will bind
both state and list, producing a list of both values and
state on every bind.

We still need to run inner monads. ContT r IO a will
produce (a ! IO r)! IO r , so we need to runContT
�rst and bind IO later

liftIO is just lift specialized for IO monad

Transformers

Intermission

Transformers wrap monads to create combined monads

Transformer combined with Identity monad is same as
original. E.g. StateT s Identity is same as State s

Order is important. StateT s (Either e) with type
s ! Either e (a ; s) is di�erent from ErrorT e (State s)
with type s ! (Either e a ; s)

Transformer bind is combined, so all monads end up
bound. E.g. StateT s [] with type s ! [(a ; s)] will bind
both state and list, producing a list of both values and
state on every bind.

We still need to run inner monads. ContT r IO a will
produce (a ! IO r)! IO r , so we need to runContT
�rst and bind IO later

liftIO is just lift specialized for IO monad

Transformers

Example 6

The Kalotans are a tribe with a peculiar quirk: their males
always tell the truth. Their females never make two consecutive
true statements, or two consecutive untrue statements. An
anthropologist (let's call him Worf) has begun to study them.
Worf does not yet know the Kalotan language. One day, he
meets a Kalotan (heterosexual) couple and their child Kibi.
Worf asks Kibi: �Are you a boy?� The kid answers in Kalotan,
which of course Worf doesn't understand. Worf turns to the
parents (who know English) for explanation. One of them says:
"Kibi said: `I am a boy.'" The other adds: "Kibi is a girl. Kibi
lied." Solve for the sex of Kibi and the sex of each parent.

	Cont monad
	Monadic Transformers

