Functional Programming
QuickCheck: Automated Random Testing

Jevgeni Kabanov

Department of Computer Science
University of Tartu

Random Testing

Outline
o Testing is very important in programming

Random Testing

Outline
o Testing is very important in programming
o In JUnit and alike we collect test cases that are
prearranged argument-result pairs

Random Testing

Outline
o Testing is very important in programming
o In JUnit and alike we collect test cases that are
prearranged argument-result pairs
o In Hasgkell there is HUnit which does the same

Random Testing

Outline
o Testing is very important in programming
o In JUnit and alike we collect test cases that are
prearranged argument-result pairs
o In Hasgkell there is HUnit which does the same
o However we could do better

Random Testing

Outline
o Testing is very important in programming
o In JUnit and alike we collect test cases that are
prearranged argument-result pairs
o In Hasgkell there is HUnit which does the same
o However we could do better

— Since functions are pure we can test them against
properties

Random Testing

Outline
o Testing is very important in programming
o In JUnit and alike we collect test cases that are
prearranged argument-result pairs
o In Hasgkell there is HUnit which does the same

o However we could do better
— Since functions are pure we can test them against
properties
— Since data types are structural we can try generating
random data samples

Random Testing

Outline
o Testing is very important in programming
o In JUnit and alike we collect test cases that are
prearranged argument-result pairs
o In Hasgkell there is HUnit which does the same
o However we could do better

— Since functions are pure we can test them against
properties

— Since data types are structural we can try generating
random data samples

o Random testing enjoys some of the benefits of formal
verification without nearly as much pain!

reverse examples

Property
We concatenated in a wrong order:

propRevApp2 :: [Int] — [Int] — Bool
propRevApp2 zs ys =
reverse (zs H ys) = reverse ys + reverse s

reverse examples

Property
We concatenated in a wrong order:

propRevApp2 :: [Int] — [Int] — Bool
propRevApp2 zs ys =
reverse (zs H ys) = reverse ys + reverse s

Output

Test> quickCheck propRevApp2
OK, passed 100 tests.

reverse examples

Property
Let’s check if you can reverse before concatenating:

propRevAppl ::[Int] — [Int] — Bool
propRevAppl zs ys =
reverse (s H ys) = reverse s H reverse ys

reverse examples

Property
Let’s check if you can reverse before concatenating:
propRevAppl ::[Int] — [Int] — Bool

propRevAppl zs ys =
reverse (s H ys) = reverse s H reverse ys

Output

Test> quickCheck propRevAppl
Falsifiable, after 4 tests:
[-3,-4,-4]

[-4,-1,1,1]

Distribution examples

Property

The following property asserts that addition and multiplication
distribute:

propDistributivel :: Int — Int — Int — Bool
propDistributivel a b ¢ =
ax(b+c)=(a*xb)+ (axc)

Distribution examples

Property

The following property asserts that addition and multiplication
distribute:

propDistributivel :: Int — Int — Int — Bool
propDistributivel a b ¢ =
ax(b+c)=(a*xb)+ (axc)

Output

Test> propDistributivel
OK, passed 100 tests.

Distribution examples

Property
The same property for Floats fails:

propDistributiveF :: Float — Float — Float — Bool
propDistributiveF a b ¢ =
ax(b+c)=(axb)+ (axc)

Distribution examples

Property
The same property for Floats fails:

propDistributiveF :: Float — Float — Float — Bool
propDistributiveF a b ¢ =
ax(b+c)=(axb)+ (axc)

Output

Test> quickCheck propDistributiveF
Falsifiable, after 7 tests:

3.0

-2.666667

3.75

insert and ordered

Definition

For the next several slides we will consider a function which
inserts an element into an ordered list.

wnsert e (z:zs) =
if e <z then e:z:zs else z: (insert e zs)
wmsert e [] = [e]

ordered tests whether the list is ordered:

ordered :: Ord a = [a] — Bool
ordered [| = True
ordered (z :[]) = True
ordered (z1 :z2:zs) =
if z1 < z2 then ordered (z2 : zs)
else False

insert examples

Property

We would want to test whether :nsert works, but this has point
only on ordered lists:

propInsertl :: Int — [Int] — Bool
proplnsertl = s =
if ordered zs
then ordered (insert z zs)
else True

Since QuickCheck does not work on polymorphic types we
choose Ints here.

insert examples

Property

We would want to test whether :nsert works, but this has point
only on ordered lists:

propInsertl :: Int — [Int] — Bool
proplnsertl = s =
if ordered zs
then ordered (insert z zs)
else True

Since QuickCheck does not work on polymorphic types we
choose Ints here.

Output

Test> propInsertl
OK, passed 100 tests.

insert examples

Property

But did this actually tell us anything? How do we know how
many lists were ordered?

propInsert2 :: Int — [Int] — Property
proplnsert2 = s =
(length zs = 0 V — (ordered zs)) ‘trivial’
if ordered zs
then ordered (insert T s)
else True

insert examples

Property

But did this actually tell us anything? How do we know how
many lists were ordered?

propInsert2 :: Int — [Int] — Property
proplnsert2 = s =
(length zs = 0 V — (ordered zs)) ‘trivial’
if ordered zs
then ordered (insert T s)
else True

Output

*Test> quickCheck propInsert?2
OK, passed 100 tests (82% trivial).

insert examples

Property

==> is the QuickCheck combinator that makes it test only the
fitting values:

propInsertd :: Int — [Int] — Property
proplnsert3 = s =
ordered zs ==> ordered (insert = zs)

insert examples

Property

==> is the QuickCheck combinator that makes it test only the
fitting values:

propInsertd :: Int — [Int] — Property
proplnsert3 = s =
ordered zs ==> ordered (insert = zs)

Output

Test> propInsert3
OK, passed 100 tests.

insert examples

Property

How well do we actually test? Can this pass?
msBad a [] =[a]
msBad a y

| (length y) >4 =y H[a]

| otherwise = insert a y
propInsertBadl :: Int — [Int] — Property
propInsertBadl = s =

ordered s ==> ordered (insBad T zs)

insert examples

Property

How well do we actually test? Can this pass?
msBad a [] =[a]
msBad a y

| (length y) >4 =y H[a]

| otherwise = insert a y
propInsertBadl :: Int — [Int] — Property
propInsertBadl = s =

ordered s ==> ordered (insBad T zs)

Output

Test> quickCheck propInsertBadl
OK, passed 100 tests.

insert examples

Property

propInsertBad2 :: Int — [Int] — Property
propInsertBad2 x zs =
ordered TS ==
collect (length zs) $ ordered (insBad z zs)

insert examples

Property

propInsertBad2 :: Int — [Int] — Property
propInsertBad2 x zs =
ordered s ==>
collect (length zs) $ ordered (insBad z zs)

Output

Test> quickCheck propInsertBad?2
OK, passed 100 tests.

53% 0.

24% 1.

14% 2.

8% 3.

1% 4.

insert examples

Property

propInsertBad3 :: Int — [Int] — Property
propInsertBads x zs =
ordered TS ==
classify (ordered (z : zs)) "at-head" $
classify (ordered (zs H [z])) "at-tail" §
ordered (insBad z zs)

insert examples

Property

propInsertBad3 :: Int — [Int] — Property
propInsertBads x zs =
ordered TS ==
classify (ordered (z : zs)) "at-head" $
classify (ordered (zs H [z])) "at-tail" §
ordered (insBad z zs)

Output

Test> quickCheck propInsertBad3
OK, passed 100 tests.

53% at-head, at-tail.

20% at-tail.

20% at-head.

Generators

Outline

o We test mostly trivial or very simple cases (only one insert
in the middle of the list!)

Generators

Outline

o We test mostly trivial or very simple cases (only one insert
in the middle of the list!)

@ Just checking whether list is ordered is not enough!

Generators

Outline

o We test mostly trivial or very simple cases (only one insert
in the middle of the list!)

@ Just checking whether list is ordered is not enough!

@ We need a way to generate ordered lists!

Gen a

Definition

Generators are instances of the Monad class with the
(simplified) concrete representation:

newtype Gen a = Gen (Rand — a)

The types of bind and return suggest we can use them as
combinators to build complex generators out of simpler ones:

return :: a — Gen a
(»>=):Gena — (a— Gen b) —» Gen b

Arbitrary a

Definition

The type class Arbitrary a denotes types for which we can
generate random values:

class Arbitrary a where
arbitrary :: Gen a

And these values are used in a property by applying forAll:

forAll:: (Show a, Testable b) =
Gen a — (a — b) — Property

Arbitrary instances

Definition
Given a function choose :: (Int, Int) — Gen Int, we write:

instance Arbitrary Int where
arbitrary = choose (—42,42)

We can use the built-in lsffM2 monad function to add pairs to
the Arbitrary class.

instance (Arbitrary a, Arbitrary b) =
Arbitrary (a, b) where
arbitrary = LftM2 (,) arbitrary arbitrary

Enumeration generator

Definition

The oneof ::[Gen a] — Gen a combinator randomly selects
one generator from a list. Elements are weighted equally.

data Prof = Steve | Stephanie | Benjamin
instance Arbitrary Prof where
arbitrary = oneof
[return Steve, return Stephanie, return Benjamin |

We can also define Arbitrary [a] using oneof:

instance Arbitrary a = Arbitrary [a] where
arbitrary = oneof
[return [], iftM2 (:) arbitrary arbitrary]

List generator

Definition

Our previous instantiation of Arbitrary [a] created empty lists
half the time. To fix this we use
frequency :: [(Int, Gen a)] — Gen a:

instance Arbitrary a = Arbitrary [a] where
arbitrary = frequency
[(1, return []),
(4, iftM2 (:) arbitrary arbitrary)]

Trees generator

Definition
We can also instantiate a tree generator:

data Tree a = Leaf a | Branch (Tree a) (Tree a)
instance Arbitrary a =
Arbitrary Tree a where
arbitrary = frequency
[(1, LiftM Leaf arbitrary),
(2, LiftM2 Branch arbitrary arbitrary)]

Trees generator

Definition
We can also instantiate a tree generator:

data Tree a = Leaf a | Branch (Tree a) (Tree a)
instance Arbitrary a =
Arbitrary Tree a where
arbitrary = frequency
[(1, LiftM Leaf arbitrary),
(2, LiftM2 Branch arbitrary arbitrary)]

What’s wrong with this definition?

Sized generators

Definition

We can ensure generated data structures have finite size by
adding an explicit size parameter to Gen a. Our deiiAnition
becomes

newtype Gen a = Gen (Int — Rand — a)
and is used with a new combinator:

sized :: (Int — Gen a) — Gen a

Tree generator

Definition

The following tree deitAnition will produce a trees with no
more elements than the parameter to arbTree. Note that this
parameter is passed in by sized and is a global constant.

data Tree a = Leaf a | Branch (Tree a) (Tree a)
instance Arbitrary a =

Arbitrary Tree a where

arbitrary = sized arbTree

arbTree 0 = lift M Leaf arbitrary
arbTree n = frequency
[(1, loftM Leaf arbitrary),
(2, ift M2 Branch
(arbTree (n ‘div‘ 2))
(arbTree (n ‘diwv‘ 2)))]

insert examples

Definition
Back to our problem:

msBad a [] =[a]
msBad a y

| (length y) >4 =y H[a]

| otherwise = insert a y
propInsertBadl :: Int — [Int] — Property
propInsertBadl = s =

ordered s ==> ordered (insBad z zs)

Output

Test> quickCheck propInsertBadl
OK, passed 100 tests.

orderedL1st

Definition
Now we can define orderedList generator:

orderedL1st = do
a « frequency [(1, return []),
(7, iftM2 (:) arbitrary arbitrary)]
return (sort a)

Example

Definition
And finally fail the example!

propInsertBad :: Int — Property
proplnsertBad4 T =
forAll orderedList § Axzs — ordered (insBad = zs)

Output

*Test> quickCheck propInsertBad4
Falsifiable, after 10 tests:

-6

[-8,-4,-3,0,5]

Infinite Structures

Definition
Infinite structures will cause infinite loops:

propDoubleCyclel :: [Int] — Property
propDoubleCyclel zs =
= (null zs) ==
cycle zs = cycle (zs + zs)

Infinite Structures

Definition
However we can control them up to any finite size:

propDoubleCycle2 :: [Int] — Int — Property
propDoubleCycle2 zs n =
“(nullzs) An>0==>
take n (cycle zs) = take n (cycle (zs + zs))

Functions

Definition

Let’s try to define random functions by throwing away the
input and generating a random result. In this case:

propFuncl :: (Int — Int) — Int — Bool
propFuncl fz =(fo(+2)) z =(fo(x2) <

Output
Test> quickCheck propFuncl OK, passed 100 tests.

Functions

Outline

@ We need a functional dependency between input and
output, or we can get wrong results

Functions

Outline

@ We need a functional dependency between input and
output, or we can get wrong results

o Type of Gen (a — b) is Int - Rand — a — b

Functions

Outline

@ We need a functional dependency between input and
output, or we can get wrong results

o Type of Gen (a — b) is Int - Rand — a — b
— This is equivalent to a — Int — Rand — b

Functions

Outline
@ We need a functional dependency between input and
output, or we can get wrong results
o Type of Gen (a — b) is Int - Rand — a — b

— This is equivalent to a — Int — Rand — b
- And ¢ -+ Gen b

Functions

Outline
@ We need a functional dependency between input and
output, or we can get wrong results
o Type of Gen (a — b) is Int - Rand — a — b
— This is equivalent to a — Int — Rand — b
- And ¢ -+ Gen b

o It’s not clear we can make a value of one type into a
generator for another.

Functions

Outline

@ We need a functional dependency between input and
output, or we can get wrong results

o Type of Gen (a — b) is Int - Rand — a — b
— This is equivalent to a — Int — Rand — b
- And ¢ -+ Gen b

o It’s not clear we can make a value of one type into a
generator for another.

— However maybe we can use arbitrary Ints to transform
generators with variant :: Int — Gen a — Gen a.

Functions

Outline

@ We need a functional dependency between input and
output, or we can get wrong results

o Type of Gen (a — b) is Int - Rand — a — b
— This is equivalent to a — Int — Rand — b
— And a = Gen b

o It’s not clear we can make a value of one type into a
generator for another.
— However maybe we can use arbitrary Ints to transform

generators with variant :: Int — Gen a — Gen a.

— We can certainly make specific types into Ints:

coarbitrary b =if b
then variant 1
else variant 0

Functions

Outline

o In Haskell, the right way to generalize this is with a type
class.

class Coarbitrary a where
coarbitrary :: a — Gen b — Gen b

Functions

Outline

o In Haskell, the right way to generalize this is with a type
class.

class Coarbitrary a where
coarbitrary :: a — Gen b — Gen b

o We then define Arbitrary in terms of Coarbitrary (and a
helper function to match the types).

instance (Coarbitrary a, Arbitrary b) =
Arbitrary (a — b) where
arbitrary =
promote (Aa — coarbitrary a arbitrary)

Functions
Definition

variant :: Int - Gen a — Gen a
variant v (Gen m) =
Gen (An r — m n (rands r ! (v + 1)))
where
rands r0 = r1 : rands r2 where (71, 72) = split r0
promote :: (a — Gen b) — Gen (a — b)
promote f =
Gen(Anr —>Xa—let Genm=fainmmnr)

Functions

Definition

instance Coarbitrary Bool where
coarbitrary b =
if b then variant 0 else variant 1

instance Coarbitrary Int where
coarbitrary n =
variant (if n > 0 then 2 x n else 2% (—n) + 1)

instance Coarbitrary Char where
coarbitrary ¢ = variant (ord c)

Functions

Definition
And back to the example:

propFuncl :: (Int — Int) — Int — Bool
propFuncl fz =(fo(42))z=(fo(%2) z

Output

*Test> quickCheck propFuncl
Falsifiable, after 0 tests:
*function®

-3

Implementation

Definition

newtype Property = Prop (Gen Result)
class Testable a where

property :: a — Property
instance Testable Bool where

property b = Prop (return $ resultBool b)
instance Testable Property where

property prop = prop
instance (Arbitrary a, Show a, Testable b) =

Testable (a — b) where

property f = forAll arbitrary f

Testing Monads

Outline
o It is impossible to random test /O monad

Testing Monads

Outline
o It is impossible to random test /O monad

@ ST monad can be tested by randomly generating lists of
actions

Testing Monads

Outline
o It is impossible to random test /O monad

@ ST monad can be tested by randomly generating lists of
actions

o It is not too comfortable

Testing Monads

Outline
o It is impossible to random test /O monad

@ ST monad can be tested by randomly generating lists of
actions

o It is not too comfortable

o However since functions like ==> are defined on

Propertys, we need to redefine them on a monad
transformer PropertyM

Testing Monads

Outline
o It is impossible to random test /O monad

@ ST monad can be tested by randomly generating lists of
actions

o It is not too comfortable

o However since functions like ==> are defined on
Propertys, we need to redefine them on a monad
transformer PropertyM

@ QuickCheck2 provides support for that

Shrinking

Outline

o Often we find a counter example, but it’s way too big to
understand the underlying cause

Shrinking

Outline

o Often we find a counter example, but it’s way too big to
understand the underlying cause

@ In such a case it is possible to start shrinking the example
to find a subexample that still causes the function to fail

Shrinking

Outline

o Often we find a counter example, but it’s way too big to
understand the underlying cause

@ In such a case it is possible to start shrinking the example
to find a subexample that still causes the function to fail

o This is implemented as an extra function shrink in
Arbitrary class that generates all substructures

Shrinking

Outline

o Often we find a counter example, but it’s way too big to
understand the underlying cause

@ In such a case it is possible to start shrinking the example
to find a subexample that still causes the function to fail

o This is implemented as an extra function shrink in
Arbitrary class that generates all substructures

@ QuickCheck2 implements these and some extra for most
common structures

