
Functional Programming

Theorems for Free!

Jevgeni Kabanov

Department of Computer Science

University of Tartu



Universal Types

Outline

Universal types introduce types as �rst-class language members:

Type parametrization

double = �X: �fX!X : �aX : f (f a)

Type application

double [Nat] (�xNat: (x+ 2)) 1

Typing
double : 8X:(X ! X)! X ! X

Lambda calculus with universal types is called System F. We
will also use the notation doubleNat to denote a parametrized
function.



Universal Types

Outline

Universal types are more powerful than Hindley-Milner
types

However they cannot be inferred and need to be provided
by the programmer

This makes them less than comfortable in real life

Haskell type system has System F extensions

After type inference stage GHC translates every program
to a simpler language based on System F



Deriving theorems

Example

Say r is a function of type

r : 8X:X? ! X?

Where X? is a list of Xs. Then we can derive that for all types
A and A0 and for all total functions a : A! A0 we have:

a? � rA = rA0 � a?

Where _? is equivalent to Haskell map :: (a ! b)! [a ]! [b ].



Types as sets

De�nition

We can interpret any type as a corresponding set:

Nat is fn j n 2 0 : : :g and Bool = fTrue;Falseg.

If A and B are types then A�B = f(a; b) j a 2 A ^ b 2 Bg.

If A is a type then A? is a set of lists with elements from A.

A! B is a set of functions from A to B.

If X is a type variable and A(X) is a type dependent on X

then the type 8X:A(X) is a set of functions that take a set
B and return an element of A(B).



Relations

De�nition

Let's recall relations:

If A and A0 are sets, we write A : A � A0 to show that A is
a relation between A and A0, that is A � A� A0.

We write (x; y) 2 A if x and y are related by A.

Identity relation IdA : A � A is de�ned as
IdA = f(x; x) j x 2 Ag, in other words (x; y) 2 IdA � x = y.

Any function a : A! A0 can be interpreted as a relation
a = f(x; a x) j x 2 Ag, in other words
(x; x0) 2 a � a x = x0.



Identity and Cartesian

De�nition

We can also interpret any type as a corresponding relation:

Constant types are identity relations, IdBool : Bool � Bool,
IdNat : Nat � Nat.

For any relations A : A � A0 and B : B � B0 relation
A� B : (A�B) � (A0 �B0) is de�ned as

((x; y); (x0; y0)) 2 A� B � (x; x0) 2 A ^ (y; y0) 2 B

If a and b are functions then (a� b) (x; y) = (a x; b y).



Lists

De�nition

For any relation A : A � A0 the relation A? : A? � A0? is de�ned
as

([x1; : : : ; xn]; [x
0

1
; : : : ; x0n]) 2 A

? �

(x1; x
0

1
) 2 A ^ : : : ^ (xn; x

0

n) 2 A

If a is a function then a? is a map de�ned by
a [x1; : : : ; xn] = [a x1; : : : ; a xn].



Functions

De�nition

For any relation A : A � A0 and B : B � B0 relation
A ! B : (A! B) � (A0 ! B0) is de�ned as

(f; f 0) 2 A ! B � 8(x; x0) 2 A : (f x; f 0 x0) 2 B

If a and b are functions, then a! b is not necessarily a
function, but

(f; f 0) 2 a! b � a x = x0 ^ b (f x) = f 0 x0

� b (f x) = f 0 (a x)

� f 0 � a = b � f



Universal types

De�nition

Let F(X ) be a relation depending on X . The F corresponds to
a function from relations to relations, so that for each
A : A � A0 there exists F(A) : F (A) � F 0(A0). Then the
relation 8X :F(X ) : 8X:F (X) � 8X 0:F 0(X 0) is de�ned as:

(g; g0) 2 8X :F(X ) � 8A : A � A0; (gA; g
0

A0) 2 F(A)



Parametricity

Theorem: Parametricity

If t is a closed term of type T , then (t; t) 2 T , where T is the
relation corresponding to the type T .



Rearrangement theorem

Derivation

Let r be a closed term of type 8X:X? ! X?. Parametricity
gives that (r; r) 2 8X :X ? ! X ?. By de�nition of 8 on relations
it is equivalent to

8A : A � A0; (rA; rA0) 2 A? ! A?

By de�nition of ! on relations:

8A : A � A0; 8(xs; xs0) 2 A?; (rA xs; rA0 xs0) 2 A?

Let's restrict As to be functions a : A! A0 and specialize:

8a8xs : xs0 = a? xs) a? (rA xs) = rA0 xs0

� 8a : a? (rA xs) = rA0 (a? xs)

� 8a : a? � rA = rA0 � a?



Map theorem

Derivation

Let m be a closed term of type 8X:8Y:(X ! Y )! (X? ! Y ?).
Parametricity gives that
(m;m) 2 8X :8Y:(X ! Y)! (X ? ! Y?). Taking X = a;Y = b

and applying de�nition of 8 twice we get:

8a8b : (mAB;mA0B0) 2 (a! b)! (a? ! b?)

Further applying the de�nition of !:

8a8b8(f; f 0) 2 (a! b) : (mAB f;mA0B0 f 0) 2 (a? ! b?)

� 8a8b : f 0 � a = b � f ) (mAB f;mA0B0 f 0) 2 (a? ! b?)

� 8a8b : f 0 � a = b � f ) mA0B0 f 0 � a? = b? �mAB f



Map corollary

Derivation

Out previous result was for all a and b

f 0 � a = b � f ) mA0B0 f 0 � a? = b? �mAB f

Taking A0 = B0 = B, b = f 0 = IdB, a = f we get

IdB � f = IdB � f ) mBB(IdB) � f
? = (IdB)

? �mAB(f)

The premiss is obviously a tautology and since (IdB)
? = IdB?

the result can be rewritten as

mAB(f) = mBB(IdB) � f
?

Which means that any function m of type
8X:8Y:(X ! Y )! (X? ! Y ?) is equivalent to map up to
element rearrangement.



Sort and Dup theorem

Derivation

Let s be of type 8X:(X ! X ! Bool)! (X? ! X?) (examples
are sort that sorts the list after a ordering and dup that
removes adjacent dublicates after equivalence). Then for all a:

8x; y 2 A : x � y = a x �0 a y ) a? � sA (�) = sA0 (�0) � a?

For sort this means that map commutes with sort if f
preserves ordering:

8x; y 2 A : x < y = a x <0 a y ) a? � sA (<) = sA0 (<0) � a?

For dup this means that map commutes with dup if f
preserves equivalence:

8x; y 2 A : x � y = a x �0 a y ) a? � sA (�) = sA0 (�0) � a?



Fold theorem

Derivation

fold type is 8X:8Y:(X ! Y ! Y )! Y ! X? ! Y . Applying
the de�nition of 8 twice and specializing to functions
a : A! A0, b : B ! B0:

(foldAB; foldA0B0) 2 (a! b! b)! b! a? ! b

Applying de�nition of ! twice we get that for all
(�;�0) 2 (a! b! b):

u0 = b u) (foldAB (�) u; foldA0B0 (�0) u0) 2 a? ! b

Whereas 8(�;�0) 2 (a! b! b) can be interpreted as

8x 2 A; 8y 2 B : b (x� y) = (a x)�0 (b y)



Fold theorem

Derivation

The resulting theorem for fold looks like:

8x 2 A; 8y 2 B : b (x� y) = (a x)�0 (b y) ^ u0 = b u

=) b � foldAB (�) u = foldA0B0 (�0) u0 � a?

Although it seems complicated, it states that if a and b provide
a homomorphism between algebra structures (A;B;�; u) and
(A0; B0;�0; u0) then a? and b provide a homomorphism between
algenra structures (A?; B; foldAB(�)u) and
(A0; B0; foldA0B0(�0)u0).
Similarly to map we can prove that every function f of fold
type can be expressed as:

fAB c n = foldAB c n � fAA? consA nilA



Finally

Outline

Parametricity breaks in the presence of �xpoint
combinator, it needs additionally for quali�ed functions to
be strict (f? = ?). Since Haskell provides recursive
de�nitions this must be taken into account.

Since every polymorphic type gives rise to a theorem, this
approach can yield a lot more results, though most of them
are less useful.

It can also help to make steps in some more powerful
theorem, only requiring parametricity (e.g. Hindley/Milner
to Girard/Reynolds type system isomorphism).

Theorems can be (and are) generated completely
automatically! Try
http://haskell.as9x.info/cgi-bin/ftonline.pl

http://haskell.as9x.info/cgi-bin/ftonline.pl

