Functional Programming
Theorems for Free!

Jevgeni Kabanov

Department of Computer Science
University of Tartu

Universal Types

Outline
Universal types introduce types as first-class language members:

o Type parametrization
double = AX. AfX 7% Xa*. f (f a)
o Type application
double [Nat] (AzN2t. (z +2)) 1

o Typing
double : VX.(X - X) > X - X

Lambda calculus with universal types is called System F. We
will also use the notation doubley,: to denote a parametrized
function.

Universal Types

Outline
@ Universal types are more powerful than Hindley-Milner
types
o However they cannot be inferred and need to be provided
by the programmer

@ This makes them less than comfortable in real life
o Haskell type system has System F extensions

o After type inference stage GHC translates every program
to a simpler language based on System F

Deriving theorems

Example
Say r is a function of type

r:VX.X* — X*

Where X* is a list of X's. Then we can derive that for all types
A and A’ and for all total functions a : A — A’ we have:

a*org=rgo0a”

Where * is equivalent to Haskell map :: (a — b) — [a] — [b].

Types as sets

Definition

We can interpret any type as a corresponding set:

Natis {n | n € 0...} and Bool = {True, False}.

If A and B are types then A x B ={(a,b) | a € ANb € B}.
If A is a type then A* is a set of lists with elements from A.

(]

A — B is a set of functions from A to B.

® 6 o o

If X is a type variable and A(X) is a type dependent on X
then the type VX.A(X) is a set of functions that take a set
B and return an element of A(B).

Relations

Definition
Let’s recall relations:
o If A and A’ are sets, we write A: A ~ A’ to show that A is
a relation between A and A’, that is A C A x A'.
o We write (z,y) € A if z and y are related by A.
o Identity relation Id4 : A ~ A is defined as
Ida = {(z,z) | £ € A}, in other words (z,y) € lda =z = v.

@ Any function a : A — A’ can be interpreted as a relation
a ={(z,a z) | z € A}, in other words
(z,2'Y€a=az=12"

Identity and Cartesian

Definition
We can also interpret any type as a corresponding relation:

o Constant types are identity relations, ldgeo : Bool ~ Bool,
Idnat : Nat ~ Nat.

o For any relations A: A~ A’ and B: B ~ B’ relation
AXB:(AXxB)~ (A" x B') is defined as

(z,y),(z',¥")) e AxB=(z,2') € AN(y,¥) €B

If a and b are functions then (a x d) (z,y) = (a z,b y).

Lists

Definition

For any relation A : A ~ A’ the relation A* : A* ~ A™ is defined
as

([z1,- - 20l [2], .-, 2,]) € AF =
(z1,21) EAN...A(Tn,T,) €A

If a is a function then a* is a map defined by
alzi,...,zp) =[azy,...,a 2]

Functions

Definition

For any relation A : A ~ A’ and B: B ~ B’ relation
A— B:(A— B)~ (A" — B') is defined as

(f,fYeA—=B=V(z,z)e A:(fz,f'z')eB

If @ and b are functions, then a — b is not necessarily a
function, but

(f,fYea—b=az=2'Ab(fz)=f'2
=b(fz)=f (az)
Ef/oa,:bof

Universal types

Definition

Let F(X) be a relation depending on X. The F corresponds to
a function from relations to relations, so that for each

A A~ A there exists F(A) : F(A) ~ F'(A"). Then the
relation VX.F(X) : VX.F(X) ~ VX' .F'(X') is defined as:

(9,9") EVX.F(X)=VA: A~ A (ga,ga) € F(A)

Parametricity

Theorem: Parametricity

If t is a closed term of type T, then (¢,t) € T, where T is the
relation corresponding to the type T

Rearrangement theorem

Derivation

Let 7 be a closed term of type VX.X* — X*. Parametricity
gives that (r,7) € VX .X* — X*. By definition of V on relations
it is equivalent to

VA: A~ A (ra,ra) € A — A*
By definition of — on relations:
VA: A~ A'Y(zs,zs') € A", (T4 5,700 TS') € A*
Let’s restrict As to be functions a : A — A’ and specialize:

VaVzs:zs' =a* zs = a* (ra zs) =ra zs'
=Va:a*(razs)=ra (a* zs)

=Va:a*org =raoa”

Map theorem

Derivation

Let m be a closed term of type VX.VY (X - Y) — (X* — Y™).
Parametricity gives that

(m,m) EVXVYY(X = Y) = (X* > Y*). Taking X =a,) =b
and applying definition of V twice we get:

VaVvb : (mag,map) € (a — b) = (a* — b¥)
Further applying the definition of —:

Vavov(f, f') € (@ = b) : (mas f,map f') € (a* — bY)
EVaVbeIOa:bOfé (map f,map f/) € (a* — b")
=Vavb: floa=bof=map floa* =b"omup f

Map corollary

Derivation
Out previous result was for all ¢ and b

floa=bof=map floa*=b"omup f
Taking A’ = B'= B, b= f' = Idg, a = f we get
|dBOf:|dBOf:>mBB(|dB)Of*:(|dB)*OmAB(f)

The premiss is obviously a tautology and since (ldg)* = ldpg«
the result can be rewritten as

map(f) = mpp(ldg) o f*

Which means that any function m of type
VXVY.(X - Y)— (X* — Y*) is equivalent to map up to
element rearrangement.

Sort and Dup theorem

Derivation

Let s be of type VX.(X — X — Bool) —» (X* — X*) (examples
are sort that sorts the list after a ordering and dup that
removes adjacent dublicates after equivalence). Then for all a:

*

Vi,ye A:z<y=az<'ay=a"0ss(<)=s4(<)oa
For sort this means that map commutes with sort if f
preserves ordering:

*

Vi,yec A:z<y=az< ay=a"o0ss(<)=sa(<)oa
For dup this means that map commutes with dup if f
preserves equivalence:

Ve,yc A:z=y=az="ay=a"0s, (=) =54 (=)oa*

Fold theorem

Derivation

fold typeis VX.VY.(X - Y - Y) - Y - X* - Y. Applying
the definition of V twice and specializing to functions
a:A—A,b: B— B"

(foldap,foldag) € (a >b—b) =>b—a"—b

Applying definition of — twice we get that for all
(@,®') € (a — b— b):

v=bu= (foldap (&) u, fold 4/ (@I) ’U,l) €a"—b
Whereas V(®, ®') € (a — b — b) can be interpreted as

Vec AVyc B:b(z®y)=(az)® (by)

Fold theorem

Derivation
The resulting theorem for fold looks like:

Vic AVyeB:b(zdy) =(az)®d (by)Au' =bu
— bofoldsp (@) u = foldap (@) v oa*

Although it seems complicated, it states that if a and b provide
a homomorphism between algebra structures (A4, B, ®,) and
(A", B',®',u') then a* and b provide a homomorphism between
algenra structures (A*, B, fold 45(®)u) and

(A, B', fold g g/ (®")u').

Similarly to map we can prove that every function f of fold
type can be expressed as:

fAB cn = fOldAB cno fAA* cons g l‘lﬂA

Finally

Outline

o Parametricity breaks in the presence of fixpoint
combinator, it needs additionally for qualified functions to
be strict (fL = 1). Since Haskell provides recursive
definitions this must be taken into account.

@ Since every polymorphic type gives rise to a theorem, this
approach can yield a lot more results, though most of them
are less useful.

@ It can also help to make steps in some more powerful
theorem, only requiring parametricity (e.g. Hindley/Milner
to Girard/Reynolds type system isomorphism).

@ Theorems can be (and are) generated completely
automatically! Try
http://haskell.as9x.info/cgi-bin/ftonline.pl

http://haskell.as9x.info/cgi-bin/ftonline.pl

