Functional Programming

Theorems for Free!

Jevgeni Kabanov

Department of Computer Science University of Tartu

Universal Types

Outline

Universal types introduce types as first-class language members:

• Type parametrization

double =
$$\Lambda X$$
. $\lambda f^{X \to X}$. λa^X . $f(f a)$

Type application

double [Nat]
$$(\lambda x^{\mathsf{Nat}}. (x+2))$$
 1

Typing

$$\operatorname{double}: \forall X.(X \to X) \to X \to X$$

Lambda calculus with universal types is called System F. We will also use the notation double_{Nat} to denote a parametrized function.

Universal Types

Outline

- Universal types are more powerful than Hindley-Milner types
- However they cannot be inferred and need to be provided by the programmer
- This makes them less than comfortable in real life
- Haskell type system has System F extensions
- After type inference stage GHC translates every program to a simpler language based on System F

Deriving theorems

Example

Say r is a function of type

$$r: orall X.X^\star o X^\star$$

Where X^* is a list of Xs. Then we can derive that for all types A and A' and for all total functions $a:A\to A'$ we have:

$$a^\star \circ r_A = r_{A'} \circ a^\star$$

Where $_^*$ is equivalent to Haskell $map :: (a \rightarrow b) \rightarrow [a] \rightarrow [b]$.

Types as sets

Definition

We can interpret any type as a corresponding set:

- Nat is $\{n \mid n \in 0 \dots\}$ and Bool = $\{\text{True}, \text{False}\}$.
- If A and B are types then $A \times B = \{(a, b) \mid a \in A \land b \in B\}.$
- If A is a type then A^* is a set of lists with elements from A.
- $A \rightarrow B$ is a set of functions from A to B.
- If X is a type variable and A(X) is a type dependent on X then the type $\forall X.A(X)$ is a set of functions that take a set B and return an element of A(B).

Relations

Definition

Let's recall relations:

- If A and A' are sets, we write $A : A \sim A'$ to show that A is a relation between A and A', that is $A \subset A \times A'$.
- We write $(x,y) \in \mathcal{A}$ if x and y are related by \mathcal{A} .
- Identity relation $\operatorname{Id}_A:A\sim A$ is defined as $\operatorname{Id}_A=\{(x,x)\mid x\in A\}, ext{ in other words }(x,y)\in\operatorname{Id}_A\equiv x=y.$
- Any function $a:A\to A'$ can be interpreted as a relation $a=\{(x,a|x)\mid x\in A\}$, in other words $(x,x')\in a\equiv a|x=x'.$

Identity and Cartesian

Definition

We can also interpret any type as a corresponding relation:

- Constant types are identity relations, Id_{Bool} : Bool \sim Bool, Id_{Nat} : Nat \sim Nat.
- For any relations $\mathcal{A}: A \sim A'$ and $\mathcal{B}: B \sim B'$ relation $\mathcal{A} \times \mathcal{B}: (A \times B) \sim (A' \times B')$ is defined as

$$((x,y),(x',y'))\in \mathcal{A} imes \mathcal{B}\equiv (x,x')\in \mathcal{A}\wedge (y,y')\in \mathcal{B}$$

If a and b are functions then $(a \times b)(x, y) = (a x, b y)$.

Lists

Definition

For any relation $\mathcal{A}:A\sim A'$ the relation $\mathcal{A}^\star:A^\star\sim A'^\star$ is defined as

$$egin{aligned} ([x_1,\ldots,x_n],[x_1',\ldots,x_n']) \in \mathcal{A}^\star \equiv \ &(x_1,x_1') \in \mathcal{A} \wedge \ldots \wedge (x_n,x_n') \in \mathcal{A} \end{aligned}$$

If a is a function then a^* is a map defined by $a [x_1, \ldots, x_n] = [a x_1, \ldots, a x_n].$

Functions

Definition

For any relation $A: A \sim A'$ and $\mathcal{B}: B \sim B'$ relation $A \rightarrow \mathcal{B}: (A \rightarrow B) \sim (A' \rightarrow B')$ is defined as

$$(f,f') \in \mathcal{A}
ightarrow \mathcal{B} \equiv orall (x,x') \in \mathcal{A} : (f|x,f'|x') \in \mathcal{B}$$

If a and b are functions, then $a \rightarrow b$ is not necessarily a function, but

$$egin{aligned} (f,f') \in a
ightarrow b &\equiv a \; x = x' \wedge b \; (f \; x) = f' \; x' \ &\equiv b \; (f \; x) = f' \; (a \; x) \ &\equiv f' \circ a = b \circ f \end{aligned}$$

Universal types

Definition

Let $\mathcal{F}(\mathcal{X})$ be a relation depending on \mathcal{X} . The \mathcal{F} corresponds to a function from relations to relations, so that for each $\mathcal{A}: A \sim A'$ there exists $\mathcal{F}(\mathcal{A}): F(A) \sim F'(A')$. Then the relation $\forall \mathcal{X}.\mathcal{F}(\mathcal{X}): \forall X.F(X) \sim \forall X'.F'(X')$ is defined as:

$$(g,g') \in orall \mathcal{X}.\mathcal{F}(\mathcal{X}) \equiv orall \mathcal{A}: A \sim A', (g_A,g'_{A'}) \in \mathcal{F}(\mathcal{A})$$

Parametricity

Theorem: Parametricity

If t is a closed term of type T, then $(t,t) \in \mathcal{T}$, where \mathcal{T} is the relation corresponding to the type T.

Rearrangement theorem

Derivation

Let r be a closed term of type $\forall X.X^* \to X^*$. Parametricity gives that $(r, r) \in \forall X.X^* \to X^*$. By definition of \forall on relations it is equivalent to

$$orall \mathcal{A}:A\sim A',(r_A,r_{A'})\in \mathcal{A}^\star
ightarrow \mathcal{A}^\star$$

By definition of \rightarrow on relations:

$$orall \mathcal{A}: A \sim A', orall (xs, xs') \in \mathcal{A}^\star, (r_A|xs, r_{A'}|xs') \in \mathcal{A}^\star$$

Let's restrict As to be functions $a:A\to A'$ and specialize:

$$egin{aligned} orall a orall xs &: xs' = a^\star \ xs \Rightarrow a^\star \ (r_A \ xs) = r_{A'} \ xs' \ &\equiv orall a : a^\star \ (r_A \ xs) = r_{A'} \ (a^\star \ xs) \ &\equiv orall a : a^\star \circ r_A = r_{A'} \circ a^\star \end{aligned}$$

Map theorem

Derivation

Let m be a closed term of type $\forall X. \forall Y. (X \to Y) \to (X^* \to Y^*)$. Parametricity gives that

 $(m,m) \in \forall \mathcal{X}. \forall \mathcal{Y}. (\mathcal{X} \to \mathcal{Y}) \to (\mathcal{X}^{\star} \to \mathcal{Y}^{\star})$. Taking $\mathcal{X} = a, \mathcal{Y} = b$ and applying definition of \forall twice we get:

$$orall a orall b: (m_{AB}, m_{A^{\prime}B^{\prime}}) \in (a
ightarrow b)
ightarrow (a^{\star}
ightarrow b^{\star})$$

Further applying the definition of \rightarrow :

$$egin{aligned} orall a orall b orall (f,f') &\in (a
ightarrow b) : (m_{AB} \ f,m_{A'B'} \ f') \in (a^\star
ightarrow b^\star) \ &\equiv orall a orall b : f' \circ a = b \circ f \Rightarrow (m_{AB} \ f,m_{A'B'} \ f') \in (a^\star
ightarrow b^\star) \ &\equiv orall a orall b : f' \circ a = b \circ f \Rightarrow m_{A'B'} \ f' \circ a^\star = b^\star \circ m_{AB} \ f \end{aligned}$$

Map corollary

Derivation

Out previous result was for all a and b

$$f'\circ a=b\circ f\Rightarrow m_{A'B'}\ f'\circ a^\star=b^\star\circ m_{AB}\ f$$

Taking A' = B' = B, $b = f' = Id_B$, a = f we get

$$\mathsf{Id}_B \circ f = \mathsf{Id}_B \circ f \Rightarrow m_{BB}(\mathsf{Id}_B) \circ f^\star = (\mathsf{Id}_B)^\star \circ m_{AB}(f)$$

The premiss is obviously a tautology and since $(Id_B)^* = Id_{B^*}$ the result can be rewritten as

$$m_{AB}(f) = m_{BB}(\mathsf{Id}_B) \circ f^\star$$

Which means that any function m of type $\forall X. \forall Y. (X \to Y) \to (X^* \to Y^*)$ is equivalent to map up to element rearrangement.

Sort and Dup theorem

Derivation

Let s be of type $\forall X.(X \to X \to \mathsf{Bool}) \to (X^\star \to X^\star)$ (examples are sort that sorts the list after a ordering and dup that removes adjacent dublicates after equivalence). Then for all a:

$$\forall x,y \in A: x \prec y = a \; x \prec' a \; y \Rightarrow a^\star \circ s_A \; (\prec) = s_{A'} \; (\prec') \circ a^\star$$

For sort this means that map commutes with sort if f preserves ordering:

$$\forall x,y \in A: x < y = a \; x <' \; a \; y \Rightarrow a^\star \circ s_A \; (<) = s_{A'} \; (<') \circ a^\star$$

For dup this means that map commutes with dup if f preserves equivalence:

$$\forall x,y \in A: x \equiv y = a \; x \equiv' a \; y \Rightarrow a^\star \circ s_A \; (\equiv) = s_{A'} \; (\equiv') \circ a^\star$$

Fold theorem

Derivation

fold type is $\forall X. \forall Y. (X \to Y \to Y) \to Y \to X^* \to Y$. Applying the definition of \forall twice and specializing to functions $a: A \to A', b: B \to B'$:

$$(\mathbf{fold}_{AB},\mathbf{fold}_{A'B'})\in (a o b o b) o b o a^\star o b$$

Applying definition of \to twice we get that for all $(\oplus, \oplus') \in (a \to b \to b)$:

$$u'=b\;u\Rightarrow\left(\mathbf{fold}_{AB}\left(\oplus\right)\,u,\mathbf{fold}_{A'B'}\left(\oplus'
ight)u'
ight)\in a^{\star}
ightarrow b$$

Whereas $\forall (\oplus, \oplus') \in (a \to b \to b)$ can be interpreted as

$$\forall x \in A, \forall y \in B : b (x \oplus y) = (a \ x) \oplus' (b \ y)$$

Fold theorem

Derivation

The resulting theorem for fold looks like:

$$orall x \in A, orall y \in B: b \ (x \oplus y) = (a \ x) \oplus' (b \ y) \wedge u' = b \ u \ \implies b \circ \operatorname{fold}_{AB} \ (\oplus) \ u = \operatorname{fold}_{A'B'} \ (\oplus') \ u' \circ a^{\star}$$

Although it seems complicated, it states that if a and b provide a homomorphism between algebra structures (A, B, \oplus, u) and (A', B', \oplus', u') then a^* and b provide a homomorphism between algebra structures $(A^*, B, \mathbf{fold}_{AB}(\oplus)u)$ and $(A', B', \mathbf{fold}_{A'B'}(\oplus')u')$.

Similarly to map we can prove that every function f of fold type can be expressed as:

$$f_{AB} \ c \ n = \mathbf{fold}_{AB} \ c \ n \circ f_{AA^*} \ \mathsf{cons}_A \ \mathsf{nil}_A$$

Finally

Outline

- Parametricity breaks in the presence of fixpoint combinator, it needs additionally for qualified functions to be strict $(f \perp = \perp)$. Since Haskell provides recursive definitions this must be taken into account.
- Since every polymorphic type gives rise to a theorem, this approach can yield a lot more results, though most of them are less useful.
- It can also help to make steps in some more powerful theorem, only requiring parametricity (e.g. Hindley/Milner to Girard/Reynolds type system isomorphism).
- Theorems can be (and are) generated completely automatically! Try http://haskell.as9x.info/cgi-bin/ftonline.pl