
Functional Programming
Software Transactional Memory

Jaak Randmets

Department of Computer Science
University of Tartu

Introduction

Concurrent programming

Free lunch is over.

Concurrent programming is difficult.

Locks.

– Too many, too few.
– Wrong order.
– Error recovery.

Introduction

Concurrent programming

Free lunch is over.

Concurrent programming is difficult.

Locks.

– Too many, too few.
– Wrong order.
– Error recovery.

Introduction

Concurrent programming

Free lunch is over.

Concurrent programming is difficult.

Locks.

– Too many, too few.
– Wrong order.
– Error recovery.

Introduction

Concurrent programming

Free lunch is over.

Concurrent programming is difficult.

Locks.

– Too many, too few.
– Wrong order.
– Error recovery.

Introduction

Concurrent programming

Free lunch is over.

Concurrent programming is difficult.

Locks.

– Too many, too few.
– Wrong order.
– Error recovery.

Introduction

Concurrent programming

Free lunch is over.

Concurrent programming is difficult.

Locks.

– Too many, too few.
– Wrong order.
– Error recovery.

Demotivating example

Bad

relocate t1 t2 k = do
v remove t1 k
insert t2 k v

Better?

relocate t1 t2 k = do
lock t1 ; lock t2
v remove 0 t1 k
insert 0 t2 k v
unlock t1 ; unlock t2

Software Transactional Memory

Definition

Transaction is block of code that reads and writes memory.

Execution of transaction is atomic and isolated

– Atomicity: effects of executed block become visible to other
threads all at once.

– Isolation: action is completely unaffected by other threads.

Old idea

Optimistic.

Record every read and write to a local log.

Log is validated.

– If log is valid then transaction is committed.
– otherwise the log is discard and transaction re-executed.

Software Transactional Memory

Definition

Transaction is block of code that reads and writes memory.

Execution of transaction is atomic and isolated

– Atomicity: effects of executed block become visible to other
threads all at once.

– Isolation: action is completely unaffected by other threads.

Old idea

Optimistic.

Record every read and write to a local log.

Log is validated.

– If log is valid then transaction is committed.
– otherwise the log is discard and transaction re-executed.

Software Transactional Memory

Definition

Transaction is block of code that reads and writes memory.

Execution of transaction is atomic and isolated

– Atomicity: effects of executed block become visible to other
threads all at once.

– Isolation: action is completely unaffected by other threads.

Old idea

Optimistic.

Record every read and write to a local log.

Log is validated.

– If log is valid then transaction is committed.
– otherwise the log is discard and transaction re-executed.

Software Transactional Memory

Definition

Transaction is block of code that reads and writes memory.

Execution of transaction is atomic and isolated

– Atomicity: effects of executed block become visible to other
threads all at once.

– Isolation: action is completely unaffected by other threads.

Old idea

Optimistic.

Record every read and write to a local log.

Log is validated.

– If log is valid then transaction is committed.
– otherwise the log is discard and transaction re-executed.

Software Transactional Memory

Definition

Transaction is block of code that reads and writes memory.

Execution of transaction is atomic and isolated

– Atomicity: effects of executed block become visible to other
threads all at once.

– Isolation: action is completely unaffected by other threads.

Old idea

Optimistic.

Record every read and write to a local log.

Log is validated.

– If log is valid then transaction is committed.
– otherwise the log is discard and transaction re-executed.

STM in Haskell

STM is a monad

data STM a
instance Monad STM

Sequential composition.

Do notation.

No IO inside transaction.

No STM action can be performed outside transaction.

STM in Haskell

Atomically and TVars

Executing transaction:

atomically :: STM a! IO a

TVars:

data TVar a
newTVar :: a! STM (TVar a)
readTVar :: TVar a! STM a
writeTVar :: TVar a! a! STM ()

NB!

(atomically M1)>> (atomically M2) 6� atomically (M1 >> M2)

Example

Simple example

type Resource = TVar Int

putR :: Resource ! Int ! STM ()
putR r i = do

v readTVar r
writeTVar r (v + i)

main = do
r atomically $ newTVar 0
sequence � replicate 10 � forkIO � atomically $ putR r 3
threadDelay 1000
n atomically $ readTVar r
print n

STM in Haskell

Blocking and composing alternatives

retry :: STM a
orElse :: STM a! STM a! STM a

STM is instance of MonadPlus:

M1 `orElse` (M2 `orElse` M3) = (M1 `orElse` M2) `orElse` M3
retry `orElse` M = M
M `orElse` retry = M

Example

Blocking transaction

getR :: Resource ! Int ! STM ()
getR r i = do

v readTVar r
if (v < i)

then retry
else writeTVar r (v � i)

check

check :: Bool ! STM ()
check True = return ()
check Flase = retry

Exceptions

throw and catch

throw :: Exception! a
catch :: IO a! (Exception! IO a)! IO a
catchSTM :: STM a! (Exception! STM a)! STM a

Exceptions allow values to “leak” out of STM.

A leak

tv atomically $ newTVar "hello"
Control :Exception:catch (atomically $ do

updateTVar tv (++", world!")
s readTVar tv
throw (AssertionFailed s)) print

atomically (readTVar tv)>>= print

Channels and MVars

TChan

data TChan a
newTChan :: STM (TChan a)
readTChan :: TChan a! STM a
writeTChan :: TChan a! a! STM ()
isEmptyTChan :: TChan a! STM Bool

MVar

newEmptyMVar :: STM (MVar a)
takeMVar :: MVar a! STM a
putMVar :: MVar a! a! STM ()

Examples

MVar implementation

type MVar a = TVar (Maybe a)

newEmptyMVar = newTVar Nothing

takeMVar mv = do
v readTVar mv
case v of

Nothing ! retry
Just val ! writeTVar mv Nothing >> return val

putMVar mv val = do
v readTVar mv
case v of

Nothing ! writeTVar mv (Just val)
Just ! retry

Examples

Producers/consumer

main = do
tc atomically $ newTChan

-- producers
sequence � replicate 10 � forkIO $ do

forM [1 : : 100] $ �i ! do
threadDelay 2
atomically $ writeTChan tc i

putStrLn "work, work!"

-- consumer
forkIO � forever $ do

threadDelay $ 1000 � 25
x atomically $ readTChan tc
putStr $ (show x) ++ " "

Examples

Useful functions

Applying function to TVar:

updateTVar :: TVar a! (a! a)! STM ()
updateTVar tv f = readTVar tv >>= writeTVar tv � f

Failing transaction:

orZero :: (MonadPlus m)) STM a! STM (m a)
orZero st = (st >>= return � return) `orElse` return mzero

Specialising orZero:

orNothing :: STM a! STM (Maybe a)
orNothing = orZero

Examples

Useful functions

Merging transactions:

merge :: [STM a]! STM a
merge = foldr1 orElse

Choosing transaction and IO action pair:

choose :: [(STM a; a! IO ())]! IO ()
choose choices = (atomically $ merge actions)>>= id

where
actions :: [STM (IO ())]
actions = [guard >>= return � rhs j (guard ; rhs) choices]

