
The war on error
James Chapman

University of Tartu

Syntax and basic
definitions

Anatomy of a file

• A file usually starts with the first line

•module filename where

• The rest of the file proceeds without indenting.

• Top level definitions must be declared before use.

• However, before the first line we an add options
(usually to turn something off) which correspond to
command line options:

•{-# OPTIONS --no-termination-check #-}

Naming
• Agda is very liberal about naming:

• There are a limited number of reserved characters:
@.(){};_ which cannot be used at all in names

• and some reserved words which cannot be used in
name parts:

• -> : = ? \ | →∀ λ abstract data forall hiding import in

infix infixl infixr let module mutual open postulate
primitive private public record renaming rewrite using
where with Prop Set[0–9]* [0–9]+

• Names parts: Eg. _part1_part2_ or
if_then_else_

Spacing continued

• There are consequence of being liberal about naming.

• Notice that : = ? \ | → ∀ λ are reserved
words not characters so they can be part of names:

• Eg. x+z=x, S→T, x:S are valid names!

• Instead we must use spacing between different clauses
x : S and S → T etc.

• Note that reserved characters do not need a space
separator. Eg. (x + y) + z, Module.function

Comments

• single-line comments begin with --

• Eg. f x = ? -- I’ll fill this in later

• Multi-line comments begin with {- and end with -}

• Eg. {- The rest of this file is utterly
incomprehensible -}

Indenting
Indenting is used to structure the file into blocks like in
Haskell, I recommend using two spaces each time. Eg.

data X : Set where
 con : X

and

f : X → X
f x = g x
 where
 g : X → X
 g x = x

Unlike Haskell this is the only option!

Unicode

• Unicode can be characters can be entered in TeX/
LaTeX style. Eg. \mu, \lambda, \Downarrow

• Superscript ^ and subscript _ are proceeded by a
\. Eg. \pi_0, \sigma\^1

• To see how to type a character in emacs place the
cursor on it and type C-u C-x =

• Warning! It’s easy to get carried away with unicode
but limited use of it is nice: greek symbols, and nice
arrows.

Infix operators
• In Agda we can have mixfix operators Eg.

•_+_ : Nat → Nat → Nat

• if_then_else_ : Bool → Bool → Bool → Bool

• Type constructors, data constructors, functions can be
named in this way.

• We can specify associativity and precedence for infix
operators should be stated before use.

•infixl 5 _*_

• infixr 6 _+_

• infix 6 _==_

Local definitions
f : X → X
f x = g x
 where
 g : X → X
 g x = x

f : X → X
f x = g x
 where g : X → X
 g x = x

or

and

h : X → X
h x = let g : X → X
 g x = x
 in g x
 g x = x

Built-in types
You can declare Char, String, and Nat as
built-in. Then you can use nicer syntax

postulate Char : Set
{-# BUILTIN CHAR Char #-}

postulate String : Set
{-# BUILTIN STRING String #-}

data Nat ...
{-# BUILTIN NATURAL Nat #-}
{-# BUILTIN ZERO z #-}
{-# BUILTIN SUC s #-}

λ-expression
The polymorphic identity function

id : {X : Set} → X → X

id x = x

can be rewritten as (the scope is extends as far as possible):

id = λ x → x

but we cannot pattern match on the RHS and there is not
case expression like in Haskell

f = λ (con x y) → x

f x = case x of (con y z) → x

Note also that let is a genuine expression and can go under a
lambda but where is not and can’t.

Implicit arguments
Implicit arguments are stated in types with {} instead of ()

id : {X : Set} → X → X

id x = x

the type can sometimes be ommitted and inferred by Agda

id : ∀{X} → X → X

and the argument can be made explicit in the LHS

id {X} x = x

on the RHS any explicit argument can be left implicit by
putting an _ but Agda might not know the answer!

id x = _

Inductive data types
data tcon1 : Set where
 dcon1 : tcon1
 dcon2 : tcon1 → tcon1

data tcon2 : Set where
 dcon3 : tcon2
 dcon4 : tcon2

data tcon3 : Set where
 dcon5 : tcon3

data tcon4 : Set where

What types are these?

Parameters and indices
data Vec (A : Set) : Nat → Set where
 [] : Vec A z
 :: : ∀{n} → A → Vec A n → Vec A (s n)

• Parameters come before the colon in the
data declaration and are in scope of the
constructors and don’t vary.

• Indices come after and are not
automatically in scope and can vary.

Postulates

• In Agda we can assume something without
proof using a postulate

• We can delay a proof by just putting a ? but a
postulate is taken as an axiom that we do not
intend to prove later.

• Maybe we can’t prove it at all: Eg.

•postulate EM : ∀(X : Set) → X ∨ ¬ X

Records
We can define pairs in two ways in Agda. The first is the
one you already know using a data type

data _×_ (A B : Set) : Set where
 , : A → B → A × B

we could then define projections as follows

fst : {A B : Set} → A × B → A
fst (a , _) = a

snd : {A B : Set} → A × B) → B
snd (_ , b) = b

The second is to use a record:

record _×_ (A B : Set) : Set where
 constructor _,_
 field fst : A
 snd : B
open _×_ -- brings fst,snd into scope
We get projections automatically with the same name as
the fields

 fst : {A B: Set} → A × B → A

The downside is we can’t pattern match on records.

Records

Σ-type (dependent pair)
• I have already told you about the Π-type

which the dependent function type.

• There is a dependent version of the pair
type - the Σ-type. This can be defined as a
record as follows:

record Σ (A :Set)(B : A → Set) where
 constructor _,_
 field fst : A
 snd : B fst

It is the logical counterpart the “there exists” ∃

Σ-type (dependent pair)
Or as a data type

data Σ(A : Set)(B : A → Set) : Set where
 , : (a : A) → B a → Σ A B

with projections

fst : ∀{A B} → Σ A B → A
fst (a , _) = a

snd : ∀{A B}(p : Σ A B) → B (fst p)
snd (_ , b) = b

