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Abstract

It is recognized that providing programmers with languages that are
close to problem domain can increase productivity significantly. Creating
a new full-blown language can be too expensive, therefore domain specific
languages (DSL-s) are usually combined with a general purpose language
(GPL). Generative programming has been shown to be useful for this kind
of language extensions.

This report focuses on technologies behind MetaBorg, a complete gen-
erative programming solution proposed by Eelco Visser and his team. It
provides means for combining syntaxes and semantics of a base GPL and
DSL-s. Using the definition of combined language it creates tools for
translating programs written in new language back to the base language.

1 Introduction

Solutions for complex problems tend to come in shape of large and complex
programs, yet when source code is examined, usually only small part of the
code deals directly with the problem, much of the effort goes into writing some
kind of boilerplate code. It is not only a problem of writing, noise in source code
affects understanding the solution even more. Separation of generic code into
libraries and frameworks can help, but often it’s still too cumbersome to express
some domain problems only in terms of classes or other abstraction devices fixed
by the base language.

Combining general purpose languages with different domain-specific languages
is not a new idea – SQL and regular expressions have been around for long time
– but in recent years many authors have proposed that using DSL-s could be
even more common practice, if the cost of creating new languages and respec-
tive tooling (IDE-s, debuggers etc.) were smaller [6, 9, 11]. One approach for
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achieving this would be developing systems, that generate necessary tools from
high-level language descriptions.

In the following sections we give a bottom-up overview of technologies behind
MetaBorg. MetaBorg is a collective name for set of tools and techniques for
embedding and assimilating DSL-s into some GPL. Here, assimilation means
translating DSL fragments to the base language, this enables programmer to
continue using most of the existing infrastructure for base language. Basically,
MetaBorg method enables building preprocessor systems, that parse combined
language, transform abstract syntax tree and unparse resulting tree back to
text.

First we look at the problems of parsing embedded languages. For defining
grammars, a domain specific language is used, called SDF (Syntax Definition
Formalism). We describe the language and it’s usage, focusing on aspects rele-
vant to combining languages - disambiguation, modularity and scannerless pars-
ing.

For translating fragments of embedded language into base language, MetaBorg
method uses Stratego/XT, a program transformation language and toolset. We
focus on it’s specialty – fine grained control over term rewriting using rewriting
strategies. We also see how term rewriting can be used for semantic analysis
(eg. type checking).

In order to make results from parsing or transformations usable, Stratego toolkit
provides means for generating and combining relevant command-line tools.

We then gather these topics together and give an example of MetaBorg method
in use – we describe how Swul (a language for defining user interfaces) is em-
bedded and assimilated into Java.

Finally we review most important technological aspects of MetaBorg and com-
pare the system with other similar solutions.

2 Combining grammars with SDF

Combining syntaxes of two languages can be challenging, but it’s still possible
to do it by hand. But in order to mix more than two languages or to create a
more generic solution, where languages to be mixed in are not known in advance,
more structured approach is needed.

MetaBorg uses Syntax Definition Formalism (SDF) for defining and combin-
ing syntaxes and SGLR (Scannerless Generalized LR parser) for parsing the
resulting syntax. Following section first gives overview of SDF and then de-
scribes some difficulties in parsing embedded languages and shows how certain
distinctive features of SDF and SGLR overcome these problems [4].
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SDF is a domain-specific language for defining syntaxes of context-free lan-
guages. It supports the entire class of context-free grammars, including am-
biguous grammars. It favors clean definition of the language over the hacks
needed to eliminate ambiguities 1 – for this it provides special disambiguation
facilities discussed below. In order to achieve greater reusability, SDF syntax
definitions can be split into modules.

It’s possible to express both lexical and context-free syntax in SDF. Lexical
syntax section corresponds roughly to traditional scanner definition, but it’s
not restricted to regular grammar. Context-free section corresponds to tradi-
tional parser definition. The terms lexical and context-free syntaxes in SDF do
not refer to different expressiveness – both sections can describe context-free
languages. The difference lies in handling the whitespace – in lexical section
whitespace between symbols has to be shown explicitly, in context-free section
whitespace is assumed implicitly.

Lexical syntax sections usually define constructs like identifiers and literals.
Also, the definition of whitespace should be given here – it’s marked by special
non-terminal symbol LAYOUT.

lexical syntax

[A-Za-z][A-Za-z0-9]* -> Id

[0-9]+ -> IntConst

[\r\n\t\ ] -> LAYOUT

Symbols defined in lexical section are used as building blocks in the context-
free section for defining more complex non-terminals. Note that definition of
expressions is straightforward, without extra productions for handling priority,
associativity or ambiguities.

context-free syntax

Id -> Exp {cons("Var")}

IntConst -> Exp {cons("Int")}

Exp "+" Exp -> Exp {cons("Plus")}

Exp "-" Exp -> Exp {cons("Min")}

Exp "*" Exp -> Exp {cons("Mul")}

Exp "/" Exp -> Exp {cons("Div")}

Exp "." Id "(" {Exp ","}* ")" -> Exp {cons("Call")}

"if" Exp "then" Exp "else" Exp -> Exp {cons("If")}

Productions are annotated with a constructor name (eg. ”Plus”). First a parse
tree is constructed and this is transformed to abstract syntax tree using given
constructors. Resulting AST can be presented using ATerm format [7]. For
example, the input 4 + x.get(5) is represented by the following ATerm:

1Often ambiguities are resolved by introducing new productions, but unfourtunately this
compilicates the grammar
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Plus(Int("4"), Call(Var("x"), "get", [Int("5")]))

2.1 Disambiguation

SDF definition are used together with Scannerless Generalized LR parser (SGLR).
Like any GLR parser, it can work with ambiguous grammars (returning parse
forest instead of parse tree) but in practice usually a single parse tree is needed.
SDF contains facilities to reject certain parse trees. The example syntax defini-
tion above has several ambiguities. First, there is associativity problem in binary
operators. SDF allows specifying associativity as annotation in production rule,
for example

Exp "+" Exp -> Exp {left, cons("Plus")}

Another problem is priority of operators (and also method calls). In SDF prior-
ities are defined relatively instead of priority levels. Relative priorities (eg. + vs.
*) deal with several production rules, therefore priority specifications are not
given together with productions but in a separate section. In following example
three priority groups are shown, separated by priority operator >

context-free priorities

Exp "." Id "(" {Exp ","}* ")" -> Exp

> {left:

Exp "/" Exp -> Exp

Exp "*" Exp -> Exp }

> {left:

Exp "+" Exp -> Exp

Exp "-" Exp -> Exp }

There is still one problem left with the example grammar – in SDF the pol-
icy of longest match is not followed by default and therefore erroneous input
if 1 then aelse b would be valid. This can be solved by explicitly defining
follow restrictions. A follow restriction A -/- CC specifies, that non-terminal A
can’t be followed by a character from character class CC

lexical restrictions

Id -/- [A-Za-z0-9]

IntConst -/- [0-9]

"if" "then" "else" -/- [A-Za-z0-9]
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2.2 Modularity

In order to make syntaxes of base language and embedded language maintain-
able, both languages should be defined separately. It’s even more important
when different combinations of base language and DSL-s are considered. For
example, if we want to combine Java, XML, SQL, XPath and regular expres-
sions, then providing a single syntax for all these it would be unacceptable from
the point of view of clarity, maintenance and reusability.

Usually syntax definition techniques and corresponding parser generators limit
grammars to some subset of context-free grammars. This is usually not a prob-
lem when designing a single language, but when combining different grammars,
the resulting grammar normally doesn’t fit to any common subclass of context-
free grammars (like LALR, or LL). Therefore, in order to fully support language
embedding, SDF supports full class of context-free grammars.

Subsection 5.1 gives an example of two different grammars defined in separate
modules and joined together.

2.3 Scannerless parsing

Most parsers don’t use text as input, but work on token stream prepared by
separate scanner. Scanner’s job is to identify different chunks of input as lit-
erals, names, keywords or separators. Usually languages are designed so, that
scanners can be specified using regular grammars and are therefore relatively
easy to implement. This scheme of dumb scanner separated from smart parser
brings restrictions to language design, for example it disallows nested multiline
comments (/* /* */ */).

When combining languages, especially when languages are very different, it
becomes more difficult to identify the tokens and assign correct type to them –
the same piece of text can, for example, represent a keyword in one language
and identifier in other language. When scanner and parser are united, then
there is always more context information available for determining the type of
current token. That is why SDF is designed to be used with a special kind of
GLR parser – Scannerless GLR parser [4].

There is another problem with separate scanners – if a token (eg. string literal)
has some inner structure (eg. escape sequences), then scanner ignores this and
hands the token over to parser as one opaque chunk. If a string literal contains
a piece of program in a DSL, then this structure needs to be parsed in runtime.
Scannerless parsing can deal with this in the context of main language parsing
and therefore can make language embedding easier. For example, the following
XML attribute contains an escape to the meta level

<a href="http://www.<% s %>.org">Stratego/XT</a>
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In the embedding of XML in Java, SDF and SGLR could present the attribute
as:

Attribute(

QName(None, "href")

, DoubleQuoted([

Literal("http://www.")

, Literal(FromExpr(ExprName(Id("s"))))

, Literal(".org")

])

)

3 Transformation with Stratego/XT

After the program written in mixed syntax is parsed, the DSL parts need to
be translated into base language, so that resulting source code can be fed into
standard base language compiler or interpreter. Assimilation is defined by set
of rewriting rules and strategies (together these are called transformation rules)
written in Stratego language [10, 3]. This definition gives semantics to DSL in
terms of base language. Besides translating code from one language to another,
program transformation techniques are also used for type-checking.

In this section we describe program transformation facilities of Stratego/XT in
general and in section 5 we give specific example of using transformations for
language assimilation.

3.1 Rewrite rules

Basic transformation of terms are defined by rewrite rules. A rule has the form
L: l -> r, where L is the label of the rule, l is term pattern to be matched
and r is resulting term pattern. Term pattern can be a variable or a constructor
applied to zero or more term patterns. So, term pattern is a term with variables
in it.

ReShape: Plus(a, Plus(b, c)) -> Plus(Plus(a, b), c)

There can be several rule definitions with same label, ie. one rewrite rule can
consist of several cases.

A conditional rewrite rule adds a computation, that should succeed in order for
the rule to apply:

EvalPlus : Plus(Int(i), Int(j)) -> Int(k) where <add>(i, j) => k
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Here <add>(i, j) => k is a shorthand notation for applying a strategy (add)
(strategies are discussed in section 3.3) to a term ((i, j)) and matching the
result against another term (k) [3]. Basically, a rule is applied to a term when
it’s left hand side and condition can be unified with the term.

3.2 Concrete Object Syntax

When rules include larger program fragments as patterns, then using ATerm
format (abstract syntax) can be too inconvenient. Therefore Stratego allows
patterns to be written in concrete syntax of the object language. As an example,
the EvalPlus rule from above can be written like this:

EvalPlus : |[ i + j ]| -> |[ k ]| where <add>(i, j) => k

The use of concrete syntax is indicated by quotation delimiters |[ and ]|.

Let’s consider a larger program fragment that implements instrumentation of
method calls and would be quite cumbersome in ATerm format. Following rule
modifies function definitions to call some (logging) functions before and after
original function body:

TraceProcedure :

|[ function f(x) = e ]| ->

|[ function f(x) =

(enterfun(String(f)); e; exitfun(String(f))) ]|

Basically, the example is written in a language which is an extension to Stratego
language – fragments of a specific programming language embedded into a host
language. Thus, Stratego implementation itself also deals with issues described
in this report – embedding and assimilating languages.

The concrete syntax version has all properties of the abstract syntax version:
pattern matching, term structure, it can be traversed, etc. In short, the concrete
syntax is just syntactic sugar for the abstract syntax. In the example above,
symbols f, x, e and String are Stratego meta-variables, not tokens of object
language. Here the distinction between meta-variables and other tokens is im-
plicit and is based on specific SDF constructs used in the definition of object
language[3]. Following example shows how to make escaping to the meta level
explicit with anti-quotation operator ~

TraceProcedure :

|[ function ~f(~x) = ~e ]| ->

|[ function ~f(~x) =

(enterfun(~String(f)); ~e; exitfun(~String(f))) ]|
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3.3 Transformation strategies

Most rewriting engines apply rewriting rules exhaustively, ie. rules are applied to
a term and it’s subterms until no further matches are found. This is not always
desirable (some rewriting systems are not confluent or terminating), therefore
in Stratego one has to define rewriting strategy explicitly.

There are several commonly used strategies, that could be provided as built in
primitives (like exhaustive innermost or outermost normalization, single pass
top-down etc.), but instead of that, Stratego provides user with combinators
for easy composition of strategies. With these combinators, one can create
generic strategies, that can be further parameterized with the set of rules. This
separation of rules and strategies allows better reuse of both.

Basically, a strategy is an algorithm, that transforms a term into another term
or fails at doing so. Strategies are composed using the following combinators:

• sequential composition (s1; s2)

• deterministic choice (s1 <+ s2), here first s1 is tried, if this fails then s2

is tried

• non-deterministic choice (s1 + s2); same as previous, but order of trying
is not specified, this is used when two rules are mutually exclusive

• testing (where(s)), ignores the transformation achieved, effect can be in
rejecting the parent transformation

• not(s), reverse of previous ie. transformation succeeds if s fails

Strategies can be labeled, just like rules, using strategy definitions. Following
example defines a strategy named repeat which repeats strategy s until it fails.

repeat(s) = try(s; repeat(s))

Note that strategy definitions do not mention the term to which they are applied
- this is not needed, as all strategies take a term as input and give another term
as output.

3.4 Term Traversal

So far we have shown how to apply rewrite rules to the root node of the term.
In order to apply different strategies to different subterms, the term must be
traversed. Most important mechanism for term traversal in Stratego is called
congruence operators. For each constructor C, a corresponding congruence op-
erator exists with the same name. This operator defines a strategy C(s1, . . . , sn)
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that only applies to terms with constructor C and arity n. When matched, each
substrategy si is applied to respective subterm. With this operator different
strategies can be selected for different subterms. Here is an example strategy,
that specifies identity strategy (ie. no transformation) for certain subterms of
certain types of terms:

control-flow(s) = Assign(id, s) + If(s, id, id) + While(s, id)

As congruence operators mention specific constructors, they are specific to a
datatype. Stratego also provides combinators for creating generic traversals.
Operator all(s) applies strategy s to each direct subterm of the current term.
Following example shows how all can be used for defining strategy for bottom-
up traversal

bottomup(s) = all(bottomup(s)); s

3.5 First-Class Pattern Matching

So far we have made distinction between strategies and rewrite rules. How-
ever, neither of them are primitive constructs- Rewrite rules are just syntactic
sugar for simple strategies composed from more basic transformation actions
like matching and building terms and delimiting the scope of pattern variables.
These basic actions can be directly used to form some interesting matching
idioms.

Let’s consider the rewrite process of an example rewrite rule introduced in sec-
tion 3.1:

EvalPlus : Plus(Int(i), Int(j)) -> Int(k) where <add> (i, j) => k

First subject term is matched against the pattern in the left-hand side and
variables i and j are bound, then where condition strategy is evaluated and
variable k is bound, finally right-hand side pattern Int(k) is instantiated and
it replaces the original term. The scope of variables i, j and k is the rule.

In following example, these separate actions are expressed explicitly using primi-
tive actions for matching (?pat), building (!pat), and scoping ({x1, . . . , xn:s}).
In fact, that’s how Stratego compiler desugars the definitions.

EvalPlus =

{i,j,k: ?Plus(Int(i), Int(j)); where(!(i,j); add; ?k); !Int(k)}

The strategy where(s) succeeds if strategy s succeeds, but it returns the original
subject term [3].
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3.6 Scoped Dynamic Rewrite Rules

Normal rewrite rules can only use information obtained by pattern matching
on the subject term. Many useful transformations would also need information
from the context of program fragment in focus. Example uses would be bound
variable renaming, typechecking, constant propagation, common-subexpression
elimination, dead code elimination. To achieve this, Stratego extends strategies
with scoped dynamic rewrite rules [10, 3].

Dynamic rules are generated at run-time and can access information from their
generation contexts. Consider following example strategy, meant for inlining
single-argument functions:

DeclareFun =

?|[ function f(x) = e1 ]|

; rules(

InlineFun : |[ f(e2 ) ]| -> |[ let var x := e2 in e1 end ]|

)

At runtime, each time a function definition is matched and strategy DeclareFun

is applied, rules(...) construct creates a new dynamic rule (named here as
InlineFun) to be used at call sites of this specific function. Declaring InlineFun

in the scope of match to function definition makes f in the left-hand side and
x and e1 on the right-hand side refer to inherited bindings of these variables.
The storage and retrieval of the context information is handled transparently
by Stratego and is of no concern to the programmer.

Here is a more complex example of inlining that applies to functions with arbi-
trary arity:

DeclareFun =

?fdec@|[ function f(x1*) ta = e1 ]|;

rules(

InlineFun :

|[ f(a*) ]| -> |[ let d* in e2 end ]|

where <rename>fdec => |[ function f(x2*) ta = e2 ]|

; <zip(BindVar)>(x2*, a*) => d*

)

BindVar :

(FArg |[ x ta ]|, e) -> |[ var x ta := e ]|

Construct fdec@ on second line is used to name a pattern.

Dynamic rules are first-class entities and can be used at global level of term
traversal. It’s possible to control the application of dynamic rules using rule
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scopes. For example, DeclareFun and InlineFun as defined above, could be
used in the following inlining strategy (notation {|L : s|} restricts the scope
of a generated rule L to the strategy s):

inline = {| InlineFun :

try(DeclareFun)

; repeat(InlineFun + Simplify)

; all(inline)

; repeat(Simplify)

|}

First inlining rules are generated for all functions encountered by DeclareFun,
then function calls are inlined using InlineFun and some simplifications are
made. Next, strategy applied recursively to subterms using all. Finally, on
the way up, simplification is applied again. Of course, actual inliner should also
decide whether function should be inlined at all.

3.7 Term Annotations and Type Checking

A term consists of a constructor and argument terms. In Stratego a term has
also a list of annotations, so far the terms in our examples just happened to have
empty annotation lists. A term with annotations has the form t{a1, ..., am},
where each ai is a term. Annotations can be added during parsing (eg. cons

annotations shown in section 2) or, since annotations are also terms, they can
be pattern-matched and rewriting rules and strategies can be applied to them.
Therefore it’s possible to create transformations that add type annotations to
terms – that’s how Stratego can be used for type checking. Following exam-
ple shows how to assign type annotation to an expression by matching type
annotations of it’s components:

TypeCheck : Plus(e1{Int}, e2{Int}) -> Plus(e1, e2){Int}

Whole typing/typechecking process may include assigning some types during
parsing (eg. to literals), then applying set of typing rules and finally checking
that resulting root node has a type annotation.

Similarly many other program analyses can be expressed as program trans-
formation problems. Actual examples in which annotations were used include
escaping variables analysis in a compiler for an imperative language, strictness
analysis for lazy functional programs, and bound-unbound variables analysis for
Stratego itself [10, 3].
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Figure 1: Example data flow between tools

4 Infrastructure in Stratego/XT

Stratego language together with XT toolkit is able to generate standalone tools
from grammar definition and transformations. Figure 1 shows the data flow
between the tools composed to form the interpreter and partial evaluator for
Tiger language.

Some of the tools are generic and are included in XT toolset (there are more
than 100 available), other tools are user-written. Following example shows how
to turn simplify strategy into a standalone tool:

module simplify

imports lib Tiger-Simplify

strategies

main = io-wrap(simplify-options, simplify)

simplify-options =

ArgOption("-O", where(<set-config> ("-O", <id>)),

!"-O n Set optimization level (1 default)")

Stratego compiler first produces C code and then compiles it to binaries using
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menubar = {

menu {

text = "File"

items = {

menu item { text = "New" accelerator = ctrl-N }

menu item { text = "Save" accelerator = ctrl-S }

}}}

content = panel of border layout {

center = scrollpane of textarea { rows = 20 columns = 40 }

south = panel of border layout {

east = panel of grid layout {

row = {

button of "Accept"

button of "Cancel"

}}}}

Figure 2: Simple UI implemented in Swul

standard C compiler. The compiler and required libraries are available under
LGPL license.

Tools can be combined using pipes, whereas tree data is represented using ATerm
format [7]. Both plain-text and optimized binary representation of ATerm can
be used. As there are ATerm libraries available for several languages, some
components of a transformation system can be written in languages other than
Stratego.

Finally, after transformations, AST is turned into text again (unparsing). For
this, Stratego uses Generic Pretty-Printer (GPP) package[5]. With GPP, a
tree is first transformed to an intermediate representation in Box language,
which coqntains text together with markup related to pretty printing. This can
processed further by different back ends to produce, for example, plain-text,
LATEX, HTML, etc.

5 Example: Swul in Java

Swul is a DSL for writing graphical user-interfaces using Swing library [2]. It
aims to make structure of the user interface and relationships between compo-
nents clearly visible from the source code. Figure 2 shows an example program
fragment written in Swul.
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Figure 3: Pipeline for the processing of Swul in Java

With MetaBorg method, Swul components can be used inside Java code in place
of Java expressions (embedding) and Java expressions can be used in place of
Swul expressions (escaping).

Figure 3 shows stages of processing for Java-embedded Swul code. Basically,
MetaBorg works like a preprocessor to Java compiler, but unlike most preproces-
sors, it operates on the complete (Java+Swul) abstract syntax tree. Secondly,
it performs semantic analysis and type checking on mixed AST, so it is able to
report semantic errors in terms of the original program.

5.1 Syntax Definition and Embedding

For creating such a preprocessor, first syntax for Swul was defined using SDF
(Java 1.5 syntax is available as a SDF package).

Syntactic embedding of Swul and Java is defined in a separate SDF module that
imports both syntaxes and defines where Swul components can be used in Java
and vice versa:

context-free syntax

SwulComponent -> JavaExpr {avoid, cons("ToExpr")}

JavaExpr -> SwulComponent {avoid, cons("FromExpr")}

Here SwulComponent and JavaExpr are nonterminals from Swul and Java gram-
mars, respectively, and new productions in combined grammar allow using one
nonterminal in place of the other.

To avoid name collisions, both syntaxes are imported through automatically
generated renaming modules, where symbol names are prefixed with language
names (eg. JavaExpr instead of Expr).

MetaBorg method does not require the use of quotation or anti-quotation sym-
bols for changing between the languages (this enables to keep the combined
syntax cleaner), but this raises issues of cyclic derivations. In SDF this ambi-
guity problem is solved by priority declaration
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context-free syntax

ComponentType Props? -> Component {cons("Component")}

"{" Prop* "}" -> Props {cons("Props")}

PropType "=" PropValues -> Prop {cons("Prop")}

"{" Component* "}" -> PropValues {cons("PropMultiValue")}

Component -> PropValues {cons("PropSingleValue")}

context-free syntax

"panel" -> ComponentType {cons("JPanel")}

"border" "layout" -> ComponentType {cons("BorderLayout")}

"grid" "layout" -> ComponentType {cons("GridLayout")}

"content" -> PropType {cons("Content")}

"layout" -> PropType {cons("Layout")}

"title" -> PropType {cons("Title")}

Figure 4: Core productions of Swul grammar

context-free priorities

JavaExpr -> SwulComponent

> SwulComponent -> JavaExpr

From the combined syntaxes of Java and Swul, a SGLR parsing table is compiled
and this can be used to create standalone parser for the new language.

5.2 Semantic Analysis

When programs written in the combined language are parsed, then resulting
AST needs to be checked for semantic errors (for example type errors). It
is possible to ignore error checking until embedded language constructs are
translated away to base language, but in this case error messages are created in
terms of translated program and mapping problems back to original code can
be too difficult. Therefore semantic analysis is performed on AST with mixed
language constructs.

In case of Swul, type checking is based on a previously available Java type
checker, written in Stratego. This is extended to support typing Swul code and
connections between Swul and Java.
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5.3 Assimilation

Assimilation of Swul transforms the embedded Swul code to the corresponding
invocations of the Swing API. For this, a set of transformation rules are needed
together with a traversal strategy. Following fragment shows main traversal
strategy used for assimilating Swul:

swul-assimilate =

class-declaration

<+ class-initializer

<+ class-method

<+ swul-expression

<+ all(swul-assimilate)

Basically it is a list of strategies to choose from when translating some term.
Note that the special cases are listed first and generic traversal combinator
all(s) (applying strategy s to all subterms) comes last.

One of the specific cases is class-initializer, which keeps track of whether
current context is an instance method or class method (static). In a static
context, new generated fields need to be declared static as well and for this, the
set of FieldModifier rules is extended with a new dynamic rule that produces
the static modifier:

class-initializer :

|[ static { bstm1* } ]| -> |[ static { bstm2* } ]|

where {| FieldModifier

: rules(FieldModifier :+ _ -> |[ static ]|)

; <swul-assimilate> bstm1* => bstm2*

|}

Most assimilation rules are quite straightforward, for example rewriting Swul ex-
pression to a Swing widget (semantics of construction {| s | e |} is described
below):

SwulAs-JButton :

|[ button { ps* } ]|{x} -> |[ {| x = new JButton (); bstm* |x|} ]|

where <map(SwulAs-JButtonProp(|x ))> ps* => bstm*

This example demonstrates use of an eblock, a convenience extension to Java,
that allows the inclusion of block statements in expressions. The syntax for
eblock is {| statements | expression |}, the value of eblock is the expres-
sion. In this example, the term to be matched is an expression, but its trans-
lation introduces also some statements (x = new JButton (); bstm*) that
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should actually be somewhere before the expression in focus. Without eblocks,
this transformation would need more complex nonlocal transformation rule. Be-
fore producing final Java code, eblocks are transformed to normal set of state-
ments using a separate tool.

Finally, when AST is transformed to plain Java, it is pretty-printed to source
code. There are pretty printers for Java and some other languages included
in Stratego/XT toolkit. The resulting file can be compiled with standard Java
compiler. Ideally, this should not generate error messages, because type checking
was already done on mixed language AST.

6 Conclusion and Related Work

This report described MetaBorg – a method for embedding and assimilating
domain-specific languages into a general purpose language. This task requires
solving many technical difficulties.

For creating grammar of new combined language, specific features of SDF (Syn-
tax Definition Formalization) are used. Modular definitions allow defining gram-
mars separately and combine them without restrictions. As new grammar usu-
ally does not fall into some well-known subclass of context-free languages, a
powerful parsing technology – Scannerless GLR – is used.

Assimilation consists of transforming DSL fragments into host language con-
structs. MetaBorg builds on strengths of Stratego program transformation
language – transformation strategies, scoped dynamic rewrite rules and term
annotations. Usage of ATerm format for data exchange allows creating small
reusable tools for common program transformation tasks.

There are other approaches for extending languages with new constructs. Among
these, this LISP macros are probably best known, but they operate in much sim-
pler environment (s-expressions) than, for example, Java syntax. Another in-
teresting solution is Metamorphic Syntax Macros [1] – an extendable language
using specific BNF-like statements in program source-code. This is different
from MetaBorg mainly because it uses a specific base language, and proposed
extension techniques cannot be applied to arbitrary languages. JetBrains’ Meta
Programming System [6] and Language Workbench from Intentional Software
[9] are both platforms for creating, combining and using languages. They avoid
concrete syntax issues by storing programs in tree form and they enable ad-
vanced program editing and browsing using customizable views. Rascal [8] is
a language and toolset quite similar to Stratego/XT but it includes also some
extra facilities for program analysis.

To conclude the comparison – MetaBorg method enables extending any existing
language, using special purpose languages for syntax definition and transforma-
tions and the resulting source code is usable with standard compilers.
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