
Proving Properties of Randomized Algorithms
paper for Programming Language Semantics Research Seminar

Martin Pettai

November 25, 2009

Abstract

Formal verification can do much in improving the security of algorithm im-
plementations. While it is not an easy task even for deterministic algorithms,
randomized algorithms add to it another degree of complexity. This paper
investigates some ways of dealing with this complexity.

We describe a method of formally modeling randomized algorithms with-
out having to formalize the whole probability theory. We give an overview of
the techniques used to prove partial and total correctness of randomized al-
gorithms modeled using this method. We also make some comparisons to the
techniques used in the deterministic case to show how they are generalized
in the randomized case.

Contents

1 Introduction 2

2 Semantics of randomized algorithms 3
2.1 Interpreting probabilistic algorithms as functions 3
2.2 Monadic interpretation . 5
2.3 A simple randomized language 5

2.3.1 Syntax . 5
2.3.2 Type system . 6
2.3.3 Denotational semantics 6

3 Reasoning on randomized algorithms 7
3.1 Algebraic properties of measures 7
3.2 A nonrecursive example . 7

1

3.3 A primitive-recursive example 9
3.4 General recursion . 10

3.4.1 Partial correctness . 10
3.4.2 Termination . 11

3.5 A general-recursive example 12
3.5.1 Partial correctness . 12
3.5.2 Termination . 13

4 Related work 14

5 Conclusion and further work 14

References 14

1 Introduction

To improve the security of an algorithm implementation, it is often useful to
prove that the implementation is correct with respect to some specification.
If we want to prove that a deterministic algoritm is implemented correctly, we
can define a denotational semantics of this algorithm as a function and prove
that it gives a correct output for every input, i.e. for a function f : A → B
we want to prove that ∀x ∈ A. P (x, f x) where P is a predicate on A× B.
If the algorithm is not deterministic but probabilistic then the output is no
longer uniquely defined by the input.

In this paper, we will see how to prove correctness in this more gen-
eral case, where the algorithms can use randomness. This overview is based
mostly on the paper by Audebaud and Paulin-Mohring [1]. Differently from
that paper, here we will not consider the aspects specific to the Coq proof
assistant. Rather we will give an overview of the techniques involved in mod-
eling randomized algorithms and reasoning about them to prove partial or
total correctness. These techniques can be used to mechanize the correct-
ness proofs in Coq or in other proof assistants but they can also be used
independently of any proof assistant. Thus the reader is not required to be
familiar with proof assistants but familiarity with functional programming,
monads, and denotational semantics is assumed. Some elementary knowledge
of probability theory would also be helpful.

This paper contains two main sections. In section 2, we will start by de-
scribing how to remove randomness from randomized algorithms by modeling
them as mathematical functions. These functions can be used as denotations
of the randomized algorithms. Next we will introduce a monad that captures

2

the modeled randomness. We will finish the section by describing a simple
randomized language and its denotational semantics.

In section 3, we will investigate several examples to illustrate the main
techniques of proving correctness of randomized algorithms. We will also
give a more theoretical description of the techniques for general-recursive
functions in the subsection 3.4.

2 Semantics of randomized algorithms

2.1 Interpreting probabilistic algorithms as functions

We first consider deterministic functions. Let f : α → β be a deterministic
function. Then we can specify a predicate P : α → β → B that defines
partial correctness for this function. Here B = {false, true} is the set of
booleans. To prove partial correctness, we then have to prove that whenever
f x terminates and returns y, also P x y must hold. We define the proposition
IP (f, x):

IP (f, x) ≡ if f x terminates then the returned value y satisfies P x y

Thus partial correctness of f is equivalent to the proposition ∀x. IP (f, x). To
prove total correctness, we also need to prove that f x terminates for all x.

Now let φ : α → distr β be a probabilistic algorithm. Here distr β is
the type of probability distributions over β. In this case we can still specify
a predicate P : α → β → B, but here it defines partial correctness of a
concrete run of the algorithm. Here φ x can behave differently on different
runs, e.g. on some runs it terminates and returns a correct output, on some
runs it terminates and returns an incorrect output, and on some runs it does
not terminate. Each of these three cases happens with a certain probabil-
ity. Instead of the proposition IP (f, x), we define a random event EP (φ, x)
characterizing a single run of φ x:

EP (φ, x) = {if φ x terminates then the returned value y satisfies P x y}
Thus the event happens if the run either does not terminate or terminates
returning a correct answer.

Let the argument x be fixed. We consider the probability of the event
EP (φ, x). This probability is a real number in [0, 1] that is uniquely de-
termined by φ x : distr β and P x : β → B. Thus, we have a function
ρ : distr β → (β → B) → [0, 1].

Since we are only interested in the probability that the return value sat-
isfies a certain predicate (and not, e.g. sampling the distribution φ x of the

3

return value), we can replace φ x by ρ (φ x). Instead of the function φ we
can define the function f : α→ (β → B) → [0, 1] where f x = ρ (φ x).

Now we can estimate the three probabilities that we mentioned a few
paragraphs ago. The probability that f x terminates and returns a correct
result is f x (P x). The probability that f x terminates at all is f x I where I :
β → B is the maximal predicate (I y = true for all y, this predicate is satisfied
whenever the algorithm returns any value, i.e. terminates). The probability
that f x terminates and returns an incorrect result is f x I− f x (P x). The
probability that f x does not terminate is 1− f x I.

When estimating the properties of a probabilistic algorithm it might be
easier to consider parts of the algorithm separately than to consider the whole
algorithm at once. Let f1 : α → (β → B) → [0, 1] and f2 : β → (γ → B) →
[0, 1] be probabilistic algorithms and f : α → (γ → B) → [0, 1] be the
probabilistic algorithm that applies f1 to its argument and when it receives
a result y from f1, it applies f2 to y, returning its result if there is any.

We would like to estimate the probability that the predicate P : α→ γ →
[0, 1] holds when f is applied to the argument x. If we have already applied
f1 and it returned y then after applying f2 y, P will hold with probability
f2 y (P x). We can consider this probability as a function of y. Let h : β →
[0, 1] where h y = f2 y (P x). The function h is a generalized predicate on β
— instead of assigning a boolean value to each argument, it assigns it a real
number in [0, 1]. This real number can be interpreted as the probability that
the predicate P holds if y is fixed (i.e. y does not determine P completely).

Because the return value of f1 x does not completely determine whether P
holds or not, it was not the best choice to assign to f1 x the type (β → B) →
[0, 1]. Instead, we assign f1 a more specific type α → (β → [0, 1]) → [0, 1].
For the sake of consistency, we then also reassign the types of f2 and f :

f2 : β → (γ → [0, 1]) → [0, 1]

f : α→ (γ → [0, 1]) → [0, 1]

Now the probability that P holds when x is fixed is f x (IP x) = f1 x h
where IP is the function equivalent to the predicate P , i.e. it returns 1 instead
of true and 0 instead of false. We can also consider h as a function of x
where h : α→ β → [0, 1], h x y = f2 y (IP x). Then f x (IP x) = f1 x (h x).

We now introduce the operator · for two functions a and b:

(a · b) x = a x b

The function b is the continuation given to the function a. Then

f · IP x = f1 · (f2 · IP x)

4

In general, for any p : γ → [0, 1]

f · p = f1 · (f2 · p)

2.2 Monadic interpretation

In the previous section we interpreted probability distributions over type α as
functions of type (α→ [0, 1]) → [0, 1]. We define Mα = (α→ [0, 1]) → [0, 1].
We now turn M into a monad. The monadic operations are defined as

return : α→ Mα

return x = fun (f : α→ [0, 1]) ⇒ f x

(À=) : Mα→ (α→ Mβ) → Mβ

µÀ=M = fun (f : β → [0, 1]) ⇒ µ (fun (x : α) ⇒M x f)

Thus in the example from the previous section we had

f = fun x⇒ f1 xÀ= f2

. We have the following identity connecting the operators À= and ·:

(fun x⇒ f1 xÀ= f2) · p = f1 · (f2 · p)

2.3 A simple randomized language

We use the simple functional language Rml from [1]. In section 3, we will
see how to reason on randomized algorithms. We will not reason directly on
the syntax of the algorithm but rather on its denotation. In this section, we
will see how to give a denotational semantics to Rml expressions, using the
framework introduced in sections 2.1 and 2.2.

2.3.1 Syntax

Expressions:

Expr ::= x | c | if b then e1 else e2 | f e1 . . . en | let x = e1 in e2

Top-level declarations:

TopLevDecls ::= let f x1 . . . xn = e | let rec f x1 . . . xn = e

5

2.3.2 Type system

Rml uses a simple monomorphic type system which has some base types (unit
type, booleans, natural numbers, the set [0, 1]) and also has the constructor
→ for function types.

The denotation of an expression of a non-functional type α is of type Mα
because an Rml expression can use randomness. Similarly the denotation
of an expression of a functional type α1 → . . . → αn → β (where β is a
non-functional type) is of type α1 → . . .→ αn → Mβ.

2.3.3 Denotational semantics

For each expression e, we define its denotation [e]:

[x] = return x

[c] = return c

[if e0 then e1 else e2] = [e0]À= fun (x : B) ⇒ if x then [e1] else [e2]

[f e1 . . . en] = [e1]À= fun x1 ⇒ . . . [en]À= fun xn ⇒ f x1 . . . xn

[let x = e1 in e2] = [e1]À= fun x⇒ [e2]

The denotations of top-level declarations are top-level declarations in the
meta-language:

[let f x1 . . . xn = e] = (let f = fun x1 ⇒ . . . fun xn ⇒ [e])

[let rec f x1 . . . xn = e] = (let f = fix (fun f ⇒ fun x1 ⇒ . . . fun xn ⇒ [e]))

The denotations of primitive (built-in) randomized functions:

[random] : N→ MN

[random] n = fun (f : N→ [0, 1]) ⇒
n∑

i=0

1

1 + n
× (f i)

[flip] : () → MB

[flip] () = fun (f : B→ [0, 1]) ⇒ 1

2
× (f true) +

1

2
× (f false)

The primitive random n is used to choose a random number from the set
{0, . . . , n} using the uniform distribution. The primitive flip is used to
simulate a (fair) coin flip.

6

3 Reasoning on randomized algorithms

We would like to estimate the probability (f · p) x. If the definition of f
does not use recursion then it is straightforward to calculate the probability
in a finite number of steps. Each random operator creates another (finite)
summation.

3.1 Algebraic properties of measures

Here we describe the algebraic properties that will be used in the following
examples. First we define on functions the addition and scaling operations
and a partial order:

(f1 + f2) x = f1 x+ f2 x

(f1 − f2) x = f1 x− f2 x

(k × f) x = k × f x

f1 ≤ f2 ≡ ∀x. f1 x ≤ f2 x

These hold for any real-valued functions where f1 and f2 are of the same type
and k is a real number. For measure functions, in addition the linearity and
monotonicity properties hold:

f (g1 + g2) = f g1 + f g2

f (k × g) = k × f g

g1 ≤ g2 ⇒ f g1 ≤ f g2

Here f : (α → [0, 1]) → [0, 1] is a measure function and g, g1, g2 : α → [0, 1]
for some α.

Our λ-calculus also satisfies extensionality, thus we can use η-conversion:

(fun x⇒ f x) = f

3.2 A nonrecursive example

This is a modified example from [1]. Suppose we have randomized algorithms
f1, f2 : α→ Mβ that satisfy a property h : α→ β → [0, 1] with probabilities
less than 1. For example, the algorithms may try to determine whether the
argument is a prime number. In this case h x y = 1 iff x is prime and
y = true or x is not prime and y = false. In all other cases h x y = 0.

We would like to combine the algorithms f1 and f2 to get an algorithm
that satisfies the property h with a higher probability. Suppose we have a

7

non-randomized function choice : β → β → β that combines two results
(e.g. from f1 and f2) to get a new result such that

∀x, y1, y2. (I− h x) (choice y1 y2) ≤ (I− h x) y1 × (I− h x) y2 (1)

In the case where h x = IP for some predicate P , this corresponds to

∀x, y1, y2. P y1 ∨ P y2 ⇒ P (choice y1 y2)

For the primality testing example, choice x y = x and y.
Now consider the algorithm

fun x⇒ let y1 = f1 x in let y2 = f2 x in choice y1 y2

The denotation of this algorithm is

f x p = f1 x (fun y1 ⇒ f2 x (fun y2 ⇒ p (choice y1 y2)))

The termination probability

f x I = f1 x (fun y1 ⇒ f2 x (fun y2 ⇒ I (choice y1 y2))) =

= f1 x (fun y1 ⇒ f2 x I) =

= f1 x (I× f2 x I) =

= f1 x I× f2 x I

We use (1) to estimate the probability

f x (I− h x) = f1 x (fun y1 ⇒ f2 x (fun y2 ⇒ (I− h x) (choice y1 y2))) ≤
≤ f1 x (fun y1 ⇒ f2 x (fun y2 ⇒ (I− h x) y1 × (I− h x) y2)) =

= f1 x (fun y1 ⇒ (I− h x) y1 × f2 x (fun y2 ⇒ (I− h x) y2)) =

= f1 x (fun y1 ⇒ (I− h x) y1 × f2 x (I− h x)) =

= f1 x (fun y1 ⇒ (I− h x) y1)× f2 x (I− h x) =

= f1 x (I− h x)× f2 x (I− h x)

Thus, from the assumption (1), we have proved

f x (I− h x) ≤ f1 x (I− h x)× f2 x (I− h x) (2)

If we compare (1) and (2), we see that they are similar. They estimate
the probability of the event corresponding to I − h x but (2) estimates it
before the execution of algorithms f1 and f2 while (1) does it after executing
the algorithms. Thus we can reduce estimating the former probability to
the latter, which can be easier because there is less randomness left after
executing the algorithms (or none at all as in the primality testing case).

Here we used only algebraic properties of measures, no probability theory
was required. Thus this proof can easily be verified in Coq because the
algebraic properties have been formalized.

8

3.3 A primitive-recursive example

Here we extend the nonrecursive example from section 3.2. Consider the
algorithm

let rec test x n = if n>0 then choice (g x) (test x (n-1)) else c

The denotation of test is

f x 0 p = p c

f x n p = g x (fun y1 ⇒ f x (n− 1) (fun y2 ⇒ p (choice y1 y2))) if n > 0

We use the result from section 3.2 (taking f1 x = g x and f2 x = f x (n−1))
and get

f x n (I− h x) ≤ g x (I− h x)× f x (n− 1) (I− h x)

We prove by induction that

f x n (I− h x) ≤ (g x (I− h x))n

The base case:

f x 0 (I− h x) = 1− c ≤ 1 = (g x (I− h x))0

The inductive step:

f x n (I− h x) ≤ g x (I− h x)× f x (n− 1) (I− h x) ≤
≤ g x (I− h x)× (g x (I− h x))n−1 =

= (g x (I− h x))n

Because Coq supports primitive recursion, we can verify this proof in Coq.
Thus we can improve the precision of g x by calling it many times. If we

choose a large enough n, we can make the probability that f x terminates
but gives an incorrect answer smaller that any positive real number. Here we
have not proved anything about the probability of termination but we can
use a similar reasoning to prove that

f x n I = (g x I)n

If g x (h x) > 0, i.e. g x (I − h x) < g x I then the probability of incorrect
result decreases faster than the termination probability as n increases, thus
the probability of correctness after termination increases and approaches 1
when n→∞.

9

3.4 General recursion

If the definition of f uses general recursion then we consider each recursive
function separately. So we assume that f : α → Mβ is defined using the
fixpoint operator: f = fixF where F : (α→ Mβ) → α→ Mβ is a monotonic
function.

3.4.1 Partial correctness

We first consider deterministic functions. Let P be the predicate that defines
partial correctness of f . Then the proposition Q h = ∀x. IP (h, x) character-
izes the partial correctness (with respect to the predicate P) of a function h.
To prove Q (fixF) we may prove that if Q h for some function h then also
Q (F h). In constructive logic, we would define a function that transforms a
proof of Q h to a proof of Q (F h).

In the randomized case, we use a similar approach. Here we define (to-
tal) correctness (with respect to the functions g and ϕ) of a function h by
functions g : β → [0, 1] and ϕ : α → [0, 1]. The function h is correct if
h · g = ϕ.

To prove the correctness of fixF , we need to estimate fixF ·g for which we
define a monotonic function Fg : (α → [0, 1]) → α → [0, 1] that transforms
an estimate h · g to an estimate F h · g, i.e. it satisfies

Fg (h · g) = F h · g
If this equality is satisfied, we say that the function Fg commutes with F
for the expectation g. The value of Fg is easy to find from the definition of
F if the value of F h · g is uniquely determined by the value h · g (even for
different pairs of values of h and g). This is always the case when f passes its
continuation g unchanged to all of its recursive calls, i.e. when all recursive
calls in f are tail-recursive.

If f contains recursive calls that are not tail-recursive then it can be more
difficult to find Fg that commutes with F . It may be easier to find a function
Fg that satisfies

Fg (h · g) ≥ F h · g
In this case we say that Fg weakly commutes with F (for the expectation g).

If we have a function Fg that commutes with F then fixF · g = fixFg.
Now to prove fixF · g ≤ ϕ it suffices to prove that ϕ is a pre-fixpoint of Fg

(i.e. Fg ϕ ≤ ϕ) as this gives fixFg ≤ ϕ (fixFg is the least pre-fixpoint). This
also works when Fg weakly commutes with F .

Proving a lower bound of fixF · g is more difficult because Fg is not the
greatest post-fixpoint. Thus we prove instead an upper bound of fixF · I−

10

fixF · g = fixF · (I − g) = fixFI−g. If we can find a function ψ such that
I− ψ is a pre-fixpoint of FI−g then we have proved that

fixF · I− fixF · g ≤ I− ψ

fixF · g ≥ ψ − (I− fixF · I) (3)

This also works when FI−g weakly commutes with F (for the expectation
I− g).

Thus, if we can find suitable functions ψ and ϕ, we can prove

ψ − (I− fixF · I) ≤ fixF · g ≤ ϕ (4)

For correctness, the bounds should be tight:

ψ − (I− fixF · I) = fixF · g = ϕ

ϕ = fixF · g
ψ = fixF · g + (I− fixF · I)

For partial correctness, we only need to prove (4). For total correctness, we
need in addition

fixF · I = ϕ+ (I− ψ) (5)

If (4) is already proved then it suffices to prove

fixF · I ≥ ϕ+ (I− ψ)

as the upper bound is implied by (4).

3.4.2 Termination

Analogously to the deterministic case, estimating the probability of termina-
tion is often more difficult than proving partial correctness. For the upper
bound, we can use the techniques from section 3.4.1 but for the lower bound
this does not work. Here we need to use another approach.

We define the monotonic sequence of functions (sn):

s0 x = 0

sn+1 x = FI sn x

where FI commutes (not weakly) with F for the expectation I. Then fixFI
is the limit of the sequence (sn), i.e. fixF · I = lub(sn).

To find the limit, we may, for example, first try to find a closed expression
for sn, prove it by induction, and then take its limit.

11

3.5 A general-recursive example

We consider the example (appearing in [1,2]) of simulating a biased coin flip
(the Bernoulli distribution) using only fair coin flips. We use the following
algorithm:

let rec bernoulli p =

if flip() then if p < 1
2
then false else bernoulli (p& p)

else if p < 1
2
then bernoulli (p+ p) else true

Here we use an operator &, which is the dual operator of addition on the
interval [0, 1] and is defined as

a& b = 1− ((1− a) + (1− b))

The denotation of this algorithm is fixF where

F f p g =
1

2
× (if p <

1

2
then g false else f (p& p) g)+

+
1

2
× (if p <

1

2
then f (p+ p) else true) =

= if p <
1

2
then

1

2
× g false +

1

2
× f (p+ p) g

else
1

2
× g true +

1

2
× f (p& p) g =

= if p <
1

2
then

1

2
× g false +

1

2
× (f · g) (p+ p)

else
1

2
× g true +

1

2
× (f · g) (p& p)

We define a function Fg that commutes with F for the expectation g (because
Fg (f · g) p = F f p g):

Fg h p = if p <
1

2
then

1

2
× g false +

1

2
× h (p+ p)

else
1

2
× g true +

1

2
× h (p& p)

Then fixF · g = fixFg.

3.5.1 Partial correctness

We now take g = I.=true. Then

Fg h p = if p <
1

2
then

1

2
× h (p+ p) else

1

2
+

1

2
× h (p& p)

FI−g h p = if p <
1

2
then

1

2
+

1

2
× h (p+ p) else

1

2
× h (p& p)

12

Let φ p = p. We would like to prove fixF · g = φ.
We first prove fixFg ≤ φ, for this it suffices to prove that φ is a pre-

fixpoint of Fg, i.e. Fg φ ≤ φ (here even the equality holds):

Fg φ p = if p <
1

2
then

1

2
× (p+ p) else

1

2
+

1

2
× (p& p) =

= if p <
1

2
then p else p = p = φ p

This gives us fixF · g ≤ φ.
Now we prove fixFI−g ≤ I− φ. For this it suffices to prove that I− φ is

a pre-fixpoint of FI−g (here it is even a fixpoint):

FI−g (I− φ) p = if p <
1

2
then

1

2
+

1

2
× (1− (p+ p)) else

1

2
× (1− (p& p)) =

= if p <
1

2
then 1− p else 1− p = 1− p = (I− φ) p

Using (3), this gives us fixF · g ≥ φ− (I− fixF · I).
Thus we have proved φ − (I − fixF · I) ≤ fixF · g ≤ φ, i.e. the partial

correctness of bernoulli. To prove the total correctness, it remains to prove
that fixF · I ≥ 1.

3.5.2 Termination

We now investigate the termination by taking g = I:

FI h p = if p <
1

2
then

1

2
+

1

2
× h (p+ p)

else
1

2
+

1

2
× h (p& p)

We define the sequence of functions (sn):

s0 p = 0

sn+1 p = FI sn p

We prove by induction that

sn p = 1− 1

2n

The base case is obvious. The inductive step:

sn+1 p = if p <
1

2
then

1

2
+

1

2
×

(
1− 1

2n

)
else

1

2
+

1

2
×

(
1− 1

2n

)
=

=
1

2
+

1

2
×

(
1− 1

2n

)
= 1− 1

2n+1

13

Now we can calculate the termination probability:

fixF · I = lub sn = lub

((
1− 1

2n

)
× I

)
= 1× I = I

Thus we have proved the total correctness of bernoulli:

fixF · g = φ

4 Related work

This overview is mostly based on the paper by Audebaud and Paulin-Mohring
[1]. They use the Coq proof assistant to formalize the techniques of reasoning
on randomized algorithms. The necessary Coq contributions are described
in [3].

An introduction to formal verification of probabilistic algorithms is given
in Hurd’s thesis [2]. Unlike the simpler functional interpretation of [1], Hurd’s
thesis gives a formalization (in the HOL theorem prover) of probability the-
ory (and the more general measure theory) and randomized functions are
modeled as transformers of infinite streams of random bits.

For deterministic algorithms, methods for formally proving correctness
have been embedded in the ATS programming language [4].

5 Conclusion and further work

Here we saw how randomized algorithms can be formally modeled and rea-
soned about. This required to formally encode the semantics (denotation) of
the algorithm. This encoding is done manually and is not formally verified,
thus the original implementation of the algorithm can still be incorrect even
if the encoded denotation is verified to be correct but the algorithm had been
encoded incorrectly.

To remove this deficiency, it would be better to include the proofs in the
same language where the algorithms are implemented, allowing to verify the
implementation directly. For deterministic algorithms, this has been done in
the ATS programming language [4]. It would be interesting to investigate
whether ATS can be extended with random operations in a way that allows
proofs to be embedded in the implemented algorithm.

14

References

[1] Philippe Audebaud and Christine Paulin-Mohring. Proofs of randomized
algorithms in Coq. Science of Computer Programming, 2008.

[2] Joe Hurd. Formal verification of probabilistic algorithms. PhD thesis,
University of Cambridge, 2002.

[3] Christine Paulin-Mohring. A library for reasoning on randomized algo-
rithms in Coq, 2007. Description of a Coq contribution, Univ. Paris Sud.
URL http://www.lri.fr/paulin/ALEA/library.pdf.

[4] Chiyan Chen and Hongwei Xi. Combining programming with theorem
proving. In ICFP ’05: Proceedings of the tenth ACM SIGPLAN Interna-
tional Conference on Functional Programming, pages 66–77. ACM, 2005.

15

