

Modular Dataflow Analysis

Aivar Annamaa
Feb. 23rd, 2010

Based on:
Rountev, Sharp, Xu, 2008
„IDE Dataflow Analysis in the Presence of Large Object-Oriented Libraries“

Problem

● Interprocedural analyses are usually too slow
● can take many hours
● can take many seconds (not usable „as-you-type“)

● If it's fast enough then probably not very precise

Solutions?
● Reduce precision?

● can make analysis useless/unusable

● Go modular
● analyze each part (eg. method) independently
● analysis process could be parallelized
● cache results (method summaries)
● only changed methods need to be re-analyzed

Challenges for modularity

● Dependencies between parts
● How to represent method summaries?

Agenda

● Dataflow analysis
● An approach for solving IDE problems

● IDE
● Transformers as graphs
● Example analysis
● Summary generation
● Benchmarks and conclusions

Dataflow analysis, CFG
a = ?
b = ?
s = ?

a = {x}
b = ?
s = ?

a = {x}
b = {x}
s = ?

a = {y,x}
b = {y,x}
s = ?

a = {y,x}
b = {y,x}
s = {aa, bb, ab, ba}

enter

before if

after
then

after
else

exit

a = {y}
b = {y}
s = ?

after if

a = „x“
if aCondition()
{
 b = „x“
}
else {
 a = „y“
 b = „y“
}
s = a + b

Lattice of abstract values
● Elements are partially

ordered
● x ≤ y means y is as

least as precise as x
● two values are

combined with meet
(or glb) operator ∧

● on picture = ∧ ∪
and ≤ = ⊇

● can be used for env-s

CFG, environments, transformers
● Each CGF node has environment representing

dataflow facts
● env :: D → L
● D = set of variables
● L = set of abstract values

● Each edge has transformer
● t :: env → env

● CFG + variables + lattice + transformers =
abstract version of the program

Solving dataflow problem
● Forward analysis

● start from entry node and propagate values
downward

● Backward analysis
● start from exit and move upwards

● Cycles in CFG complicate things
● loop until transformers don't change anything
● often requires certain tricks to ensure termination

Interprocedural dataflow analysis
● How to handle method calls?
● Inlining called methods

● Good: it's precise
● Bad: graph can grow huge
● Bad: doesn't work with recursion

● Extend CFG
● add call nodes
● add return nodes

Unrealizable paths

x = input()

print(y)

call Q

P1() Q() P2()

y = x

enter

exit

return from Q

x = z

doSmth(y)

call Q

return from Q

Conclusion of introduction
● D = variables
● L = abstract values (in form of lattice)
● env :: D → L = dataflow facts

● Env(D → L) = lattice of all such environments
● CFG as abstract program

● Dataflow facts in nodes
● Environment transformers on edges

● Interprocedural = trouble

IDE Dataflow Problems
● Interprocedural Distributive Environment
● program is represented by ICFG
● dataflow facts are environments D → L

mapping variables to some abstract values
● L is semi-lattice of finite height
● transformers are distributive

● t (env1 ∧ env2) = t (env1) ∧ t (env2)

Example: Dependence analysis
● Which parameters influence a variable?
● Flow-sensitive
● D = all local variables and formal parameters
● L = powerset of formal parameters

● with partial order and meet ⊇ ∪

Dependece analysis. Transformers

● d2 = d1 + d3;
● env[d1 → env(d1) ⋃ env(d3)]

● d1 = 68
● env[d1 →]∅

● d = f(d1, d2)
● assign actual arguments to formal parameters
● use f's summary function
● assign result value to d

Transformers as graphs
print(68) d1 = 68 d2 = d1 + d3

● transformer functions are given pointwise
● Λ represents „something else than a variable“
● meet = graph union

composition = graph transitive closure

Type analysis
● „0-CFA type analysis“
● What type can a variable possibly be?
● Relevant in OO because of polymorphism
● D = vars, params (incl. this), fields
● L = powerset of all types

Type Analysis 2
● d := new T

● env [d → env(d) {T}]∪

● d1 := d2
● env [d1 → env(d1) env(d∪ 2)]
● Flow insensitive

– each transform can make result only less precise
● d1 = d2.m()

● env [d1 → [t (x.m()) | x env(d∈ 2)]]

Different calls and methods
● Exit calls

● method is not statically known
● „exits“ the scope of analysis and can't be modeled

in advance
● Fixed calls

● only one possible target method
● eg. static methods on final classes

● Fixed methods
● has only fixed calls in it

Method summary generation
● Summary uses graph representation
● At method calls:

● fixed calls to fixed methods
– inline method summary

● other calls
– insert placeholder
– resolved at full program analysis

● Summary is abstracted
● irrelevant details (for summary clients) are removed

Example of Dependency Analysis

Example summary graph

Experimental evaluation
● Created summaries for Java 1.4 (25490

methods)
● 33% of the methods are fixed
● Summaries used for analyzing 20 programs

Conclusion
● Transfer functions can be efficiently

represented as graphs
● Summaries of these method graphs can be

reused on different call sites
● Fixed calls are common enough to deserve special

optimisations (inlining)
● Analyses with precomputed library summaries

are 2x faster than analyses „from scratch“

References
● Rountev, Sharp, Xu, 2008

„IDE Dataflow Analysis in the Presence of
Large Object-Oriented Libraries“

● Sagiv, Reps, Horwitz, 1996
„Precise interprocedural dataflow analysis with
applications to constant propagation“

● Cousot & Cousot, 2002
„Modular Static Program Analysis“

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

