

Parsing Abstract Strings

Andrey Breslav

University of Tartu / STACC

March 9th, 2010

Outline

● String-Embedded DSLs

● Abstract Strings
● Three levels of abstraction

● Lexical analysis
● Finite Automata
● Finite-State Transducers

● Syntactical Analysis
● Regular Approximation
● Abstract Parsing

● Summary

● References

String-Embedded DSLs

String sql = “SELECT name, age “ +
 ”FROM tab LEFT JOIN tab1 “ +
 “ON (tab.id = tab1.id) ”;
if (isFiltering()) {

sql += “WHERE age >= 18 “;
}
sql += “ORDER BY age “;
if (isAscending()) {

sql += “ASC”;
} else {

sql += “DESC”;
}
Connection connection = connect();
connection.prepareStatement(sql);

Hotspot

Abstract Strings

String sql = “SELECT name, age “ +
 ”FROM tab LEFT JOIN tab1 “ +
 “ON (tab.id = tab1.id) ”;
if (...) {

sql += “WHERE age >= 18 “;
}
sql += “ORDER BY age “;
if (...) {

sql += “ASC”;
} else {

sql += “DESC”;
}

SELECT ... FROM ... ON ...

WHERE ...

ORDER BY ...

ASC

DESC

Abstraction

Levels of Abstraction

Type 0: Arbitrary Turing machines

Context-Sensitive: Linear-bounded automata

Context-Free: Nondeterministic pushdown automata

Regular: Finite automata (regular expressions)

Finite: Finite set of strings
O(N)

O(N3), but usually O(N)

Program Constructs

● Finite
● String Literals: “SELECT * FROM t”
● Concatenation: sql + “ WHERE x > 10”
● Conditionals: if (b) {s+=“ASC”;} else {s+=“DESC”;}

● Regular
● Appending in a loop

– for (String s : items) {
buffer.append(“, “ + s);

}

● Appending in (effectively) tail recursion

● Context-Free
● General loops and recursion

I am cheating!

Do you actually believe that

Arbitrary programs can generate
ONLY context-free languages

?!

Please, reconsider this belief!

Problem Statement

● Input
● Program P, with a hotspot E

– E may have a value from a set of strings L(E)

● Regular grammar Lex
– Describes lexical structure of the embedded language

(e.g. SQL)

● Context-Free grammar G (over tokens produced by Lex)

● Output
● OK – no errors found
● ERROR(List of errors)

Solution Overview

● Find L(P)
● Finite/Regular
● Context-Free

● Check if L(P) ⊆ L(Lex)*
● Compute T := Lex(L(P)) – language of token sequences

– Finite/Regular

– Context-Free

● Check if T ⊆ L(G)
● REG-REG – Decidable
● REG-CF – Undecidable

Precision

● Soundness
● If we return OK, then there can be no errors when

we run the program

● Completeness
● If we return ERROR(...), then there will be some

errors when we run the program

● Bad news (Rise's theorem):
● We can not achieve completeness and soundness

for unrestricted programs

Regular Input

● L(E) is represented as a finite automaton A
● Lexical analyzer is represented as a finite

transducer T
● TOK := T(A) is also a finite automaton
● Problem: is the given regular language a

subset of a given CF-language (e.g. SQL)?
● AKA “Language Inclusion 3-2”, undecidable

– We will use some approximation

Finite Automata (FA)

● Regular expressions
● , | [01]+0

● No loops => finite language
● Recognizing

● A :: String -> Bool

● Generating
● A :: [String]

0

1

0
1

0

,

Initial state Accepting
state

Transition

Empty Transitions

0

1
0
1

0

,

ε

0

1
0
1

0

,

, | [01]+ 0?

ε−Transitions can always be eliminated:

Recognizing Token Streams

● From Lex to Lex+
● For every accepting state A

● Add an ε-transition from A to the initial state

● Eliminate all ε-transitions

0

1
0
1

0

,

ε

0

1
0
1

0

,

0
1

,

(, | [01]+ 0)+

Inclusion for Regular Languages

CA

B0

1
0
1

0

,

0
1

,

⊆

Generator: (, | [01]+ 0)+ Recognizer: ([01]+ | ,)*

P

Q

R

1

0

1
0

10
,

,

,

S :: StateG -> [StateR]
T :: TransitionG -> [TransitionR]

We start from
S = {InitG |-> [InitR]}
T = {}

And compute S and T until a fixpoint

Algorithm

● Being in state XG

● For all transitions XG -c-> YG

– For all states XR <- S(XG)
● Find a transition XR -c-> YR

– If no such transition exists, abort and return NO
● Add it to T(XG)
● Add YR to S(YG)

– If YG is accepting and YR is not, abort and return NO

– If S or T has changed, recursive call from YG

● Return YES

● Why a fixpoint will be reached eventually?
● We only add to both maps
● Sets of states and transitions are finite

● Time complexity:
● O(|StatesG|*|StatesR| + |TransitionsG|*|TransitionsR|)

The Nature of Lexical Analysis

SELECT name FROM people WHERE people.age >= 18

SELECT WS ID(name) WS FROM ID(people) WS
WHERE WS ID(people) DOT ID(age) WS GE NUM(18) EOF

Unicode
alphabet

Tokens
alphabet,

includes EOF

Finite-State Transducers (FST)

● Recognize and generate at the same time
● FST :: A* -> B*

– For finite alphabets A and B, both containing a special symbol EOF

A B
a / b

1
...b

n

a ∈ A?, b
1
...b

n
 ∈ B*

P

Q

R

1 / ε

0 / ε

1 / ε
0 / ε

, / NUM CM

, / CM

, / CM

1 / ε0 / ε,0110,, CM NUM CM CM

What about: “0110”?

Dealing with EOF

P

Q

R

1 / ε

0 / ε

1 / ε
0 / ε

, / NUM CM

, / CM

, / CM

1 / ε0 / ε

EOF / NUM EOF

EOF / EOF

0110 EOF NUM EOF

From Inclusion to Transduction

● Inclusion check is simpler than a transduction
● But not so much

● We can compute
● S :: StateIN -> [StateFST]
● T :: TransitionIN -> [TransitionFST]

● We need a resulting FA, OUT := FST(IN)
● StateOUT := Copy StateIN

● For each tFST ∈T(tIN : AIN -> BIN)
– Create tOUT : AOUT -> BOUT

Abstract Lexical Analysis: Summary

● Convert an abstract string into a NFA
● O(N)

● Compute FST(NFA)
● O(|FST| * |NFA|)

● Loss of precision:
● Only when creating the abstract string

Parsing Abstract Strings

● Inclusion (A ⊆ B) is undecidable if
● A is regular
● B is context-free

● Possible solutions
● Check for disjointness (it is decidable)

– Neither sound nor complete
– But still useful

● Loose precision (introduce more false alarms)

Two Principal Ways You Shoot
Yourself in the Foot Loose Precision
● Approximations

● Find a regular language contained in the CF one
– Bounding the depth of recursion [CMS03]

● Try to run a well-known parsing algorithm on NFAs
– Earley parsing (done in [Thi05] in the form of a type

system)
– LR-parsing (called “Abstract Parsing” in [DKS09,

KCY09])

Bounded Recursion [CMS03]

● Example of a non-regular grammar
● E ::= int
● E ::= (E)

● If we bound the recursion depth to D = 3, we get
● EREG ::= int | (int) | ((int)) | (((int)))
● This is a regular set of strings

● False alarms
● “(((((int)))))” ∈E, but ∉EREG

● The bigger is D, the less false alarms we get

Introduction to LR-Parsing

S2

S3

S1

Shift/Reduce actions Goto actions

Input
chars

Stack of states

SELECT * FROM t WHERE id = 5

Current
state

Current
token

● Action table does not change

● Parser state is characterized by
● Stack of states
● Current offset in the input stream

Abstract Parsing

● Input
● TOK :: NFA generating strings of tokens, which end with

EOF
● Action table of an LR parser PG

● Output
● OK – L(TOK) ⊆ L(G)

● ERROR – L(TOK) may not be a subset of L(G)

● Algorithm
● For each state of TOK find a set of possible stacks of PG

Abstract Parsing (Algorithm)

● Stacks(STOK) :: StateTOK -> [StackG]

● Being in the state ATOK

● For each tTOK : ATOK -T-> BTOK

– For each stack ∈Stacks(ATOK)
● Perform actions of PG with token T

– If PG returns an error, return ERROR
● Add resulting stacks to States(BTOK)

● If Stacks did not change
– Return OK

● Recursive call from BTOK

● Termination
● NOT guaranteed, because the set of possible stacks may be infinite

Summary So Far

● For finite inputs
● Precise result

● For infinite inputs
● No result

● Solution: loose precision
● Represent sets of stacks as finite objects

– e.g. regular approximation (stacks are also strings over
the state alphabet) [DKS09]

– e.g. consider only stacks of finite depth [KCY09]

Regular Approximation for Stacks
[DKS09]

A

B

A

A

B

C

A

B

C

 top

 top
B

A

A

B

C

 top

A

B

C

 top

A

B

C

 top

Pop Pop

False Alarm Example for [DKS09]

● Grammar
● E ::= num | (E)

● Input: “((num))”

● Trace:

Stack Actions

0 Push 2

0 2 Push 2

0 2 2 Push 1

0 2 2 1 Pop, Push 4

0 2 2 4 Push 6

0 2 2 4 6 Pop3, Push 4

0 2 4 Push 6

0 2 4 6 Pop3, Push 3

0 3 Push 5

0 3 5 Accept

6

4

2

2

0

 top 6

4

2

0

 top

Pop3

2

0

 top

0 top

Stacks of Bounded Depth [CKY09]

A

B

A

A

B

C

 top

B

C

 top

Pop4 Pop4

A

B

A

A

?

 top

? top

ERROR

False Alarm Example for [DKS09]

● Grammar
● E ::= num | (E)

● D = 3
● Input: “((((((num))))))”

● The bottom of the stack is lost

● With D = 1000 it is unlikely to loose anything
● NB: Time and memory are O(|States|D)
● We have to experiment to look for reasonable D

– In progress :)

Comparing the Two Abstractions

● Regular approximation
● Does not handle nested parentheses at all
● Even worse than bounded recursion

● Bounded stack depth
● Does not handle nested parentheses of certain

depths
● Same as bounded recursion

Why Abstract Parsing

● We have two options:
● Approximate SQL grammar with a regular one (by bounding

recursion depth)
● Apply abstract parsing with bounded stack depth (D)

– Time complexity: O(|StatesTOK | * |StatesG|D)

● These two raise the same false alarms on infinite inputs
● Advantages of Abstract Parsing

● Precision guaranteed on finite inputs
● Helpful error reporting
● Support for IDE features (e.g., content assist)

Reporting Errors

● Types of errors
● Unexpected token: no action for the input token is

present in the action table
– Good: we have an erroneous token

● Non-accepting state: all input characters are consumed,
but the current state is not accepting
– Not so good: we do not know what the errors is

● Error annotation positioning
● Input characters are coming with their positions
● Transducer collects the characters which form tokens

Overall Summary

● Convert an abstract string into a NFA
● O(N)

● Compute FST(NFA)
● O(|FST| * |NFA|)

● Perform abstract parsing on FST(NFA)
● O(|NFA| * |Parser States|D)

● Loss of precision:
● On creating the abstract string
● On abstract parsing

References

● [DKS09] Kyung-Goo Doh, Hyunha Kim, and David A. Schmidt. Abstract parsing: Static analysis
of dynamically generated string output using LR-parsing technology. In Jens Palsberg and
Zhendong Su, editors, SAS, volume 5673 of Lecture Notes in Computer Science, pages 256–
272. Springer, 2009.

● [KCY09] Soonho Kong, Wontae Choi, and Kwangkeun Yi. Abstract parsing for two-staged
languages with concatenation. In GPCE ’09: Proceedings of the eighth international conference
on Generative programming and component engineering, pages 109–116, New York, NY, USA,
2009. ACM.

● [Thi05] Peter Thiemann. Grammar-based analysis of string expressions. In TLDI ’05:
Proceedings of the 2005 ACM SIGPLAN international workshop on Types in languages design
and implementation, pages 59–70, New York, NY, USA, 2005. ACM.

● [CMS03] Aske Simon Christensen, Anders Møller, and Michael I. Schwartzbach. Precise
analysis of string expressions. In Proc. 10th International Static Analysis Symposium, SAS ’03,
volume 2694 of LNCS, pages 1–18. Springer-Verlag, June 2003. Available from
http://www.brics.dk/JSA/.

