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String-Embedded DSLs

String sql = “SELECT name, age “ +
             ”FROM tab LEFT JOIN tab1 “ + 
             “ON (tab.id = tab1.id) ”;
if (isFiltering()) {

sql += “WHERE age >= 18 “;
} 
sql += “ORDER BY age “;
if (isAscending()) {

sql += “ASC”;
} else {

sql += “DESC”;
}
Connection connection = connect();
connection.prepareStatement(sql);

Hotspot



  

Abstract Strings

String sql = “SELECT name, age “ +
             ”FROM tab LEFT JOIN tab1 “ + 
             “ON (tab.id = tab1.id) ”;
if (...) {

sql += “WHERE age >= 18 “;
} 
sql += “ORDER BY age “;
if (...) {

sql += “ASC”;
} else {

sql += “DESC”;
}

SELECT ... FROM ... ON ...

WHERE ...

ORDER BY ...

ASC

DESC

Abstraction



  

Levels of Abstraction

Type 0: Arbitrary Turing machines

Context-Sensitive: Linear-bounded automata

Context-Free: Nondeterministic pushdown automata

Regular: Finite automata (regular expressions)

Finite: Finite set of strings
O(N)

O(N3), but usually O(N)



  

Program Constructs

● Finite
● String Literals: “SELECT * FROM t”
● Concatenation: sql + “ WHERE x > 10”
● Conditionals:  if (b) {s+=“ASC”;} else {s+=“DESC”;}

● Regular
● Appending in a loop

– for (String s : items) { 
buffer.append(“, “ + s); 

}

● Appending in (effectively) tail recursion

● Context-Free
● General loops and recursion



  

I am cheating!

Do you actually believe that 

Arbitrary programs can generate 
ONLY context-free languages

?!

Please, reconsider this belief!



  

Problem Statement

● Input
● Program P, with a hotspot E

– E may have a value from a set of strings L(E)

● Regular grammar Lex
– Describes lexical structure of the embedded language 

(e.g. SQL)

● Context-Free grammar G (over tokens produced by Lex)

● Output
● OK – no errors found
● ERROR(List of errors)



  

Solution Overview

● Find L(P)
● Finite/Regular
● Context-Free

● Check if L(P) ⊆ L(Lex)*
● Compute T := Lex(L(P)) – language of token sequences

– Finite/Regular

– Context-Free

● Check if T ⊆ L(G)
● REG-REG – Decidable
● REG-CF – Undecidable



  

Precision

● Soundness
● If we return OK, then there can be no errors when 

we run the program

● Completeness
● If we return ERROR(...), then there will be some 

errors when we run the program

● Bad news (Rise's theorem):
● We can not achieve completeness and soundness 

for unrestricted programs



  

Regular Input

● L(E) is represented as a finite automaton A
● Lexical analyzer is represented as a finite 

transducer T
● TOK := T(A) is also a finite automaton
● Problem: is the given regular language a 

subset of a given CF-language (e.g. SQL)?
● AKA “Language Inclusion 3-2”, undecidable

– We will use some approximation



  

Finite Automata (FA)

● Regular expressions
● , | [01]+0

● No loops => finite language
● Recognizing

● A :: String -> Bool

● Generating
● A :: [String]
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Empty Transitions
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, | [01]+ 0?

ε−Transitions can always be eliminated:



  

Recognizing Token Streams

● From Lex to Lex+
● For every accepting state A

● Add an ε-transition from A to the initial state

● Eliminate all ε-transitions
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Inclusion for Regular Languages
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Generator: (, | [01]+ 0)+ Recognizer: ([01]+ | ,)*
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S :: StateG -> [StateR]
T :: TransitionG -> [TransitionR]

We start from 
S = {InitG |-> [InitR]}
T = {}

And compute S and T until a fixpoint



  

Algorithm

● Being in state XG

● For all transitions XG -c-> YG

– For all states XR <- S(XG)
● Find a transition XR -c-> YR

– If no such transition exists, abort and return NO
● Add it to T(XG)
● Add YR to S(YG)

– If YG is accepting and YR is not, abort and return NO

– If S or T has changed, recursive call from YG

● Return YES

● Why a fixpoint will be reached eventually?
● We only add to both maps
● Sets of states and transitions are finite

● Time complexity: 
● O(|StatesG|*|StatesR| + |TransitionsG|*|TransitionsR|)



  

The Nature of Lexical Analysis

SELECT name FROM people WHERE people.age >= 18

SELECT WS ID(name) WS FROM ID(people) WS 
WHERE WS ID(people) DOT ID(age) WS GE NUM(18) EOF

Unicode
alphabet

Tokens 
alphabet,

includes EOF



  

Finite-State Transducers (FST)

● Recognize and generate at the same time
● FST :: A* -> B*

– For finite alphabets A and B, both containing a special symbol EOF

A B
a / b

1
...b

n

a ∈ A?, b
1
...b

n
 ∈ B*

P

Q

R

1 / ε

0 / ε

1 / ε
0 / ε

, / NUM CM 

, / CM

, / CM

1 / ε0 / ε,0110,, CM NUM CM CM

What about: “0110”?



  

Dealing with EOF 

P

Q

R

1 / ε

0 / ε

1 / ε
0 / ε

, / NUM CM 

, / CM

, / CM

1 / ε0 / ε

EOF / NUM EOF

EOF / EOF

0110 EOF NUM EOF



  

From Inclusion to Transduction

● Inclusion check is simpler than a transduction
● But not so much

● We can compute
● S :: StateIN -> [StateFST ]
● T :: TransitionIN -> [TransitionFST ]

● We need a resulting FA, OUT := FST(IN)
● StateOUT  := Copy StateIN

● For each tFST  ∈T(tIN : AIN -> BIN)
– Create tOUT  : AOUT  -> BOUT



  

Abstract Lexical Analysis: Summary

● Convert an abstract string into a NFA
● O(N)

● Compute FST(NFA)
● O(|FST| * |NFA|)

● Loss of precision:
● Only when creating the abstract string 



  

Parsing Abstract Strings

● Inclusion (A ⊆ B) is undecidable if
● A is regular
● B is context-free

● Possible solutions
● Check for disjointness (it is decidable)

– Neither sound nor complete
– But still useful

● Loose precision (introduce more false alarms)



  

Two Principal Ways You Shoot 
Yourself in the Foot Loose Precision
● Approximations

● Find a regular language contained in the CF one
– Bounding the depth of recursion [CMS03]

● Try to run a well-known parsing algorithm on NFAs
– Earley parsing (done in [Thi05] in the form of a type 

system)
– LR-parsing (called “Abstract Parsing” in [DKS09, 

KCY09])



  

Bounded Recursion [CMS03]

● Example of a non-regular grammar
● E ::= int
● E ::= ( E )

● If we bound the recursion depth to D = 3, we get
● EREG  ::= int | ( int ) | ( ( int ) ) | ( ( ( int ) ) )
● This is a regular set of strings

● False alarms
● “(((((int)))))” ∈E, but ∉EREG

● The bigger is D, the less false alarms we get



  

Introduction to LR-Parsing

S2

S3

S1

Shift/Reduce actions Goto actions

Input 
chars

Stack of states

SELECT * FROM t WHERE id = 5

Current 
state

Current 
token

● Action table does not change

● Parser state is characterized by
● Stack of states
● Current offset in the input stream



  

Abstract Parsing

● Input
● TOK :: NFA generating strings of tokens, which end with 

EOF
● Action table of an LR parser PG

● Output
● OK – L(TOK) ⊆ L(G)

● ERROR – L(TOK) may not be a subset of L(G)

● Algorithm
● For each state of TOK find a set of possible stacks of PG



  

Abstract Parsing (Algorithm)

● Stacks(STOK ) :: StateTOK  -> [StackG]

● Being in the state ATOK

● For each tTOK  : ATOK  -T-> BTOK

– For each stack ∈Stacks(ATOK )
● Perform actions of PG with token T

– If PG returns an error, return ERROR
● Add resulting stacks to States(BTOK )

● If Stacks did not change
– Return OK

● Recursive call from BTOK

● Termination
● NOT guaranteed, because the set of possible stacks may be infinite



  

Summary So Far

● For finite inputs
● Precise result

● For infinite inputs
● No result

● Solution: loose precision
● Represent sets of stacks as finite objects

– e.g. regular approximation (stacks are also strings over 
the state alphabet) [DKS09]

– e.g. consider only stacks of finite depth [KCY09]



  

Regular Approximation for Stacks 
[DKS09]
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False Alarm Example for [DKS09]

● Grammar
● E ::= num | ( E )

● Input: “((num))”

● Trace:

Stack Actions

0 Push 2

0 2 Push 2

0 2 2 Push 1

0 2 2 1 Pop, Push 4

0 2 2 4 Push 6

0 2 2 4 6 Pop3, Push 4

0 2 4 Push 6

0 2 4 6 Pop3, Push 3

0 3 Push 5

0 3 5 Accept

6

4

2

2

0

      top 6

4

2

0

      top

Pop3

2

0

      top

0       top



  

Stacks of Bounded Depth [CKY09]
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?

      top

?       top

ERROR



  

False Alarm Example for [DKS09]

● Grammar
● E ::= num | ( E )

● D = 3
● Input: “((((((num))))))”

● The bottom of the stack is lost

● With D = 1000 it is unlikely to loose anything
● NB: Time and memory are O(|States|D)
● We have to experiment to look for reasonable D

– In progress :)



  

Comparing the Two Abstractions

● Regular approximation
● Does not handle nested parentheses at all
● Even worse than bounded recursion

● Bounded stack depth
● Does not handle nested parentheses of certain 

depths
● Same as bounded recursion



  

Why Abstract Parsing

● We have two options:
● Approximate SQL grammar with a regular one (by bounding 

recursion depth)
● Apply abstract parsing with bounded stack depth (D)

– Time complexity: O(|StatesTOK | * |StatesG|D)

● These two raise the same false alarms on infinite inputs
● Advantages of Abstract Parsing

● Precision guaranteed on finite inputs
● Helpful error reporting
● Support for IDE features (e.g., content assist)



  

Reporting Errors

● Types of errors
● Unexpected token: no action for the input token is 

present in the action table
– Good: we have an erroneous token 

● Non-accepting state: all input characters are consumed, 
but the current state is not accepting
– Not so good: we do not know what the errors is

● Error annotation positioning
● Input characters are coming with their positions
● Transducer collects the characters which form tokens



  

Overall Summary

● Convert an abstract string into a NFA
● O(N)

● Compute FST(NFA)
● O(|FST| * |NFA|)

● Perform abstract parsing on FST(NFA)
● O(|NFA| * |Parser States|D)

● Loss of precision:
● On creating the abstract string 
● On abstract parsing
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