

Program Transformation with
Stratego/XT

Margus Freudenthal

Based on
Program Transformation with Stratego/XT.
Rules, Strategies, Tools, and Systems in

Stratego/XT 0.9.
by Eelco Visser, 2004

What Is Program Transformation?

● Automatic manipulation of source programs
● Used in

– Compilers

– Code generators

– Refactoring tools

– Migrating tools

– Reverse engineering tools

What Is Stratego/XT?

● Stratego is a language for
– Transformation rules

– Programmable strategies for applying these
rules

● XT is a toolset containing
– Parser generators

– Pretty-printer generators

– Grammar engineering tools

Transformation Rule

● Encodes a basic transformation step as a
rewrite on an abstract syntax tree

● Examples:
– EvalPlus : Plus(Int(i), Int(j)) -> Int(k)

 where <add>(i, j) => k

– LetSplit : Let([d1, d2 | d*], e*) ->
 Let([d1], Let([d2 | d*], e*))

Representing Terms

● Rewrite rules apply to abstract syntax trees
– As opposed to parse trees

● Abstract syntax trees are represented by first-
order prefix terms

– E.g., If(cond, then, else)

● Syntax tree fragments can be described using
the concrete syntax of the object language.

– EvalPlus : |[i + j]| -> |[k]|
 where <add>(i, j) => k

Transformation Rule (2)

● Rewrite rules can be broken done into the
more basic actions

– Matching

– Building

– Variable scope

● Typically, rewrite rules are context-free
– Scoped dynamic rewrite rules can be used to

generate rewrite rules in runtime

– Dynamic rules can encode contextual
information

Term Rewriting

● Term rewriting is the exhaustive application of
a set of rewrite rules to a term until no rule
applies anywhere in the term

– Also called normalization

● Example
– Minus(Plus(Int(4), Plus(Int(1), Int(2))),

Var("a"))

– ... reduces to Minus(Int(7), Var("a")) by
repeatedly applying EvalPlus

Term Rewriting (2)

● Exhaustive rewriting is used in most rewriting
tools

● However, normalizing a term with respect to
all rules is not always desirable

● Often this is done by using special kind of
rules

– Example: encode evaluation order in rules

Programmable Rewriting

● Stratego makes rewriting strategy explicit and
programmable

● One has to define explicitly
– Which rules to apply

– Which strategy to follow

● Example
– simplify = innermost(EvalPlus + LetSplit +

...)

Transformation Strategy

● Strategy is an algorithm that transforms a term
into another term or fails at doing so

● Combines a set of rules into a complete
transformation

– Orders their application using control and
traversal combinators

● Important property: ability to define generic
traversals

– Do not depend on specific data types

Strategy Combinators

● Stratego's approach is to allow building
complex strategies from very simple building
blocks

– Sequential composition (s1 ; s2)

– Deterministic choice (s1 <+ s2; first try s1, only
if that fails s2)

– Non-deterministic choice (s1 + s2; same as
<+, but the order of trying is not defined1)

– Guarded choice (s1 < s2 + s3; if s1 succeeds
then commit to s2 else s3)

Strategy Combinators (2)

● Building blocks
– Testing (where(s); ignores the transformation

achieved)

– Negation (not(s); succeeds if s fails)

– Recursion (rec x(s))

Strategy Definitions

● f(x
1
, ..., x

n
) = s

– Define strategy f

– x
1
..x

n
: strategy arguments

● Examples
– try(s) = s <+ id

Applies strategy s, succeeds even if it fails.
– repeat(s) = try(s; repeat(s))

Repeats transformation s until it fails

Strategy Definitions (2)

● Strategy definitions do not explicitly mention
the term to which they are applied

● Instead, they combine term transformations
into more complex term transformations

Congruence Operator

● Basically match and apply
– control-flow(s) =

 Assign(id, s)
 + If(s, id, id)
 + While(s, id)

– map(s) = [] + [s | map(s)]

● Defines traversals that are specific to a data
type

Generic Traversals

● Not specific to any data type
● One-pass traversals:

– all(s) – applies s to each subterm of current
term

– bottomup(s) = all(bottomup(s)); s

– topdown(s) = s; all(topdown(s))

– alltd(s) = s <+ all(alltd(s))

– oncetd(s) = s <+ one(oncetd(s))

Generic Traversals (2)

● Fixpoint traversals:
– innermost(s) =

bottomup(
 try(s; innermost(s)))

Cascading Transformations

● Applying several small transformation steps.
– simplify =

 innermost(R1 <+ ... <+ Rn)

Staged Transformations

● Transformations are applied in stages
– simplify =

 innermost(A1 <+ ... <+ Ak)
 ; innermost(B1 <+ ... <+ Bl)
 ; ...
 ; innermost(C1 <+ ... <+ Cm)

● Can be combined with cascading
transformations

● Because rules are independent from
strategies, they can be reused in different
stages

Local Transformations

● Transformations are applied only to subtree of
the program where they make the most sense

– transformation =
alltd(
 trigger-transformation
 ; innermost(A1 <+ ... <+ An)
)

– trigger-transformation selects one node where
the cascading transformation is applied

First-Class Pattern Matching

● In addition to rules, pattern matching is
available as primitives in strategies

– EvalPlus : Plus(Int(i), Int(j)) -> Int(k)
where <add> (i, j) => k

– EvalPlus = {i,j,k: ?Plus(Int(i), Int(j));
where(!(i,j); add; ?k); !Int(k)}

Dynamic Rules

● Pure rewriting rules and strategies are
context-free

● Passing context through arguments can
quickly become tedious

– List of defined functions

– List of defined variables

● Stratego offers mutable global state in the
form of dynamic rules

Dynamic Rules (2)

● Generated at run-time
● Can access information available from their

generation context

Dynamic Rule Example

DeclareFun =
 ?fdec@|[function f(x1*) ta = e1]|;
 rules(
 InlineFun :
 |[f(a*)]| -> |[let d* in e2 end]|
 where <rename> fdec =>
 |[function f(x2*) ta = e2]|
 ; <zip(BindVar)>(x2*, a*) => d*
)
BindVar :
 (FArg |[x ta]|, e) ->
 |[var x ta := e]|

Dynamic Rule Scope

● Restricts the scope of new definitions of the
dynamic rule

– Rule is removed if execution goes out of scope

● Example:
– inline = {| InlineFun:

 try(DeclareFun)
 ; repeat(InlineFun + Simplify)
 ; all(inline)
 ; repeat(Simplify)
 |}

Term Annotations

● Abstract syntax of programs is expressed in
terms

– Term = Constructor + list of argument terms

● Sometimes it is useful to attach information to
term without changing it

● This information can be stored in annotations
– Each term has list of annotations

– Annotations are also terms

Term Annotations (2)

● Annotations can be processed like any other
terms

● Example:
– TypeCheck : Plus(e1{Int}, e2{Int}) ->

 Plus(e1, e2){Int}

● Can be used for
– Type checking

– Strictness analysis

– Bound-unbound variables analysis

Problems with Annotations

● Transformations are supposed to preserve
annotations

– Stratego's traversals do that

– When transforming a term, this is not so
simple, because this should follow semantics
of the annotations

● Should annotations affect equality between
terms?

Transformation Tool

● Wraps a composition of rules and strategies
into a stand-alone, deployable component

● Can be called from the command-line or from
other tools

● Transforms terms into terms
– All the tools in Stratego/XT toolkit use standard

ATerm format for terms

Transformation System

● Composition of tools that performs a complete
source-to-source transformation

● Consists of:
– Parser

– Pretty-printer

– Transformation tools

Thank You

	Slaid 1
	Slaid 2
	Slaid 3
	Slaid 4
	Slaid 5
	Slaid 6
	Slaid 7
	Slaid 8
	Slaid 9
	Slaid 10
	Slaid 11
	Slaid 12
	Slaid 13
	Slaid 14
	Slaid 15
	Slaid 16
	Slaid 17
	Slaid 18
	Slaid 19
	Slaid 20
	Slaid 21
	Slaid 22
	Slaid 23
	Slaid 24
	Slaid 25
	Slaid 26
	Slaid 27
	Slaid 28
	Slaid 29
	Slaid 30
	Slaid 31
	Slaid 32

