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What Is Program Transformation?

● Automatic manipulation of source programs
● Used in

– Compilers

– Code generators

– Refactoring tools

– Migrating tools

– Reverse engineering tools



  

What Is Stratego/XT?

● Stratego is a language for
– Transformation rules

– Programmable strategies for applying these 
rules

● XT is a toolset containing
– Parser generators

– Pretty-printer generators

– Grammar engineering tools



  

Transformation Rule

● Encodes a basic transformation step as a 
rewrite on an abstract syntax tree

● Examples:
– EvalPlus : Plus(Int(i), Int(j)) -> Int(k)

 where <add>(i, j) => k

– LetSplit : Let([d1, d2 | d*], e*) ->
 Let([d1], Let([d2 | d*], e*))



  

Representing Terms

● Rewrite rules apply to abstract syntax trees
– As opposed to parse trees

● Abstract syntax trees are represented by first-
order prefix terms

– E.g., If(cond, then, else)

● Syntax tree fragments can be described using 
the concrete syntax of the object language.

– EvalPlus : |[ i + j ]| -> |[ k ]|
 where <add>(i, j) => k



  

Transformation Rule (2)

● Rewrite rules can be broken done into the 
more basic actions

– Matching

– Building

– Variable scope

● Typically, rewrite rules are context-free
– Scoped dynamic rewrite rules can be used to 

generate rewrite rules in runtime

– Dynamic rules can encode contextual 
information



  

Term Rewriting

● Term rewriting is the exhaustive application of 
a set of rewrite rules to a term until no rule 
applies anywhere in the term

– Also called normalization

● Example
– Minus(Plus(Int(4), Plus(Int(1), Int(2))), 

Var("a"))

– ... reduces to Minus(Int(7), Var("a")) by 
repeatedly applying EvalPlus



  

Term Rewriting (2)

● Exhaustive rewriting is used in most rewriting 
tools

● However, normalizing a term with respect to 
all rules is not always desirable

● Often this is done by using special kind of 
rules

– Example: encode evaluation order in rules



  

Programmable Rewriting

● Stratego makes rewriting strategy explicit and 
programmable

● One has to define explicitly
– Which rules to apply

– Which strategy to follow

● Example
– simplify = innermost(EvalPlus + LetSplit + 

...)



  

Transformation Strategy

● Strategy is an algorithm that transforms a term 
into another term or fails at doing so

● Combines a set of rules into a complete 
transformation

– Orders their application using control and 
traversal combinators

● Important property: ability to define generic 
traversals

– Do not depend on specific data types



  

Strategy Combinators

● Stratego's approach is to allow building 
complex strategies from very simple building 
blocks

– Sequential composition (s1 ; s2)

– Deterministic choice (s1 <+ s2; first try s1, only 
if that fails s2)

– Non-deterministic choice (s1 + s2; same as 
<+, but the order of trying is not defined1)

– Guarded choice (s1 < s2 + s3; if s1 succeeds 
then commit to s2 else s3)



  

Strategy Combinators (2)

● Building blocks
– Testing (where(s); ignores the transformation 

achieved)

– Negation (not(s); succeeds if s fails)

– Recursion (rec x(s))



  

Strategy Definitions

● f(x
1
, ..., x

n
) = s

– Define strategy f

– x
1
..x

n
: strategy arguments

● Examples
– try(s) = s <+ id

Applies strategy s, succeeds even if it fails.
– repeat(s) = try(s; repeat(s))

Repeats transformation s until it fails



  

Strategy Definitions (2)

● Strategy definitions do not explicitly mention 
the term to which they are applied

● Instead, they combine term transformations 
into more complex term transformations



  

Congruence Operator

● Basically match and apply
– control-flow(s) =

 Assign(id, s)
 + If(s, id, id)
 + While(s, id)

– map(s) = [] + [s | map(s)]

● Defines traversals that are specific to a data 
type



  

Generic Traversals

● Not specific to any data type
● One-pass traversals:

– all(s) – applies s to each subterm of current 
term

– bottomup(s) = all(bottomup(s)); s

– topdown(s) = s; all(topdown(s))

– alltd(s) = s <+ all(alltd(s))

– oncetd(s) = s <+ one(oncetd(s))



  

Generic Traversals (2)

● Fixpoint traversals:
– innermost(s) =

bottomup(
 try(s; innermost(s)))



  

Cascading Transformations

● Applying several small transformation steps.
– simplify =

 innermost(R1 <+ ... <+ Rn)



  

Staged Transformations

● Transformations are applied in stages
– simplify =

 innermost(A1 <+ ... <+ Ak)
 ; innermost(B1 <+ ... <+ Bl)
 ; ...
 ; innermost(C1 <+ ... <+ Cm)

● Can be combined with cascading 
transformations

● Because rules are independent from 
strategies, they can be reused in different 
stages



  

Local Transformations

● Transformations are applied only to subtree of 
the program where they make the most sense

– transformation =
alltd(
 trigger-transformation
 ; innermost(A1 <+ ... <+ An)
)

– trigger-transformation selects one node where 
the cascading transformation is applied



  

First-Class Pattern Matching

● In addition to rules, pattern matching is 
available as primitives in strategies

– EvalPlus : Plus(Int(i), Int(j)) -> Int(k)
where <add> (i, j) => k

– EvalPlus = {i,j,k: ?Plus(Int(i), Int(j));
where(!(i,j); add; ?k); !Int(k)}



  

Dynamic Rules

● Pure rewriting rules and strategies are 
context-free

● Passing context through arguments can 
quickly become tedious

– List of defined functions

– List of defined variables

● Stratego offers mutable global state in the 
form of dynamic rules



  

Dynamic Rules (2)

● Generated at run-time
● Can access information available from their 

generation context



  

Dynamic Rule Example

DeclareFun =
  ?fdec@|[ function f(x1*) ta = e1 ]|;
  rules(
    InlineFun :
      |[ f(a*) ]| -> |[ let d* in e2 end ]|
      where <rename> fdec =>
          |[ function f(x2*) ta = e2 ]|
        ; <zip(BindVar)>(x2*, a*) => d*
  )
BindVar :
  (FArg |[ x ta ]|, e) ->
    |[ var x ta := e ]|



  

Dynamic Rule Scope

● Restricts the scope of new definitions of the 
dynamic rule

– Rule is removed if execution goes out of scope

● Example:
– inline = {| InlineFun:

  try(DeclareFun)
  ; repeat(InlineFun + Simplify)
  ; all(inline)
  ; repeat(Simplify)
  |}



  

Term Annotations

● Abstract syntax of programs is expressed in 
terms

– Term = Constructor + list of argument terms

● Sometimes it is useful to attach information to 
term without changing it

● This information can be stored in annotations
– Each term has list of annotations

– Annotations are also terms



  

Term Annotations (2)

● Annotations can be processed like any other 
terms

● Example:
– TypeCheck : Plus(e1{Int}, e2{Int}) ->

 Plus(e1, e2){Int}

● Can be used for
– Type checking

– Strictness analysis

– Bound-unbound variables analysis



  

Problems with Annotations

● Transformations are supposed to preserve 
annotations

– Stratego's traversals do that

– When transforming a term, this is not so 
simple, because this should follow semantics 
of the annotations

● Should annotations affect equality between 
terms?



  

Transformation Tool

● Wraps a composition of rules and strategies 
into a stand-alone, deployable component

● Can be called from the command-line or from 
other tools

● Transforms terms into terms
– All the tools in Stratego/XT toolkit use standard 

ATerm format for terms



  

Transformation System

● Composition of tools that performs a complete 
source-to-source transformation

● Consists of:
– Parser

– Pretty-printer

– Transformation tools
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