
From Program Verification to Program Synthesis
Overview

Jaak Ristioja

March 30, 2010

1 / 91

Reference

From Program Verification to Program Synthesis.

@ POPL’10; January 17-23, 2010

Saurabh Srivastava,
University of Maryland, College Park

Sumit Gulwani,
Microsoft Research, Redmond

Jeffrey S. Foster
University of Maryland, College Park

doi:10.1145/1706299.1706337

(including numerous typos and ambiguities)

2 / 91

http://doi.acm.org/10.1145/1706299.1706337

Reference

From Program Verification to Program Synthesis.

@ POPL’10; January 17-23, 2010

Saurabh Srivastava,
University of Maryland, College Park

Sumit Gulwani,
Microsoft Research, Redmond

Jeffrey S. Foster
University of Maryland, College Park

doi:10.1145/1706299.1706337

(including numerous typos and ambiguities)

3 / 91

http://doi.acm.org/10.1145/1706299.1706337

Introduction

Automated program synthesis

I Correct-by-construction
I Eases task of programming

I Automated debugging
I Programmer only deals with high-level design

I New non-trivial algorithms could be discovered

I Difficult to implement

4 / 91

Introduction
Verification and synthesis

Program verification

I synthesizes program proofs from programs
I for loops it uses

I inductive invariants for partial correctness
I ranking functions for termination

I does verification

Synthesis problem → verification problem

I encoding guards and statements etc as logical facts

I using verification tools for synthesis

I by verification we infer statements, guards etc

Proof-theoretic synthesis

I Proof for the program is synthesized alongside the program
5 / 91

Introduction
Verification and synthesis

Program verification

I synthesizes program proofs from programs
I for loops it uses

I inductive invariants for partial correctness
I ranking functions for termination

I does verification

Synthesis problem → verification problem

I encoding guards and statements etc as logical facts

I using verification tools for synthesis

I by verification we infer statements, guards etc

Proof-theoretic synthesis

I Proof for the program is synthesized alongside the program
6 / 91

Introduction
Verification and synthesis

Program verification

I synthesizes program proofs from programs
I for loops it uses

I inductive invariants for partial correctness
I ranking functions for termination

I does verification

Synthesis problem → verification problem

I encoding guards and statements etc as logical facts

I using verification tools for synthesis

I by verification we infer statements, guards etc

Proof-theoretic synthesis

I Proof for the program is synthesized alongside the program
7 / 91

Motivating example
Bresenham’s line drawing algorithm

Pre- and post-condition for a line drawing program:

τpre : 0 < Y ≤ X

τpost : ∀k : 0 ≤ k ≤ X ⇒ 2|out[k]− (Y /X)k| ≤ 1

and resource constraints, for example constraints for

I control flow,

I stack space,

I available operations, etc

can we synthesize the program?

8 / 91

Motivating example
Bresenham’s line drawing algorithm

Given the specification for a line drawing program

τpre : 0 < Y ≤ X

τpost : ∀k : 0 ≤ k ≤ X ⇒ 2|out[k]− (Y /X)k| ≤ 1

and resource constraints, for example constraints for

I control flow,

I stack space,

I available operations, etc

can we synthesize the program?

9 / 91

Motivating example
Bresenham’s line drawing algorithm

Example

Bresenhams (i n t X, i n t Y)
v1 := 2Y − X ; y := 0 ; x := 0 ;
whi le (x <= X)
| out [x] := y ;
| i f (v1 < 0)
| | v1 := v1 + 2Y ;
| e l s e
| | v1 := v1 + 2(Y − X) ; y++;
| x++;
return out ;

10 / 91

Motivating example
Bresenham’s line drawing algorithm

Observations

I We can write statements as equality predicates

I We can write acyclic program fragments as transition systems

Example

I x := e becomes an equality predicate x ′ = e where
I x ′ is a renaming of x to its output value
I e is the expression over the non-primed values

I y := x; x := y becomes y ′ = x ∧ x ′ = y ′

I if (x > 0) x := y; else skip ; becomes

[] x > 0→ x ′ = y

[] x ≤ 0→ true

11 / 91

Motivating example
Bresenham’s line drawing algorithm

Example

[]true → v ′1 = 2Y − X ∧ y ′ = 0 ∧ x ′ = 0
whi le (x <= X)
| []v1 < 0 → out ′ = upd(out, x , y) ∧
| v ′1 = v1 + 2Y ∧
| y ′ = y ∧
| x ′ = x + 1
| []v1 ≥ 0 → out ′ = upd(out, x , y) ∧
| v ′1 = v1 + 2(Y − X) ∧
| y ′ = y + 1 ∧
| x ′ = x + 1

12 / 91

Motivating example
Bresenham’s line drawing algorithm

To prove partial correctness, we can write down the inductive loop
invariant for the while-loop:

τ : 0 < Y ≤ X ∧
v1 = 2 (x + 1) Y − (2y + 1) X ∧
2 (Y − X) ≤ v1 ≤ 2Y ∧
∀k : 0 ≤ k < x ⇒ 2 |out[k]− (Y /X)k | ≤ 1

and the verification condition can be written as four implications of
four paths in the program:

τpre ∧ sentry ⇒ τ ′

τ ∧ ¬gloop ⇒ τpost

τ ∧ gloop ∧ gbody1 ∧ sbody1 ⇒ τ ′

τ ∧ gloop ∧ gbody2 ∧ sbody2 ⇒ τ ′

where τ ′ is the renamed version of the loop invariant.
13 / 91

Motivating example
Bresenham’s line drawing algorithm

sentry : v ′1 = 2Y − X ∧ y ′ = 0 ∧ x ′ = 0

gloop : x ≤ X

gbody1 : v1 < 0

sbody1 : out ′ = upd(out, x , y) ∧
v ′1 = v1 + 2Y ∧
y ′ = y ∧
x ′ = x + 1

gbody2 : v1 ≥ 0

sbody2 : out ′ = upd(out, x , y) ∧
v ′1 = v1 + 2(Y − X) ∧
y ′ = y + 1 ∧
x ′ = x + 1

14 / 91

Motivating example

One can validate that the loop invariant τ satisfies the verification
condition.

I e.g. by using SMT (Satisfiability Modulo Theory) solvers

There are also powerful program verification tools that can prove
total correctness by

I automatically generating fixed-point solutions for loop
invariants, such as τ

I inferring ranking functions (ϕ) to prove termination

So if we can infer the verification condition, perhaps we can also
infer

I the guards gi ’s and

I the statements si ’s

at the same time?

15 / 91

Motivating example

One can validate that the loop invariant τ satisfies the verification
condition.

I e.g. by using SMT (Satisfiability Modulo Theory) solvers

There are also powerful program verification tools that can prove
total correctness by

I automatically generating fixed-point solutions for loop
invariants, such as τ

I inferring ranking functions (ϕ) to prove termination

So if we can infer the verification condition, perhaps we can also
infer

I the guards gi ’s and

I the statements si ’s

at the same time?

16 / 91

Motivating example

How to infer guards and statements

1. encode programs as transition systems

2. assert appropriate constraints

3. use verification tools to systematically infer solutions for the
unknowns in the constraints. The unknowns are

I invariants
I statements
I guards

Types of constraints

I well-formedness constraints to get solutions corresponding to
real-life programs

I progress constraints to ensure termination

17 / 91

Motivating example

How to infer guards and statements

1. encode programs as transition systems

2. assert appropriate constraints

3. use verification tools to systematically infer solutions for the
unknowns in the constraints. The unknowns are

I invariants
I statements
I guards

Types of constraints

I well-formedness constraints to get solutions corresponding to
real-life programs

I progress constraints to ensure termination

18 / 91

Specification for proof-theoretic approach

For synthesis we first need a specification for the program we want
to construct.

Synthesis scaffold

〈F ,D,R〉

I F - functional specification

I D - domain constraints

I R - resource constraints

19 / 91

Specification for proof-theoretic approach
Synthesis scaffold

Functional specification F
Let ~vin and ~vout be vectors containing the input and output
variables.

F = (Fpre (~vin) ,Fpost (~vout))

where Fpre (~vin) and Fpost (~vout) are formulas that hold at the
program entry and exit locations, respectively.

20 / 91

Specification for proof-theoretic approach
Synthesis scaffold

Domain constraints D

D = (Dexp,Dgrd)

where Dexp is the domain of expressions in the program and Dgrd is
the domain of boolean expressions used in program guards.

Proof domain Dprf

I Proof-theoretic synthesis needs to synthesize proof terms from
a proof domain Dprf .

I Dprf needs to be at least as expressive as Dexp and Dgrd .

I We need a solver capable of handling Dprf .

21 / 91

Specification for proof-theoretic approach
Synthesis scaffold

Domain constraints D

D = (Dexp,Dgrd)

where Dexp is the domain of expressions in the program and Dgrd is
the domain of boolean expressions used in program guards.

Proof domain Dprf

I Proof-theoretic synthesis needs to synthesize proof terms from
a proof domain Dprf .

I Dprf needs to be at least as expressive as Dexp and Dgrd .

I We need a solver capable of handling Dprf .

22 / 91

Specification for proof-theoretic approach
Synthesis scaffold

Resource constraints R

R = (Rflow ,Rstack ,Rcomp)

I Rflow is a flowgraph template from the grammar
T ::= ◦ | ∗(T) | T ; T

I Rstack : type → N1 is a mapping indicating the number of
extra temporary variables of each type available to the
program.

I Rcomp : op → N0 is a mapping defining how many operations
of each type can be included in the program. Rcomp = ∅
indicates no constraints.

23 / 91

Specification for proof-theoretic approach
Synthesis scaffold

Example

I F =
(
x ≥ 1, (i − 1)2 ≤ x < i2

)
I Dexp limited to linear arithmetic (LA) expressions (no

√
)

I Dgrd limited to quantifier-free first-order logic (FOL) over LA

I Rflow = (◦; ∗(◦) ; ◦), Rstack = {(int, 1)}, Rcomp = ∅

I n t S q r t (i n t x)
v := 1 ; i := 1 ;
whi le τ,ϕ (v ≤ x)
| v := v + 2i + 1 ; i ++;
return i − 1 ;

I Invariant τ : v = i2 ∧ x ≥ (i − 1)2 ∧ i ≥ 1

I Ranking function ϕ : x − (i − 1)2

24 / 91

Synthesis conditions
Transition systems for acyclic code

One way to infer a set of acyclic statements that transform a
precondition to a postcondition would be to use assignments:

{φpre} x := ex ; y := ey ; {φpost}

Using Hoare’s axiom for assignment, we can generate the
assignment condition

φpre ⇒ (φpost [x 7→ ex]) [y 7→ ey]

Shortcomings in respect to our task:

I substitutions are hard to reason about

I order of assignment matters

I we need more than a fixed number of statements

25 / 91

Synthesis conditions
Transition systems for acyclic code

One way to infer a set of acyclic statements that transform a
precondition to a postcondition would be to use assignments:

{φpre} x := ex ; y := ey ; {φpost}

Using Hoare’s axiom for assignment, we can generate the
assignment condition

φpre ⇒ (φpost [x 7→ ex]) [y 7→ ey]

Shortcomings in respect to our task:

I substitutions are hard to reason about

I order of assignment matters

I we need more than a fixed number of statements

26 / 91

Synthesis conditions
Transition systems for acyclic code

One way to infer a set of acyclic statements that transform a
precondition to a postcondition would be to use assignments:

{φpre} x := ex ; y := ey ; {φpost}

Using Hoare’s axiom for assignment, we can generate the
assignment condition

φpre ⇒ (φpost [x 7→ ex]) [y 7→ ey]

Shortcomings in respect to our task:

I substitutions are hard to reason about

I order of assignment matters

I we need more than a fixed number of statements

27 / 91

Synthesis conditions
Transition systems for acyclic code

Transitions
A transition is a (possibly parallel) mapping of input variables (x)
to output variables (x ′).

{φpre}
〈
x ′, y ′

〉
= 〈ex , ey 〉

{
φ′post

}
Corresponding verification condition:

φpre ∧ x ′ = ex ∧ y ′ = ey ⇒ φ′post

Every assignment (state update) can be written as a single
transition

Example

For x := ex ; y := ey we will have

{φpre}
〈
x ′, y ′

〉
= 〈ex , ey [x 7→ ex]〉

{
φ′post

}
φpre ∧ x ′ = ex ∧ y ′ = ey [x 7→ ex]⇒ φ′post

28 / 91

Synthesis conditions
Transition systems for acyclic code

Transitions
A transition is a (possibly parallel) mapping of input variables (x)
to output variables (x ′).

{φpre}
〈
x ′, y ′

〉
= 〈ex , ey 〉

{
φ′post

}
Corresponding verification condition:

φpre ∧ x ′ = ex ∧ y ′ = ey ⇒ φ′post

Every assignment (state update) can be written as a single
transition

Example

For x := ex ; y := ey we will have

{φpre}
〈
x ′, y ′

〉
= 〈ex , ey [x 7→ ex]〉

{
φ′post

}
φpre ∧ x ′ = ex ∧ y ′ = ey [x 7→ ex]⇒ φ′post

29 / 91

Synthesis conditions
Transition systems for acyclic code

Transitions
A transition is a (possibly parallel) mapping of input variables (x)
to output variables (x ′).

{φpre}
〈
x ′, y ′

〉
= 〈ex , ey 〉

{
φ′post

}
Corresponding verification condition:

φpre ∧ x ′ = ex ∧ y ′ = ey ⇒ φ′post

Every assignment (state update) can be written as a single
transition

Example

For x := ex ; y := ey we will have

{φpre}
〈
x ′, y ′

〉
= 〈ex , ey [x 7→ ex]〉

{
φ′post

}
φpre ∧ x ′ = ex ∧ y ′ = ey [x 7→ ex]⇒ φ′post

30 / 91

Synthesis conditions
Transition systems for acyclic code

Transitions
A transition is a (possibly parallel) mapping of input variables (x)
to output variables (x ′).

{φpre}
〈
x ′, y ′

〉
= 〈ex , ey 〉

{
φ′post

}
Corresponding verification condition:

φpre ∧ x ′ = ex ∧ y ′ = ey ⇒ φ′post

Every assignment (state update) can be written as a single
transition

Example

For x := ex ; y := ey we will have

{φpre}
〈
x ′, y ′

〉
= 〈ex , ey [x 7→ ex]〉

{
φ′post

}
φpre ∧ x ′ = ex ∧ y ′ = ey [x 7→ ex]⇒ φ′post

31 / 91

Synthesis conditions
Transition systems for acyclic code

Guarded transitions
Lets extend transitions with guarded transitions [] g → s meaning
that statements s are only executed if the quantifier-free g holds.

Transition systems

We can represent arbitrary acyclic program fragments using sets of
guarded transitions:

{φpre} {[] gi → si}i

{
φ′post

}
The corresponding verification for is:∧

i

(
φpre ∧ gi ∧ si ⇒ φ′post

)
Note that this is much simpler:

I no reasoning about statement ordering to puzzle us

I guards gi and statements si are facts just like pre- and
postconditions.

32 / 91

Synthesis conditions
Transition systems for acyclic code

Guarded transitions
Lets extend transitions with guarded transitions [] g → s meaning
that statements s are only executed if the quantifier-free g holds.

Transition systems

We can represent arbitrary acyclic program fragments using sets of
guarded transitions:

{φpre} {[] gi → si}i

{
φ′post

}
The corresponding verification for is:∧

i

(
φpre ∧ gi ∧ si ⇒ φ′post

)
Note that this is much simpler:

I no reasoning about statement ordering to puzzle us

I guards gi and statements si are facts just like pre- and
postconditions.

33 / 91

Synthesis conditions
Transition systems for acyclic code

Guarded transitions
Lets extend transitions with guarded transitions [] g → s meaning
that statements s are only executed if the quantifier-free g holds.

Transition systems

We can represent arbitrary acyclic program fragments using sets of
guarded transitions:

{φpre} {[] gi → si}i

{
φ′post

}
The corresponding verification for is:∧

i

(
φpre ∧ gi ∧ si ⇒ φ′post

)
Note that this is much simpler:

I no reasoning about statement ordering to puzzle us

I guards gi and statements si are facts just like pre- and
postconditions.

34 / 91

Synthesis conditions
Transition systems for acyclic code

Guarded transitions
Lets extend transitions with guarded transitions [] g → s meaning
that statements s are only executed if the quantifier-free g holds.

Transition systems

We can represent arbitrary acyclic program fragments using sets of
guarded transitions:

{φpre} {[] gi → si}i

{
φ′post

}
The corresponding verification for is:∧

i

(
φpre ∧ gi ∧ si ⇒ φ′post

)
Note that this is much simpler:

I no reasoning about statement ordering to puzzle us

I guards gi and statements si are facts just like pre- and
postconditions.

35 / 91

Synthesis conditions

I Program verification tools find fixed-point solutions
(invariants) to satisfy verification conditions

I These conditions have known statements and guards.

I For synthesis, we need to generalize this problem
I We make statements and guards also unknowns in the

formulas.

36 / 91

Synthesis conditions

I Program verification tools find fixed-point solutions
(invariants) to satisfy verification conditions

I These conditions have known statements and guards.

I For synthesis, we need to generalize this problem
I We make statements and guards also unknowns in the

formulas.

I Verification conditions for verification

I Synthesis conditions for synthesis

37 / 91

Synthesis conditions

I Program verification tools find fixed-point solutions
(invariants) to satisfy verification conditions

I These conditions have known statements and guards.

I For synthesis, we need to generalize this problem
I We make statements and guards also unknowns in the

formulas.

I If a program is correct (verifiable), then its verification
condition is valid.

I If a valid program exists for a scaffold, then its synthesis
condition has a satisfying solution.

38 / 91

Synthesis
Expanding the flowgraph

Transition system language (Tsl)

p ::= choose {[] gi → si}i

| whileτ,ϕ (g) {p}
| p ; p

39 / 91

Synthesis
Expanding the flowgraph

Expand function

Expand
n,Dprf

D,R (◦) = choose {[] gi → si}i=1...n

Expand
n,Dprf

D,R (∗(T)) = whileτ,ϕ (g)
{

Expand
n,Dprf

D,R (T)
}

Expand
n,Dprf

D,R (T1; T2) = Expand
n,Dprf

D,R (T1) ; Expand
n,Dprf

D,R (T2)

where all gi , si , g , τ and ϕ are new generated unknowns.

s ∈
∧

i
xi = ei where xi ∈ V , ei ∈ Dexp|V

τ ∈ Dprf |V g ∈ Dgrd |V
and V = ~vin ∪ ~vout ∪ T ∪ L where

I T is subject to Rstack

I ei is subject to Rcomp

I L is the set of iteration counters and ranking function tracker
variables

40 / 91

Synthesis
Expanding the flowgraph

Expand function

Expand
n,Dprf

D,R (◦) = choose {[] gi → si}i=1...n

Expand
n,Dprf

D,R (∗(T)) = whileτ,ϕ (g)
{

Expand
n,Dprf

D,R (T)
}

Expand
n,Dprf

D,R (T1; T2) = Expand
n,Dprf

D,R (T1) ; Expand
n,Dprf

D,R (T2)

where all gi , si , g , τ and ϕ are new generated unknowns and

s ∈
∧

i
xi = ei where xi ∈ V , ei ∈ Dexp|V

τ ∈ Dprf |V g ∈ Dgrd |V
and V = ~vin ∪ ~vout ∪ T ∪ L where

I T is subject to Rstack

I ei is subject to Rcomp

I L is the set of iteration counters and ranking function tracker
variables

41 / 91

Synthesis
Expanding the flowgraph

Example

I F =
(
x ≥ 1, (i − 1)2 ≤ x < i2

)
I Dexp limited to linear arithmetic (LA) expressions (no

√
)

I Dgrd limited to quantifier-free first-order logic (FOL) over LA

I Rflow = (◦; ∗(◦) ; ◦), Rstack = {(int, 1)}, Rcomp = ∅

For n = 1 and FOL over quadratic expressions as Dprf we get:

expsqrt = Expand
n,Dprf

D,R (Rflow) =
choose {[] g1 → s1} ;
whi le τ,ϕ (g0) { choose {[] g2 → s2} ; } ;
choose {[] g3 → s3} ;

where ~vin = ~vout = {x}, T = {v}, L = {i , r}.

42 / 91

Synthesis
Expanding the flowgraph

Example

I F =
(
x ≥ 1, (i − 1)2 ≤ x < i2

)
I Dexp limited to linear arithmetic (LA) expressions (no

√
)

I Dgrd limited to quantifier-free first-order logic (FOL) over LA

I Rflow = (◦; ∗(◦) ; ◦), Rstack = {(int, 1)}, Rcomp = ∅

For n = 1 and FOL over quadratic expressions as Dprf we get:

expsqrt = Expand
n,Dprf

D,R (Rflow) =
choose {[] g1 → s1} ;
whi le τ,ϕ (g0) { choose {[] g2 → s2} ; } ;
choose {[] g3 → s3} ;

where ~vin = ~vout = {x}, T = {v}, L = {i , r}.

43 / 91

Synthesis
Safety conditions

To encode a formula for the validity of a Hoare triple, we define

PathC : φ×Tsl× φ→ φ

which takes a precondition, a sequence of statements and a
postcondition, and returns the safety condition.

PathC (φpre , choose {[] gi → si}i , φpost) =∧
i

(
φpre ∧ gi ∧ si ⇒ φ′post

)
PathC (φpre ,whileτ,ϕ (g) {~pl} , φpost) =

φpre ⇒ τ ′ ∧ PathC (τ ∧ g , ~pl , τ) ∧
(
τ ∧ ¬g ⇒ φ′post

)
Encoding sequences of statements a bit more difficult because of
variable renaming (primed versions of τ and φpost).

44 / 91

Synthesis
Safety conditions

To encode a formula for the validity of a Hoare triple, we define

PathC : φ×Tsl× φ→ φ

which takes a precondition, a sequence of statements and a
postcondition, and returns the safety condition:

PathC (φpre , choose {[] gi → si}i , φpost) =∧
i

(
φpre ∧ gi ∧ si ⇒ φ′post

)
PathC (φpre ,whileτ,ϕ (g) {~pl} , φpost) =

φpre ⇒ τ ′ ∧ PathC (τ ∧ g , ~pl , τ) ∧
(
τ ∧ ¬g ⇒ φ′post

)
Encoding sequences of statements a bit more difficult because of
variable renaming (primed versions of τ and φpost).

45 / 91

Synthesis
Safety conditions

To encode a formula for the validity of a Hoare triple, we define

PathC : φ×Tsl× φ→ φ

which takes a precondition, a sequence of statements and a
postcondition, and returns the safety condition:

PathC (φpre , choose {[] gi → si}i , φpost) =∧
i

(
φpre ∧ gi ∧ si ⇒ φ′post

)
PathC (φpre ,whileτ,ϕ (g) {~pl} , φpost) =

φpre ⇒ τ ′ ∧ PathC (τ ∧ g , ~pl , τ) ∧
(
τ ∧ ¬g ⇒ φ′post

)
Encoding sequences of statements a bit more difficult because of
variable renaming (primed versions of τ and φpost).

46 / 91

Synthesis
Safety conditions

Note. Any 2 consecutive acyclic fragments with n1 and n2

transitions can be collapsed into one with n1 · n2 transitions.

PathC (φpre ,whileτ,ϕ (g) {~pl} ; ~p, φpost) =(
φpre ⇒ τ ′

)
∧ PathC (τ ∧ g , ~pl , τ) ∧ PathC (τ ∧ ¬g , ~p, φpost)

PathC (φpre , choose {[] gi → si}i ; whileτ,ϕ (g) {~pl} , φpost) =∧
i

(
φpre ∧ gi ∧ si ⇒ τ ′

)
∧ PathC (τ ∧ g , ~pl , τ) ∧

(
τ ∧ ¬g ⇒ φ′post

)
PathC (φpre , choose {[] gi → si}i ; whileτ,ϕ (g) {~pl} ; ~p, φpost) =∧

i

(
φpre ∧ gi ∧ si ⇒ τ ′

)
∧ PathC (τ ∧ g , ~pl , τ)∧

PathC (τ ∧ ¬g , ~p, φpost)

SafetyCond(exp,F) = PathC (Fpre , exp,Fpost)

47 / 91

Synthesis
Safety conditions

Note. Any 2 consecutive acyclic fragments with n1 and n2

transitions can be collapsed into one with n1 · n2 transitions.

PathC (φpre ,whileτ,ϕ (g) {~pl} ; ~p, φpost) =(
φpre ⇒ τ ′

)
∧ PathC (τ ∧ g , ~pl , τ) ∧ PathC (τ ∧ ¬g , ~p, φpost)

PathC (φpre , choose {[] gi → si}i ; whileτ,ϕ (g) {~pl} , φpost) =∧
i

(
φpre ∧ gi ∧ si ⇒ τ ′

)
∧ PathC (τ ∧ g , ~pl , τ) ∧

(
τ ∧ ¬g ⇒ φ′post

)
PathC (φpre , choose {[] gi → si}i ; whileτ,ϕ (g) {~pl} ; ~p, φpost) =∧

i

(
φpre ∧ gi ∧ si ⇒ τ ′

)
∧ PathC (τ ∧ g , ~pl , τ)∧

PathC (τ ∧ ¬g , ~p, φpost)

SafetyCond(exp,F) = PathC (Fpre , exp,Fpost)

48 / 91

Synthesis
Safety conditions

Note. Any 2 consecutive acyclic fragments with n1 and n2

transitions can be collapsed into one with n1 · n2 transitions.

PathC (φpre ,whileτ,ϕ (g) {~pl} ; ~p, φpost) =(
φpre ⇒ τ ′

)
∧ PathC (τ ∧ g , ~pl , τ) ∧ PathC (τ ∧ ¬g , ~p, φpost)

PathC (φpre , choose {[] gi → si}i ; whileτ,ϕ (g) {~pl} , φpost) =∧
i

(
φpre ∧ gi ∧ si ⇒ τ ′

)
∧ PathC (τ ∧ g , ~pl , τ) ∧

(
τ ∧ ¬g ⇒ φ′post

)
PathC (φpre , choose {[] gi → si}i ; whileτ,ϕ (g) {~pl} ; ~p, φpost) =∧

i

(
φpre ∧ gi ∧ si ⇒ τ ′

)
∧ PathC (τ ∧ g , ~pl , τ)∧

PathC (τ ∧ ¬g , ~p, φpost)

SafetyCond(exp,F) = PathC (Fpre , exp,Fpost)

49 / 91

Synthesis
Safety conditions

Example

I F =
(
x ≥ 1, (i − 1)2 ≤ x < i2

)
I expsqrt =

choose {[] g1 → s1} ;
whi le τ,ϕ (g0) { choose {[] g2 → s2} ; } ;
choose {[] g3 → s3} ;

SafetyCond(expsqrt ,F) =

(x ≥ 1 ∧ g1 ∧ s1 ⇒ τ ′
)
∧

(τ ∧ g0 ∧ g2 ∧ s2 ⇒ τ ′
)
∧

(τ ∧ ¬g0 ∧ g3 ∧ s3 ⇒
(
i ′ − 1

)2 ≤ x ′ < i ′2
)

where gi , si and τ are all unknowns.
50 / 91

Synthesis
Safety conditions

Example

I F =
(
x ≥ 1, (i − 1)2 ≤ x < i2

)
I expsqrt =

choose {[] g1 → s1} ;
whi le τ,ϕ (g0) { choose {[] g2 → s2} ; } ;
choose {[] g3 → s3} ;

SafetyCond(expsqrt ,F) =

(x ≥ 1 ∧ g1 ∧ s1 ⇒ τ ′
)
∧

(τ ∧ g0 ∧ g2 ∧ s2 ⇒ τ ′
)
∧

(τ ∧ ¬g0 ∧ g3 ∧ s3 ⇒
(
i ′ − 1

)2 ≤ x ′ < i ′2
)

where gi , si and τ are all unknowns.
51 / 91

Synthesis
Well-formedness conditions

WellFormTS({[] gi → si}i)
.

=
(∧

i
valid(si)

)
∧(∨

i
gi

)
where

I valid(si) ensures that each variable is assigned only once in si

I (
∨

igi) guarantees all space is covered by the guards gi

I guards do not have to be mutually exclusive

WellFormCond(exp) =
∧

WellFormTS({[] gi → si}i)`
choose {[] gi → si}i

´
∈ cond(exp)

where cond(exp) is the set of all choose statements in the
expanded scaffold exp.

This is called non-iterative upper bounded search. Iterative lower
bounded search is also possible (remember parameter n at
expansion).

52 / 91

Synthesis
Well-formedness conditions

WellFormTS({[] gi → si}i)
.

=
(∧

i
valid(si)

)
∧(∨

i
gi

)
where

I valid(si) ensures that each variable is assigned only once in si

I (
∨

igi) guarantees all space is covered by the guards gi

I guards do not have to be mutually exclusive

WellFormCond(exp) =
∧

WellFormTS({[] gi → si}i)`
choose {[] gi → si}i

´
∈ cond(exp)

where cond(exp) is the set of all choose statements in the
expanded scaffold exp.

This is called non-iterative upper bounded search. Iterative lower
bounded search is also possible (remember parameter n at
expansion).

53 / 91

Synthesis
Well-formedness conditions

WellFormTS({[] gi → si}i)
.

=
(∧

i
valid(si)

)
∧(∨

i
gi

)
where

I valid(si) ensures that each variable is assigned only once in si

I (
∨

igi) guarantees all space is covered by the guards gi

I guards do not have to be mutually exclusive

WellFormCond(exp) =
∧

WellFormTS({[] gi → si}i)`
choose {[] gi → si}i

´
∈ cond(exp)

where cond(exp) is the set of all choose statements in the
expanded scaffold exp.

This is called non-iterative upper bounded search. Iterative lower
bounded search is also possible (remember parameter n at
expansion).

54 / 91

Synthesis
Well-formedness conditions

Example

I expsqrt =

choose {[] g1 → s1} ;
whi le τ,ϕ (g0) { choose {[] g2 → s2} ; } ;
choose {[] g3 → s3} ;

WellFormCond(expsqrt) = valid(s1) ∧ valid(s2) ∧ valid(s3)∧
g1 ∧ g2 ∧ g3

55 / 91

Synthesis
Well-formedness conditions

Example

I expsqrt =

choose {[] g1 → s1} ;
whi le τ,ϕ (g0) { choose {[] g2 → s2} ; } ;
choose {[] g3 → s3} ;

WellFormCond(expsqrt) = valid(s1) ∧ valid(s2) ∧ valid(s3)∧
g1 ∧ g2 ∧ g3

56 / 91

Synthesis
Progress conditions

prog(whileτ,ϕ (g) {~p}) .
= (r = ϕ) ∧ (τ ⇒ r ≥ 0)∧

PathC (τend ∧ g , end(~p) , r > ϕ)

where

I r is a new progress tracking variable (not an unknown)
I τend is the invariant for the last loop in ~p

I Meaning, that we require intermediate loop invariants to carry
enough information

I end(~p) is the fragment of ~p after the last loop

RankCond(exp) =
∧

prog(whileτ,ϕ (g) {~p})
(whileτ,ϕ (g) {~p}) ∈ loops(exp)

where loops(exp) is the set of all while statements in the
expanded scaffold exp.

57 / 91

Synthesis
Progress conditions

prog(whileτ,ϕ (g) {~p}) .
= (r = ϕ) ∧ (τ ⇒ r ≥ 0)∧

PathC (τend ∧ g , end(~p) , r > ϕ)

where

I r is a new progress tracking variable (not an unknown)
I τend is the invariant for the last loop in ~p

I Meaning, that we require intermediate loop invariants to carry
enough information

I end(~p) is the fragment of ~p after the last loop

RankCond(exp) =
∧

prog(whileτ,ϕ (g) {~p})
(whileτ,ϕ (g) {~p}) ∈ loops(exp)

where loops(exp) is the set of all while statements in the
expanded scaffold exp.

58 / 91

Synthesis
Progress conditions

Example

I expsqrt =

choose {[] g1 → s1} ;
whi le τ,ϕ (g0) { choose {[] g2 → s2} ; } ;
choose {[] g3 → s3} ;

RankCond(expsqrt) = (r = ϕ) ∧ (τ ⇒ r ≥ 0)∧(
τ ∧ g0 ∧ g2 ∧ s2 ⇒ r ′ > ϕ′

)

59 / 91

Synthesis
Progress conditions

Example

I expsqrt =

choose {[] g1 → s1} ;
whi le τ,ϕ (g0) { choose {[] g2 → s2} ; } ;
choose {[] g3 → s3} ;

RankCond(expsqrt) = (r = ϕ) ∧ (τ ⇒ r ≥ 0)∧(
τ ∧ g0 ∧ g2 ∧ s2 ⇒ r ′ > ϕ′

)

60 / 91

Synthesis
Entire synthesis algorithm

I Input:
I Scaffold 〈F ,D,R〉,
I Maximum number of transitions n
I Proof domain Dprf

I Output: Executable program or FAIL

exp := Expand
n,Dprf

D,R (Rflow) ;

sc := SafetyCond(exp,F)∧
WellFormCond(exp)∧
RankCond(exp) ;

π := S o l v e r (sc) ;

i f (u n s a t (π))
| return FAIL ;

return Exeπ(exp) ;

61 / 91

Synthesis
Concretization algorithm

Exeπ(p;~p) =Exeπ(p) ; Exeπ(~p)

Exeπ(whileτ,ϕ (g) {~p}) =whileπ(τ),π(ϕ) (π (g)) {Exeπ(~p)}
Exeπ(choose {[] g → s}) = if (π (g)) {Stmt(π (s)) }

else {skip}
Exeπ(choose {[] gi → si}i=1...n) = if (π (g)) {Stmt(π (s)) }

else {Exeπ(choose {[] gi → si}i=2...n) }

Stmt
(∧

i=1...n
xi = ei

)
= t1 := e1 ; . . . ;tn := en ;

x1 := t1 ; . . . ;xn := tn ;

62 / 91

Synthesis
Concretization algorithm

Exeπ(p;~p) =Exeπ(p) ; Exeπ(~p)

Exeπ(whileτ,ϕ (g) {~p}) =whileπ(τ),π(ϕ) (π (g)) {Exeπ(~p)}
Exeπ(choose {[] g → s}) = if (π (g)) {Stmt(π (s)) }

else {skip}
Exeπ(choose {[] gi → si}i=1...n) = if (π (g)) {Stmt(π (s)) }

else {Exeπ(choose {[] gi → si}i=2...n) }

Stmt
(∧

i=1...n
xi = ei

)
= t1 := e1 ; . . . ;tn := en ;

x1 := t1 ; . . . ;xn := tn ;

63 / 91

Synthesis

Example

»

“
x ≥ 1 ∧ g1 ∧ s1 ⇒ τ

′
”
∧

“
τ ∧ g0 ∧ g2 ∧ s2 ⇒ τ

′
”
∧

„
τ ∧ ¬g0 ∧ g3 ∧ s3 ⇒

“
i′ − 1

”2
≤ x′

< i′2
«

–

∧

»

valid(s1) ∧ valid(s2) ∧ valid(s3)

–

∧

»

(r = ϕ) ∧ (τ ⇒ r ≥ 0) ∧
“
τ ∧ g0 ∧ g2 ∧ s2 ⇒ r′ > ϕ

′
”

–

τ :
(
v = i2

)
∧
(
x ≥ (i − 1)2

)
∧ (i ≥ 1)

g0 : v ≤ x

ϕ : x − (i − 1)2

s1 :
(
v ′ = 1

)
∧
(
i ′ = 1

)
∧
(
x ′ = x

)
∧
(
r ′ = r

)
s2 :

(
v ′ = v + 2i + 1

)
∧
(
i ′ = i + 1

)
∧
(
x ′ = x

)
∧
(
r ′ = r

)
s3 :

(
v ′ = v

)
∧
(
i ′ = i

)
∧
(
x ′ = x

)
∧
(
r ′ = r

)
64 / 91

Synthesis

Example

» “
x ≥ 1 ∧ g1 ∧ s1 ⇒ τ

′
”
∧

“
τ ∧ g0 ∧ g2 ∧ s2 ⇒ τ

′
”
∧

„
τ ∧ ¬g0 ∧ g3 ∧ s3 ⇒

“
i′ − 1

”2
≤ x′

< i′2
« –
∧»

valid(s1) ∧ valid(s2) ∧ valid(s3)

–
∧

»
(r = ϕ) ∧ (τ ⇒ r ≥ 0) ∧

“
τ ∧ g0 ∧ g2 ∧ s2 ⇒ r′ > ϕ

′
” –

τ :
(
v = i2

)
∧
(
x ≥ (i − 1)2

)
∧ (i ≥ 1)

g0 : v ≤ x

ϕ : x − (i − 1)2

s1 :
(
v ′ = 1

)
∧
(
i ′ = 1

)
∧
(
x ′ = x

)
∧
(
r ′ = r

)
s2 :

(
v ′ = v + 2i + 1

)
∧
(
i ′ = i + 1

)
∧
(
x ′ = x

)
∧
(
r ′ = r

)
s3 :

(
v ′ = v

)
∧
(
i ′ = i

)
∧
(
x ′ = x

)
∧
(
r ′ = r

)
65 / 91

Synthesis

Example

» “
x ≥ 1 ∧ g1 ∧ s1 ⇒ τ

′
”
∧

“
τ ∧ g0 ∧ g2 ∧ s2 ⇒ τ

′
”
∧

„
τ ∧ ¬g0 ∧ g3 ∧ s3 ⇒

“
i′ − 1

”2
≤ x′

< i′2
« –
∧»

valid(s1) ∧ valid(s2) ∧ valid(s3)

–
∧

»
(r = ϕ) ∧ (τ ⇒ r ≥ 0) ∧

“
τ ∧ g0 ∧ g2 ∧ s2 ⇒ r′ > ϕ

′
” –

τ :
(
v = i2

)
∧
(
x ≥ (i − 1)2

)
∧ (i ≥ 1)

g0 : v ≤ x

ϕ : x − (i − 1)2

s1 :
(
v ′ = 1

)
∧
(
i ′ = 1

)
∧
(
x ′ = x

)
∧
(
r ′ = r

)
s2 :

(
v ′ = v + 2i + 1

)
∧
(
i ′ = i + 1

)
∧
(
x ′ = x

)
∧
(
r ′ = r

)
s3 :

(
v ′ = v

)
∧
(
i ′ = i

)
∧
(
x ′ = x

)
∧
(
r ′ = r

)
66 / 91

Synthesis

Requirements for solvers

I Support for multiple positive and negative unknowns
I (τ ∧ g ⇒ τ ′) ∧ (τ ∧ ¬g ⇒ φpost)

I Solutions are maximally weak,
I ensuring that the non-standard conditions valid(si) will hold.

67 / 91

Synthesis

Requirements for solvers

I Support for multiple positive and negative unknowns
I (τ ∧ g ⇒ τ ′) ∧ (τ ∧ ¬g ⇒ φpost)

I Solutions are maximally weak,
I ensuring that the non-standard conditions valid(si) will hold.

68 / 91

Experimental case studies
Tools

The VS3 project

I Arithmetic verification tool VS3
LIA

I works over the theory of linear arithmetic
I discovers (quantifier-free) invariants in DNF form with linear

inequalities over program variables as the atomic facts
I supports limits on data size in bits and a limit on the number

of conjunctions/disjunctions

I VS3
QA = VS3

LIA+ quadratic expressions (incomplete)

I Predicate abstraction verification tool VS3
PA

I works over a combination of the theories of equality with
uninterpreted functions, arrays, and linear arithmetic

I discovers (possibly) quantified invariants
I requires a boolean template for the invariant and a set of

predicates to put into template holes
I e.g. [−] ∧ ∀k : [−]⇒ [−]

I VS3
AX = VS3

PA+ user-specified axioms over uninterpreted
symbols 69 / 91

Experimental case studies
Tools

The VS3 project

I Arithmetic verification tool VS3
LIA

I works over the theory of linear arithmetic
I discovers (quantifier-free) invariants in DNF form with linear

inequalities over program variables as the atomic facts
I supports limits on data size in bits and a limit on the number

of conjunctions/disjunctions

I VS3
QA = VS3

LIA+ quadratic expressions (incomplete)

I Predicate abstraction verification tool VS3
PA

I works over a combination of the theories of equality with
uninterpreted functions, arrays, and linear arithmetic

I discovers (possibly) quantified invariants
I requires a boolean template for the invariant and a set of

predicates to put into template holes
I e.g. [−] ∧ ∀k : [−]⇒ [−]

I VS3
AX = VS3

PA+ user-specified axioms over uninterpreted
symbols 70 / 91

Experimental case studies
Tools

The VS3 project

I Arithmetic verification tool VS3
LIA

I works over the theory of linear arithmetic
I discovers (quantifier-free) invariants in DNF form with linear

inequalities over program variables as the atomic facts
I supports limits on data size in bits and a limit on the number

of conjunctions/disjunctions

I VS3
QA = VS3

LIA+ quadratic expressions (incomplete)

I Predicate abstraction verification tool VS3
PA

I works over a combination of the theories of equality with
uninterpreted functions, arrays, and linear arithmetic

I discovers (possibly) quantified invariants
I requires a boolean template for the invariant and a set of

predicates to put into template holes
I e.g. [−] ∧ ∀k : [−]⇒ [−]

I VS3
AX = VS3

PA+ user-specified axioms over uninterpreted
symbols 71 / 91

Experimental case studies
Tools

The VS3 project

I Arithmetic verification tool VS3
LIA

I works over the theory of linear arithmetic
I discovers (quantifier-free) invariants in DNF form with linear

inequalities over program variables as the atomic facts
I supports limits on data size in bits and a limit on the number

of conjunctions/disjunctions

I VS3
QA = VS3

LIA+ quadratic expressions (incomplete)

I Predicate abstraction verification tool VS3
PA

I works over a combination of the theories of equality with
uninterpreted functions, arrays, and linear arithmetic

I discovers (possibly) quantified invariants
I requires a boolean template for the invariant and a set of

predicates to put into template holes
I e.g. [−] ∧ ∀k : [−]⇒ [−]

I VS3
AX = VS3

PA+ user-specified axioms over uninterpreted
symbols 72 / 91

Experimental case studies

Flowgraphs with initialization and finalization

We instead treat loops (∗ (T)) in Expand as ◦; ∗ (T) ; ◦ to make
things easier for the verification tools.

73 / 91

Experimental case studies
Swapping of values

Example

I Fpre
.

= (x = c1) ∧ (y = c2)

I Fpost
.

= (x = c2) ∧ (y = c1)

I Rflow
.

= ◦
I Rcomp

.
= ∅

I Rstack
.

= ∅

Synthesizer generates various versions, including

Swap (i n t x , i n t y)
| x := x + y ;
| y := x − y ;
| x := x − y ;

74 / 91

Experimental case studies
Swapping of values

Example

I Fpre
.

= (x = c1) ∧ (y = c2)

I Fpost
.

= (x = c2) ∧ (y = c1)

I Rflow
.

= ◦
I Rcomp

.
= ∅

I Rstack
.

= ∅

Synthesizer generates various versions, including

Swap (i n t x , i n t y)
| x := x + y ;
| y := x − y ;
| x := x − y ;

75 / 91

Experimental case studies
Integral square root

Example

I F =
(
x ≥ 1, (i − 1)2 ≤ x < i2

)
I Rflow

.
= ∗ (◦) and Rcomp

.
= ∅

I Rstack
.

= {(int, 1)} + quadratic expressions in Dexp, Dgrd =
sequential search

I Rstack
.

= {(int, 2)} + linear expressions in Dexp, Dgrd =
sequential search

v := 1 ; i := 1 ;
whi le τ,ϕ (v ≤ x)
| v := v + 2i + 1 ; i ++;
return i − 1 ;

I Rstack
.

= {(int, 3)} + quadratic + extra assumptions
I binary search (temporaries hold search range)

76 / 91

Experimental case studies
Integral square root

Example

I F =
(
x ≥ 1, (i − 1)2 ≤ x < i2

)
I Rflow

.
= ∗ (◦) and Rcomp

.
= ∅

I Rstack
.

= {(int, 1)} + quadratic expressions in Dexp, Dgrd =
sequential search

I Rstack
.

= {(int, 2)} + linear expressions in Dexp, Dgrd =
sequential search

v := 1 ; i := 1 ;
whi le τ,ϕ (v ≤ x)
| v := v + 2i + 1 ; i ++;
return i − 1 ;

I Rstack
.

= {(int, 3)} + quadratic + extra assumptions
I binary search (temporaries hold search range)

77 / 91

Experimental case studies
Integral square root

Example

I F =
(
x ≥ 1, (i − 1)2 ≤ x < i2

)
I Rflow

.
= ∗ (◦) and Rcomp

.
= ∅

I Rstack
.

= {(int, 1)} + quadratic expressions in Dexp, Dgrd =
sequential search

I Rstack
.

= {(int, 2)} + linear expressions in Dexp, Dgrd =
sequential search

v := 1 ; i := 1 ;
whi le τ,ϕ (v ≤ x)
| v := v + 2i + 1 ; i ++;
return i − 1 ;

I Rstack
.

= {(int, 3)} + quadratic + extra assumptions
I binary search (temporaries hold search range)

78 / 91

Experimental case studies
Integral square root

Example

I F =
(
x ≥ 1, (i − 1)2 ≤ x < i2

)
I Rflow

.
= ∗ (◦) and Rcomp

.
= ∅

I Rstack
.

= {(int, 1)} + quadratic expressions in Dexp, Dgrd =
sequential search

I Rstack
.

= {(int, 2)} + linear expressions in Dexp, Dgrd =
sequential search

v := 1 ; i := 1 ;
whi le τ,ϕ (v ≤ x)
| v := v + 2i + 1 ; i ++;
return i − 1 ;

I Rstack
.

= {(int, 3)} + quadratic + extra assumptions
I binary search (temporaries hold search range)

79 / 91

Experimental case studies
Non-recursive sorting

Example

I F = (true,∀k : 0 ≤ k < n⇒ A[k] ≤ A[k + 1])

I Dexp includes swapping of array elements, Rcomp allows
swapping only, Rflow

.
= ∗ (∗ (◦))

I Rstack
.

= ∅: Bubble Sort and a non-standard version of
Insertion Sort.

I Rstack
.

= {(int, 1)}: Selection Sort.

80 / 91

Experimental case studies
Non-recursive sorting

Example

I F = (true,∀k : 0 ≤ k < n⇒ A[k] ≤ A[k + 1])

I Dexp includes swapping of array elements, Rcomp allows
swapping only, Rflow

.
= ∗ (∗ (◦))

I Rstack
.

= ∅: Bubble Sort and a non-standard version of
Insertion Sort.

I Rstack
.

= {(int, 1)}: Selection Sort.

81 / 91

Experimental case studies
Non-recursive sorting

Example

I F = (true,∀k : 0 ≤ k < n⇒ A[k] ≤ A[k + 1])

I Dexp includes swapping of array elements, Rcomp allows
swapping only, Rflow

.
= ∗ (∗ (◦))

I Rstack
.

= ∅: Bubble Sort and a non-standard version of
Insertion Sort.

I Rstack
.

= {(int, 1)}: Selection Sort.

82 / 91

Experimental case studies
Recursive divide-and-conquer sorting

Example

I F = (true,∀k : 0 ≤ k < n⇒ A[k] ≤ A[k + 1])

I Dexp includes swapping and moving of array elements

I Flowgraph template includes recursive call ~

I Rstack
.

= ∅, Rflow
.

= ~; ~; ◦: Merge Sort.

I Rstack
.

= {(int, 1)}, Rflow
.

= ◦; ~; ~: Quick Sort.

83 / 91

Experimental case studies
Recursive divide-and-conquer sorting

Example

I F = (true,∀k : 0 ≤ k < n⇒ A[k] ≤ A[k + 1])

I Dexp includes swapping and moving of array elements

I Flowgraph template includes recursive call ~

I Rstack
.

= ∅, Rflow
.

= ~; ~; ◦: Merge Sort.

I Rstack
.

= {(int, 1)}, Rflow
.

= ◦; ~; ~: Quick Sort.

84 / 91

Experimental case studies
Recursive divide-and-conquer sorting

Example

I F = (true,∀k : 0 ≤ k < n⇒ A[k] ≤ A[k + 1])

I Dexp includes swapping and moving of array elements

I Flowgraph template includes recursive call ~

I Rstack
.

= ∅, Rflow
.

= ~; ~; ◦: Merge Sort.

I Rstack
.

= {(int, 1)}, Rflow
.

= ◦; ~; ~: Quick Sort.

85 / 91

Experimental case studies
Dynamic programming

Example

I Fibonacci

I Longest Common Subsequence
I Path-finding

I Checkerboard (least-cost path on rectangular grid)
I Single Source Shortest Path
I All-pairs Shortest Path

I Matrix Chain Multiply (minimizing the number of
multiplications)

86 / 91

Experimental case studies

Benchmarks

I Synthesis time 0.12-9658.52 seconds (median 14.23)

I Slowdown in respect to verification 1.09-92.28 (median 6.68)

Limitations not easily overcome

I Need to add new assumptions to compensate for incomplete
VS3

QA (quadratic expression handling) and inefficient VS3
AX .

I Need a set of candidate predicates for VS3
AX

Scalability

I More efficient verifiers are needed.

Relevance

I Multiple solutions differ in performance, readability.

87 / 91

Experimental case studies

Benchmarks

I Synthesis time 0.12-9658.52 seconds (median 14.23)

I Slowdown in respect to verification 1.09-92.28 (median 6.68)

Limitations not easily overcome

I Need to add new assumptions to compensate for incomplete
VS3

QA (quadratic expression handling) and inefficient VS3
AX .

I Need a set of candidate predicates for VS3
AX

Scalability

I More efficient verifiers are needed.

Relevance

I Multiple solutions differ in performance, readability.

88 / 91

Experimental case studies

Benchmarks

I Synthesis time 0.12-9658.52 seconds (median 14.23)

I Slowdown in respect to verification 1.09-92.28 (median 6.68)

Limitations not easily overcome

I Need to add new assumptions to compensate for incomplete
VS3

QA (quadratic expression handling) and inefficient VS3
AX .

I Need a set of candidate predicates for VS3
AX

Scalability

I More efficient verifiers are needed.

Relevance

I Multiple solutions differ in performance, readability.

89 / 91

Experimental case studies

Benchmarks

I Synthesis time 0.12-9658.52 seconds (median 14.23)

I Slowdown in respect to verification 1.09-92.28 (median 6.68)

Limitations not easily overcome

I Need to add new assumptions to compensate for incomplete
VS3

QA (quadratic expression handling) and inefficient VS3
AX .

I Need a set of candidate predicates for VS3
AX

Scalability

I More efficient verifiers are needed.

Relevance

I Multiple solutions differ in performance, readability.

90 / 91

E O F

91 / 91

