From Program Verification to Program Synthesis Overview

Jaak Ristioja

March 30, 2010

Reference

From Program Verification to Program Synthesis.

@ POPL'10; January 17-23, 2010

Saurabh Srivastava,

University of Maryland, College Park

Sumit Gulwani,

Microsoft Research, Redmond

Jeffrey S. Foster

University of Maryland, College Park

doi:10.1145/1706299.1706337

(including numerous typos and ambiguities)

Reference

From Program Verification to Program Synthesis.

@ POPL'10; January 17-23, 2010

Saurabh Srivastava,

University of Maryland, College Park

Sumit Gulwani,

Microsoft Research, Redmond

Jeffrey S. Foster

University of Maryland, College Park

doi:10.1145/1706299.1706337

(including numerous typos and ambiguities)

Automated program synthesis

- Correct-by-construction
- ► Eases task of programming
 - Automated debugging
 - Programmer only deals with high-level design
- New non-trivial algorithms could be discovered
- Difficult to implement

Verification and synthesis

Program verification

- synthesizes program proofs from programs
- for loops it uses
 - inductive invariants for partial correctness
 - ranking functions for termination
- does verification

Synthesis problem → verification problem

- encoding guards and statements etc as logical facts
- using verification tools for synthesis
- by verification we infer statements, guards etc

Proof-theoretic synthesis

▶ Proof for the program is synthesized alongside the program

Verification and synthesis

Program verification

- synthesizes program proofs from programs
- for loops it uses
 - inductive invariants for partial correctness
 - ranking functions for termination
- does verification

Synthesis problem → verification problem

- encoding guards and statements etc as logical facts
- using verification tools for synthesis
- by verification we infer statements, guards etc

Proof-theoretic synthesis

Proof for the program is synthesized alongside the program

Verification and synthesis

Program verification

- synthesizes program proofs from programs
- for loops it uses
 - inductive invariants for partial correctness
 - ranking functions for termination
- does verification

Synthesis problem → verification problem

- encoding guards and statements etc as logical facts
- using verification tools for synthesis
- by verification we infer statements, guards etc

Proof-theoretic synthesis

▶ Proof for the program is synthesized alongside the program

Bresenham's line drawing algorithm

Pre- and post-condition for a line drawing program:

$$\tau_{pre}: 0 < Y \leq X$$

$$\tau_{post}: \forall k: 0 \leq k \leq X \Rightarrow 2|out[k] - (Y/X)k| \leq 1$$

and resource constraints, for example constraints for

- control flow,
- stack space,
- available operations, etc

can we synthesize the program?

Bresenham's line drawing algorithm

Given the specification for a line drawing program

$$au_{pre}: 0 < Y \leq X$$

$$\tau_{post}$$
: $\forall k : 0 \le k \le X \Rightarrow 2|out[k] - (Y/X)k| \le 1$

and resource constraints, for example constraints for

- control flow,
- stack space,
- available operations, etc

can we synthesize the program?

Bresenham's line drawing algorithm

```
Bresenhams(int X, int Y)  v_1 := 2Y - X; \ y := 0; \ x := 0;  while (x <= X)  | \ out[x] := y;   | \ if \ (v_1 < 0)   | \ v_1 := v_1 + 2Y;   | \ else   | \ v_1 := v_1 + 2(Y - X); \ y++;   | \ x++;  return out:
```

Bresenham's line drawing algorithm

Observations

- We can write statements as equality predicates
- ▶ We can write acyclic program fragments as transition systems

- \triangleright x := e becomes an equality predicate x' = e where
 - \triangleright x' is a renaming of x to its output value
 - *e* is the expression over the non-primed values
- ightharpoonup y := x; x := y becomes $y' = x \wedge x' = y'$
- if (x > 0) x := y; else skip; becomes

$$[] x > 0 \rightarrow x' = y$$

[]
$$x \le 0 \rightarrow \mathsf{true}$$

Bresenham's line drawing algorithm

Bresenham's line drawing algorithm

To prove partial correctness, we can write down the inductive loop invariant for the **while**-loop:

$$au: 0 < Y \le X \land \ v_1 = 2(x+1)Y - (2y+1)X \land \ 2(Y-X) \le v_1 \le 2Y \land \ \forall k: 0 \le k < x \Rightarrow 2|out[k] - (Y/X)k| \le 1$$

and the verification condition can be written as four implications of four paths in the program:

$$au_{pre} \wedge s_{entry} \Rightarrow au'$$
 $au \wedge \neg g_{loop} \Rightarrow au_{post}$
 $au \wedge g_{loop} \wedge g_{body1} \wedge s_{body1} \Rightarrow au'$
 $au \wedge g_{loop} \wedge g_{body2} \wedge s_{body2} \Rightarrow au'$

where τ' is the renamed version of the loop invariant.

Bresenham's line drawing algorithm

$$s_{entry}: v_1' = 2Y - X \land y' = 0 \land x' = 0$$
 $g_{loop}: x \le X$
 $g_{body1}: v_1 < 0$
 $s_{body1}: out' = upd(out, x, y) \land v_1' = v_1 + 2Y \land y' = y \land x' = x + 1$
 $g_{body2}: v_1 \ge 0$
 $s_{body2}: out' = upd(out, x, y) \land v_1' = v_1 + 2(Y - X) \land y' = y + 1 \land x' = x + 1$

One can *validate* that the loop invariant τ satisfies the verification condition.

- ▶ e.g. by using SMT (Satisfiability Modulo Theory) solvers There are also powerful program verification tools that can prove total correctness by
 - \blacktriangleright automatically generating fixed-point solutions for loop invariants, such as τ
 - lacktriangleright inferring ranking functions (φ) to prove termination

So if we can infer the verification condition, perhaps we can also infer

- ▶ the guards g_i's and
- \blacktriangleright the statements s_i 's

at the same time?

One can *validate* that the loop invariant τ satisfies the verification condition.

▶ e.g. by using SMT (Satisfiability Modulo Theory) solvers There are also powerful program verification tools that can prove total correctness by

- \blacktriangleright automatically generating fixed-point solutions for loop invariants, such as τ
- inferring ranking functions (φ) to prove termination

So if we can infer the verification condition, perhaps we can also infer

- ▶ the guards g_i's and
- \triangleright the statements s_i 's

at the same time?

How to infer guards and statements

- 1. encode programs as transition systems
- 2. assert appropriate constraints
- use verification tools to systematically infer solutions for the unknowns in the constraints. The unknowns are
 - invariants
 - statements
 - guards

Types of constraints

- well-formedness constraints to get solutions corresponding to real-life programs
- progress constraints to ensure termination

How to infer guards and statements

- 1. encode programs as transition systems
- 2. assert appropriate constraints
- use verification tools to systematically infer solutions for the unknowns in the constraints. The unknowns are
 - invariants
 - statements
 - guards

Types of constraints

- well-formedness constraints to get solutions corresponding to real-life programs
- progress constraints to ensure termination

For synthesis we first need a specification for the program we want to construct.

Synthesis scaffold

$$\langle \mathcal{F}, \mathcal{D}, \mathcal{R} \rangle$$

- $ightharpoonup \mathcal{F}$ functional specification
- ▶ D domain constraints
- ▶ R resource constraints

Synthesis scaffold

Functional specification ${\cal F}$

Let $\vec{v_{in}}$ and $\vec{v_{out}}$ be vectors containing the input and output variables.

$$\mathcal{F} = (F_{pre}(\vec{v_{in}}), F_{post}(\vec{v_{out}}))$$

where $F_{pre}(\vec{v_{in}})$ and $F_{post}(\vec{v_{out}})$ are formulas that hold at the program entry and exit locations, respectively.

Synthesis scaffold

Domain constraints \mathcal{D}

$$\mathcal{D} = (D_{exp}, D_{grd})$$

where D_{exp} is the domain of expressions in the program and D_{grd} is the domain of boolean expressions used in program guards.

Proof domain D_{prf}

- Proof-theoretic synthesis needs to synthesize proof terms from a proof domain D_{prf}.
- ▶ D_{prf} needs to be **at least** as expressive as D_{exp} and D_{grd} .
- ▶ We need a solver capable of handling D_{prf} .

Synthesis scaffold

Domain constraints \mathcal{D}

$$\mathcal{D} = (D_{exp}, D_{grd})$$

where D_{exp} is the domain of expressions in the program and D_{grd} is the domain of boolean expressions used in program guards.

Proof domain D_{prf}

- ▶ Proof-theoretic synthesis needs to synthesize proof terms from a proof domain D_{prf} .
- ▶ D_{prf} needs to be **at least** as expressive as D_{exp} and D_{grd} .
- ▶ We need a solver capable of handling D_{prf} .

Resource constraints \mathcal{R}

Synthesis scaffold

$$\mathcal{R} = (R_{flow}, R_{stack}, R_{comp})$$

- ▶ R_{flow} is a flowgraph template from the grammar $T ::= \circ | *(T) | T; T$
- ▶ R_{stack} : $type \rightarrow \mathbb{N}_1$ is a mapping indicating the number of extra temporary variables of each type available to the program.
- ▶ $R_{comp}: op \rightarrow \mathbb{N}_0$ is a mapping defining how many operations of each type can be included in the program. $R_{comp} = \emptyset$ indicates no constraints.

Synthesis scaffold

▶
$$\mathcal{F} = (x \ge 1, (i-1)^2 \le x < i^2)$$

- ▶ D_{exp} limited to linear arithmetic (LA) expressions (no $\sqrt{}$)
- ► D_{grd} limited to quantifier-free first-order logic (FOL) over LA
- $R_{flow} = (\circ; *(\circ); \circ), R_{stack} = \{(\mathsf{int}, 1)\}, R_{comp} = \emptyset$

```
IntSqrt(int x)

v := 1; i := 1;

while^{\tau,\varphi} (v \le x)

v := v + 2i + 1; i + +;

v := v + 2i + 1; i + +;
```

- ▶ Invariant $\tau : v = i^2 \land x \ge (i-1)^2 \land i \ge 1$
- ▶ Ranking function $\varphi : x (i 1)^2$

Transition systems for acyclic code

One way to infer a set of acyclic statements that transform a precondition to a postcondition would be to use assignments:

$$\{\phi_{pre}\}\,x:=e_x;y:=e_y;\{\phi_{post}\}$$

Using Hoare's axiom for assignment, we can generate the assignment condition

$$\phi_{pre} \Rightarrow (\phi_{post} [x \mapsto e_x]) [y \mapsto e_y]$$

Shortcomings in respect to our task:

- substitutions are hard to reason about
- order of assignment matters
- we need more than a fixed number of statements

Transition systems for acyclic code

One way to infer a set of acyclic statements that transform a precondition to a postcondition would be to use assignments:

$$\{\phi_{pre}\} x := e_x; y := e_y; \{\phi_{post}\}$$

Using Hoare's axiom for assignment, we can generate the assignment condition

$$\phi_{pre} \Rightarrow (\phi_{post} [x \mapsto e_x]) [y \mapsto e_y]$$

Shortcomings in respect to our task

- substitutions are hard to reason about
- order of assignment matters
- we need more than a fixed number of statements

Transition systems for acyclic code

One way to infer a set of acyclic statements that transform a precondition to a postcondition would be to use assignments:

$$\{\phi_{pre}\} x := e_x; y := e_y; \{\phi_{post}\}$$

Using Hoare's axiom for assignment, we can generate the assignment condition

$$\phi_{pre} \Rightarrow (\phi_{post} [x \mapsto e_x]) [y \mapsto e_y]$$

Shortcomings in respect to our task:

- substitutions are hard to reason about
- order of assignment matters
- we need more than a fixed number of statements

Transition systems for acyclic code

Transitions

A transition is a (possibly parallel) mapping of input variables (x) to output variables (x').

$$\left\{\phi_{\mathit{pre}}\right\}\left\langle x',y'\right\rangle = \left\langle e_{\mathit{x}},e_{\mathit{y}}\right\rangle \left\{\phi_{\mathit{post}}'\right\}$$

Corresponding verification condition:

$$\phi_{\mathsf{pre}} \wedge x' = e_{\mathsf{x}} \wedge y' = e_{\mathsf{y}} \Rightarrow \phi'_{\mathsf{post}}$$

Every assignment (state update) can be written as a single transition

Example

For $x := e_x$; $y := e_v$ we will have

$$\left\{ \phi_{pre} \right\} \left\langle x', y' \right\rangle = \left\langle e_x, e_y[x \mapsto e_x] \right\rangle \left\{ \phi'_{post} \right\}$$

$$\phi_{pre} \wedge x' = e_x \wedge y' = e_y[x \mapsto e_x] \Rightarrow \phi'_{pos}$$

Transition systems for acyclic code

Transitions

A transition is a (possibly parallel) mapping of input variables (x) to output variables (x').

$$\left\{\phi_{\textit{pre}}\right\}\left\langle x',y'\right\rangle = \left\langle e_{\textit{x}},e_{\textit{y}}\right\rangle \left\{\phi_{\textit{post}}'\right\}$$

Corresponding verification condition:

$$\phi_{pre} \wedge x' = e_x \wedge y' = e_y \Rightarrow \phi'_{post}$$

Every assignment (state update) can be written as a single transition

Example

For $x := e_x$; $y := e_y$ we will have

$$\left\{ \phi_{pre} \right\} \left\langle x', y' \right\rangle = \left\langle e_x, e_y[x \mapsto e_x] \right\rangle \left\{ \phi'_{post} \right\}$$

$$\phi_{pre} \wedge x' = e_x \wedge y' = e_y[x \mapsto e_x] \Rightarrow \phi'_{pos}$$

Transition systems for acyclic code

Transitions

A transition is a (possibly parallel) mapping of input variables (x) to output variables (x').

$$\left\{\phi_{pre}\right\}\left\langle x^{\prime},y^{\prime}\right
angle =\left\langle e_{x},e_{y}
ight
angle \left\{\phi_{post}^{\prime}
ight\}$$

Corresponding verification condition:

$$\phi_{pre} \wedge x' = e_x \wedge y' = e_y \Rightarrow \phi'_{post}$$

Every assignment (state update) can be written as a single transition

Example

For $x := e_x$; $y := e_y$ we will have

$$\{\phi_{pre}\} \langle x', y' \rangle = \langle e_x, e_y[x \mapsto e_x] \rangle \{\phi'_{post}\}$$

$$\phi_{pre} \wedge x' = e_x \wedge y' = e_y[x \mapsto e_x] \Rightarrow \phi'_{pos}$$

Transition systems for acyclic code

Transitions

A transition is a (possibly parallel) mapping of input variables (x) to output variables (x').

$$\left\{\phi_{\textit{pre}}\right\}\left\langle x',y'\right\rangle = \left\langle e_{\textit{x}},e_{\textit{y}}\right\rangle \left\{\phi_{\textit{post}}'\right\}$$

Corresponding verification condition:

$$\phi_{pre} \wedge x' = e_x \wedge y' = e_y \Rightarrow \phi'_{post}$$

Every assignment (state update) can be written as a single transition

For
$$x := e_x$$
; $y := e_y$ we will have
$$\left\{\phi_{\textit{pre}}\right\} \left\langle x', y' \right\rangle = \left\langle e_x, e_y[x \mapsto e_x] \right\rangle \left\{\phi'_{\textit{post}}\right\}$$

$$\phi_{\textit{pre}} \wedge x' = e_x \wedge y' = e_y[x \mapsto e_x] \Rightarrow \phi'_{\textit{post}}$$

Transition systems for acyclic code

Guarded transitions

Lets extend transitions with guarded transitions $[]g \rightarrow s$ meaning that statements s are only executed if the quantifier-free g holds.

Transition systems

We can represent arbitrary acyclic program fragments using sets of guarded transitions:

$$\{\phi_{\mathsf{pre}}\}\left\{[\hspace{-0.04cm}]\hspace{0.04cm} g_{\mathsf{i}}
ightarrow s_{\mathsf{i}}\}_{\mathsf{i}}\left\{\phi_{\mathsf{post}}'
ight\}$$

The corresponding verification for is:

$$\bigwedge_{i} \left(\phi_{pre} \wedge g_{i} \wedge s_{i} \Rightarrow \phi'_{post} \right)$$

- no reasoning about statement ordering to puzzle us
- \blacktriangleright guards g_i and statements s_i are facts just like pre- and postconditions.

Transition systems for acyclic code

Guarded transitions

Lets extend transitions with guarded transitions [] $g \to s$ meaning that statements s are only executed if the quantifier-free g holds.

Transition systems

We can represent arbitrary acyclic program fragments using sets of guarded transitions:

$$\{\phi_{pre}\}\{[]g_i \rightarrow s_i\}_i\{\phi'_{post}\}$$

The corresponding verification for is:

$$\bigwedge_{i} \left(\phi_{pre} \wedge g_{i} \wedge s_{i} \Rightarrow \phi'_{post} \right)$$

- no reasoning about statement ordering to puzzle us
- ▶ guards g_i and statements s_i are facts just like pre- and postconditions.

Transition systems for acyclic code

Guarded transitions

Lets extend transitions with guarded transitions [] $g \to s$ meaning that statements s are only executed if the quantifier-free g holds.

Transition systems

We can represent arbitrary acyclic program fragments using sets of guarded transitions:

$$\{\phi_{pre}\}\left\{\left[\right]g_{i}
ightarrow s_{i}\}_{i}\left\{\phi_{post}^{\prime}
ight\}$$

The corresponding verification for is:

$$\bigwedge_{i} \left(\phi_{pre} \wedge g_{i} \wedge s_{i} \Rightarrow \phi'_{post} \right)$$

- no reasoning about statement ordering to puzzle us
- ightharpoonup guards g_i and statements s_i are facts just like pre- and postconditions.

Transition systems for acyclic code

Guarded transitions

Lets extend transitions with guarded transitions [] $g \rightarrow s$ meaning that statements s are only executed if the quantifier-free g holds.

Transition systems

We can represent arbitrary acyclic program fragments using sets of guarded transitions:

$$\{\phi_{pre}\}\{[]g_i \rightarrow s_i\}_i \{\phi'_{post}\}$$

The corresponding verification for is:

$$\bigwedge_{i} \left(\phi_{pre} \wedge g_{i} \wedge s_{i} \Rightarrow \phi'_{post} \right)$$

- no reasoning about statement ordering to puzzle us
- guards g_i and statements s_i are facts just like pre- and postconditions.

- Program verification tools find fixed-point solutions (invariants) to satisfy verification conditions
 - ▶ These conditions have known statements and guards.
- ▶ For synthesis, we need to generalize this problem
 - We make statements and guards also unknowns in the formulas.

Synthesis conditions

- Program verification tools find fixed-point solutions (invariants) to satisfy verification conditions
 - These conditions have known statements and guards.
- ▶ For synthesis, we need to generalize this problem
 - We make statements and guards also unknowns in the formulas.
- Verification conditions for verification
- Synthesis conditions for synthesis

Synthesis conditions

- Program verification tools find fixed-point solutions (invariants) to satisfy verification conditions
 - These conditions have known statements and guards.
- ▶ For synthesis, we need to generalize this problem
 - We make statements and guards also unknowns in the formulas.
- If a program is correct (verifiable), then its verification condition is valid.
- If a valid program exists for a scaffold, then its synthesis condition has a satisfying solution.

Expanding the flowgraph

Transition system language (TSL)

$$p ::=$$
choose $\{[]g_i \rightarrow s_i\}_i$
 $|$ while $^{\tau, \varphi} (g) \{p\}$
 $| p; p$

Expanding the flowgraph

Expand function

$$\begin{aligned} & \textit{Expand}_{\mathcal{D},\mathcal{R}}^{n,D_{\textit{prf}}}(\circ) = \textbf{choose} \ \left\{ \left[\right] g_i \rightarrow s_i \right\}_{i=1...n} \\ & \textit{Expand}_{\mathcal{D},\mathcal{R}}^{n,D_{\textit{prf}}}(*(T)) = \textbf{while}^{\tau,\varphi} \ \left(g \right) \ \left\{ \textit{Expand}_{\mathcal{D},\mathcal{R}}^{n,D_{\textit{prf}}}(T) \right\} \\ & \textit{Expand}_{\mathcal{D},\mathcal{R}}^{n,D_{\textit{prf}}}(T_1; T_2) = \textit{Expand}_{\mathcal{D},\mathcal{R}}^{n,D_{\textit{prf}}}(T_1) \ ; \ \textit{Expand}_{\mathcal{D},\mathcal{R}}^{n,D_{\textit{prf}}}(T_2) \end{aligned}$$

where all g_i , s_i , g, τ and φ are new generated unknowns.

$$s \in \bigwedge_{i} x_{i} = e_{i}$$
 where $x_{i} \in V$, $e_{i} \in D_{exp}|_{V}$

$$\tau \in D_{prf}|_{V}$$
 $g \in D_{grd}|_{V}$

and $V = \vec{v_{in}} \cup \vec{v_{out}} \cup T \cup L$ where

- T is subject to R_{stack}
- e_i is subject to R_{comp}
- ► *L* is the set of iteration counters and ranking function tracker variables

Expanding the flowgraph

Expand function

$$\begin{aligned} & \textit{Expand}_{\mathcal{D},\mathcal{R}}^{n,D_{\textit{prf}}}(\circ) = \textbf{choose} \ \left\{ \left[\right] g_i \rightarrow s_i \right\}_{i=1...n} \\ & \textit{Expand}_{\mathcal{D},\mathcal{R}}^{n,D_{\textit{prf}}}(*(T)) = \textbf{while}^{\tau,\varphi} \ \left(g \right) \ \left\{ \textit{Expand}_{\mathcal{D},\mathcal{R}}^{n,D_{\textit{prf}}}(T) \right\} \\ & \textit{Expand}_{\mathcal{D},\mathcal{R}}^{n,D_{\textit{prf}}}(T_1; T_2) = \textit{Expand}_{\mathcal{D},\mathcal{R}}^{n,D_{\textit{prf}}}(T_1) \ ; \ \textit{Expand}_{\mathcal{D},\mathcal{R}}^{n,D_{\textit{prf}}}(T_2) \end{aligned}$$

where all g_i , s_i , g, τ and φ are new generated unknowns and

$$s \in igwedge_i x_i = e_i \qquad \qquad ext{where } x_i \in V, \ e_i \in D_{exp}|_V \ ag \in D_{prf}|_V \qquad \qquad g \in D_{grd}|_V$$

and $V = \vec{v_{in}} \cup \vec{v_{out}} \cup T \cup L$ where

- T is subject to R_{stack}
- \triangleright e_i is subject to R_{comp}
- ► *L* is the set of iteration counters and ranking function tracker variables

Expanding the flowgraph

Example

- ▶ $\mathcal{F} = (x \ge 1, (i-1)^2 \le x < i^2)$
- $ightharpoonup D_{exp}$ limited to linear arithmetic (LA) expressions (no $\sqrt{\ }$)
- ► D_{grd} limited to quantifier-free first-order logic (FOL) over LA
- ► $R_{flow} = (\circ; *(\circ); \circ), R_{stack} = \{(\mathbf{int}, 1)\}, R_{comp} = \emptyset$

For n=1 and FOL over quadratic expressions as $D_{\it prf}$ we get:

```
egin{aligned} \operatorname{exp}_{sqrt} &= \operatorname{Expand}_{\mathcal{D},\mathcal{R}}^{n,D_{prf}}(R_{flow}) = \\ & \operatorname{choose} \ \left\{ \left[ \right] g_1 	o s_1 \right\}; \\ & \operatorname{while}^{	au,arphi} \ \left( g_0 \right) \ \left\{ \ \operatorname{choose} \ \left\{ \left[ \right] g_2 	o s_2 \right\}; \ 
ight\} \\ & \operatorname{choose} \ \left\{ \left[ \right] g_3 	o s_3 \right\}; \end{aligned} where \vec{v_{in}} = \vec{v_{out}} = \{x\}, \ T = \{v\}, \ L = \{i,r\}.
```

Expanding the flowgraph

Example

▶
$$\mathcal{F} = (x \ge 1, (i-1)^2 \le x < i^2)$$

- $ightharpoonup D_{exp}$ limited to linear arithmetic (LA) expressions (no $\sqrt{\ }$)
- D_{grd} limited to quantifier-free first-order logic (FOL) over LA
- $R_{flow} = (\circ; *(\circ); \circ), R_{stack} = \{(\mathsf{int}, 1)\}, R_{comp} = \emptyset$

For n = 1 and FOL over quadratic expressions as D_{prf} we get:

```
\begin{split} \exp_{sqrt} &= Expand_{\mathcal{D},\mathcal{R}}^{n,D_{prf}}(R_{flow}) = \\ &\quad \text{choose } \{[]\ g_1 \to s_1\}\ ; \\ &\quad \text{while}^{\tau,\varphi}\ (g_0)\ \{\ \text{choose } \{[]\ g_2 \to s_2\}\ ; \ \}\ ; \\ &\quad \text{choose } \{[]\ g_3 \to s_3\}\ ; \\ &\quad \text{where } \vec{v_{in}} = \vec{v_{out}} = \{x\},\ T = \{v\},\ L = \{i,r\}. \end{split}
```

Safety conditions

To encode a formula for the validity of a Hoare triple, we define

PathC :
$$\phi \times Tsl \times \phi \rightarrow \phi$$

which takes a precondition, a sequence of statements and a postcondition, and returns the safety condition.

$$\begin{split} \textit{PathC}(\phi_{\textit{pre}}, \textbf{choose} \;\; \{[]\; g_i \rightarrow s_i\}_i \,, \phi_{\textit{post}}) = \\ & \bigwedge_i (\phi_{\textit{pre}} \land g_i \land s_i \Rightarrow \phi'_{\textit{post}}) \\ \textit{PathC}(\phi_{\textit{pre}}, \textbf{while}^{\tau, \varphi} \;\; (g) \;\; \{\vec{p}_l\} \,, \phi_{\textit{post}}) = \\ & \phi_{\textit{pre}} \Rightarrow \tau' \land \textit{PathC}(\tau \land g, \vec{p}_l, \tau) \land (\tau \land \neg g \Rightarrow \phi'_{\textit{post}}) \end{split}$$

Encoding sequences of statements a bit more difficult because of variable renaming (primed versions of τ and ϕ_{post}).

Safety conditions

To encode a formula for the validity of a Hoare triple, we define

PathC :
$$\phi \times Tsl \times \phi \rightarrow \phi$$

which takes a precondition, a sequence of statements and a postcondition, and returns the safety condition:

$$PathC(\phi_{pre}, \textbf{choose} \ \{[] \ g_i \rightarrow s_i\}_i \ , \phi_{post}) = \\ \bigwedge_i (\phi_{pre} \land g_i \land s_i \Rightarrow \phi'_{post}) \\ PathC(\phi_{pre}, \textbf{while}^{\tau, \varphi} \ (g) \ \{\vec{p_I}\} \ , \phi_{post}) = \\ \phi_{pre} \Rightarrow \tau' \land PathC(\tau \land g, \vec{p_I}, \tau) \land (\tau \land \neg g \Rightarrow \phi'_{post})$$

Encoding sequences of statements a bit more difficult because of variable renaming (primed versions of τ and ϕ_{post}).

Safety conditions

To encode a formula for the validity of a Hoare triple, we define

PathC :
$$\phi \times Tsl \times \phi \rightarrow \phi$$

which takes a precondition, a sequence of statements and a postcondition, and returns the safety condition:

$$PathC(\phi_{pre}, \mathbf{choose} \ \{[] \ g_i \to s_i\}_i \ , \phi_{post}) = \\ \bigwedge_i (\phi_{pre} \land g_i \land s_i \Rightarrow \phi'_{post}) \\ PathC(\phi_{pre}, \mathbf{while}^{\tau, \varphi} \ (g) \ \{\vec{p_l}\} \ , \phi_{post}) = \\ \phi_{pre} \Rightarrow \tau' \land PathC(\tau \land g, \vec{p_l}, \tau) \land (\tau \land \neg g \Rightarrow \phi'_{post})$$

Encoding sequences of statements a bit more difficult because of variable renaming (primed versions of τ and ϕ_{post}).

Safety conditions

Note. Any 2 consecutive acyclic fragments with n_1 and n_2 transitions can be collapsed into one with $n_1 \cdot n_2$ transitions.

$$PathC(\phi_{pre}, \mathbf{while}^{\tau,\varphi} \ (g) \ \{\vec{p}_l\}; \ \vec{p}, \phi_{post}) = \\ (\phi_{pre} \Rightarrow \tau') \land PathC(\tau \land g, \vec{p}_l, \tau) \land PathC(\tau \land \neg g, \vec{p}, \phi_{post})$$

$$PathC(\phi_{pre}, \mathbf{choose} \ \{[] \ g_i \rightarrow s_i\}_i; \ \mathbf{while}^{\tau,\varphi} \ (g) \ \{\vec{p}_l\}, \phi_{post}) = \\ \bigwedge_i (\phi_{pre} \land g_i \land s_i \Rightarrow \tau') \land PathC(\tau \land g, \vec{p}_l, \tau) \land (\tau \land \neg g \Rightarrow \phi'_{post})$$

$$PathC(\phi_{pre}, \mathbf{choose} \ \{[] \ g_i \rightarrow s_i\}_i; \ \mathbf{while}^{\tau,\varphi} \ (g) \ \{\vec{p}_l\}; \ \vec{p}, \phi_{post}) = \\ \bigwedge_i (\phi_{pre} \land g_i \land s_i \Rightarrow \tau') \land PathC(\tau \land g, \vec{p}_l, \tau) \land \\ PathC(\tau \land \neg g, \vec{p}, \phi_{post})$$

$$SafetyCond(exp, \mathcal{F}) = PathC(F_{pre}, exp, F_{post})$$

Safety conditions

Note. Any 2 consecutive acyclic fragments with n_1 and n_2 transitions can be collapsed into one with $n_1 \cdot n_2$ transitions.

$$PathC(\phi_{pre}, \mathbf{while}^{\tau, \varphi} \ (g) \ \{\vec{p}_l\} \ ; \ \vec{p}, \phi_{post}) = \\ (\phi_{pre} \Rightarrow \tau') \land PathC(\tau \land g, \vec{p}_l, \tau) \land PathC(\tau \land \neg g, \vec{p}, \phi_{post}) \\ PathC(\phi_{pre}, \mathbf{choose} \ \{[] \ g_i \rightarrow s_i\}_i \ ; \ \mathbf{while}^{\tau, \varphi} \ (g) \ \{\vec{p}_l\}, \phi_{post}) = \\ \bigwedge_i (\phi_{pre} \land g_i \land s_i \Rightarrow \tau') \land PathC(\tau \land g, \vec{p}_l, \tau) \land (\tau \land \neg g \Rightarrow \phi'_{post}) \\ PathC(\phi_{pre}, \mathbf{choose} \ \{[] \ g_i \rightarrow s_i\}_i \ ; \ \mathbf{while}^{\tau, \varphi} \ (g) \ \{\vec{p}_l\} \ ; \ \vec{p}, \phi_{post}) = \\ \bigwedge_i (\phi_{pre} \land g_i \land s_i \Rightarrow \tau') \land PathC(\tau \land g, \vec{p}_l, \tau) \land \\ PathC(\tau \land \neg g, \vec{p}, \phi_{post}) \\ \end{cases}$$

$$SafetyCond(exp, \mathcal{F}) = PathC(F_{pre}, exp, F_{post})$$

Safety conditions

Note. Any 2 consecutive acyclic fragments with n_1 and n_2 transitions can be collapsed into one with $n_1 \cdot n_2$ transitions.

$$PathC(\phi_{pre}, \mathbf{while}^{\tau,\varphi} \ (g) \ \{\vec{p_l}\}; \ \vec{p}, \phi_{post}) = \\ (\phi_{pre} \Rightarrow \tau') \land PathC(\tau \land g, \vec{p_l}, \tau) \land PathC(\tau \land \neg g, \vec{p}, \phi_{post})$$

$$PathC(\phi_{pre}, \mathbf{choose} \ \{[] \ g_i \rightarrow s_i\}_i; \ \mathbf{while}^{\tau,\varphi} \ (g) \ \{\vec{p_l}\}, \phi_{post}) = \\ \bigwedge_i (\phi_{pre} \land g_i \land s_i \Rightarrow \tau') \land PathC(\tau \land g, \vec{p_l}, \tau) \land (\tau \land \neg g \Rightarrow \phi'_{post})$$

$$PathC(\phi_{pre}, \mathbf{choose} \ \{[] \ g_i \rightarrow s_i\}_i; \ \mathbf{while}^{\tau,\varphi} \ (g) \ \{\vec{p_l}\}; \ \vec{p}, \phi_{post}) = \\ \bigwedge_i (\phi_{pre} \land g_i \land s_i \Rightarrow \tau') \land PathC(\tau \land g, \vec{p_l}, \tau) \land \\ PathC(\tau \land \neg g, \vec{p}, \phi_{post})$$

$$SafetyCond(exp, \mathcal{F}) = PathC(F_{pre}, exp, F_{post})$$

Safety conditions

Example

```
▶ \mathcal{F} = \left(x \ge 1, (i-1)^2 \le x < i^2\right)
▶ exp_{sqrt} =
choose \{[] g_1 \to s_1\};
while ^{\tau,\varphi} (g_0) \{ choose \{[] g_2 \to s_2\}; \};
choose \{[] g_3 \to s_3\};
```

$$\begin{aligned} \textit{SafetyCond}(\textit{exp}_{\textit{sqrt}}, \mathcal{F}) &= \\ & (x \geq 1 \land g_1 \land s_1 \Rightarrow \tau') \land \\ & (\tau \land g_0 \land g_2 \land s_2 \Rightarrow \tau') \land \\ & (\tau \land \neg g_0 \land g_3 \land s_3 \Rightarrow (i' - 1)^2 \leq x' < i'^2) \end{aligned}$$

where g_i , s_i and au are all unknowns.

Safety conditions

Example

```
▶ \mathcal{F} = \left(x \ge 1, (i-1)^2 \le x < i^2\right)
▶ exp_{sqrt} =
choose \{[]g_1 \to s_1\};
while ^{\tau,\varphi}(g_0) { choose \{[]g_2 \to s_2\}; };
choose \{[]g_3 \to s_3\};
```

$$\begin{split} \textit{SafetyCond}(\textit{exp}_{\textit{sqrt}}, \mathcal{F}) &= \\ & \left(x \geq 1 \land \textit{g}_1 \land \textit{s}_1 \, \Rightarrow \tau' \right) \land \\ & \left(\tau \land \textit{g}_0 \land \textit{g}_2 \land \textit{s}_2 \, \Rightarrow \tau' \right) \land \\ & \left(\tau \land \neg \textit{g}_0 \land \textit{g}_3 \land \textit{s}_3 \, \Rightarrow \left(\textit{i}' - 1 \right)^2 \leq \textit{x}' < \textit{i}'^2 \right) \end{split}$$

where g_i , s_i and τ are all unknowns.

Well-formedness conditions

$$WellFormTS(\{[]g_i
ightarrow s_i\}_i) \doteq \left(igwedge_i valid(s_i)
ight) \land \left(igvee_i g_i
ight)$$

where

- \triangleright valid (s_i) ensures that each variable is assigned only once in s_i
- $(\bigvee_i g_i)$ guarantees all space is covered by the guards g_i
- guards do not have to be mutually exclusive

$$WellFormCond(exp) = \bigwedge_{(choose \{[]g_i \rightarrow s]\}_i)} WellFormTS(\{[]g_i \rightarrow s_i\}_i) \in cond(exp)$$
 (choose statements in the

This is called non-iterative upper bounded search. Iterative lower bounded search is also possible (remember parameter n at expansion).

Well-formedness conditions

$$WellFormTS(\{[]g_i
ightarrow s_i\}_i) \doteq \left(igwedge_i valid(s_i)
ight) \land \left(igvee_i g_i
ight)$$

where

- \triangleright valid (s_i) ensures that each variable is assigned only once in s_i
- \triangleright $(\bigvee_i g_i)$ guarantees all space is covered by the guards g_i
- guards do not have to be mutually exclusive

$$\textit{WellFormCond}(\textit{exp}) = \bigwedge_{\substack{\text{choose} \ \{[[] \ g_i \rightarrow s_i\}_i) \in \textit{cond}(\textit{exp})}} \textit{WellFormTS}(\{[[] \ g_i \rightarrow s_i\}_i)$$

where cond(exp) is the set of all **choose** statements in the expanded scaffold exp.

This is called non-iterative upper bounded search. Iterative lower bounded search is also possible (remember parameter n at expansion).

Well-formedness conditions

$$WellFormTS(\{[]g_i
ightarrow s_i\}_i) \doteq \left(igwedge_i valid(s_i)
ight) \land \left(igvee_j g_i
ight)$$

where

- \triangleright valid (s_i) ensures that each variable is assigned only once in s_i
- \triangleright $(\bigvee_i g_i)$ guarantees all space is covered by the guards g_i
- guards do not have to be mutually exclusive

$$\textit{WellFormCond}(\textit{exp}) = \bigwedge_{\substack{\text{choose} \ \{[] \ g_i \ \rightarrow \ s_i\}_i) \in \textit{cond}(\textit{exp})}} \textit{WellFormTS}(\{[] \ g_i \ \rightarrow \ s_i\}_i)$$

where cond(exp) is the set of all **choose** statements in the expanded scaffold exp.

This is called non-iterative upper bounded search. Iterative lower bounded search is also possible (remember parameter n at expansion).

Well-formedness conditions

```
▶ exp_{sqrt} = 
choose \ \{[] g_1 \to s_1\};
while^{\tau,\varphi} \ (g_0) \ \{ \ choose \ \{[] g_2 \to s_2\}; \ \};
choose \ \{[] g_3 \to s_3\};
```

WellFormCond(exp_{sqrt}) =
$$valid(s_1) \land valid(s_2) \land valid(s_3) \land g_1 \land g_2 \land g_3$$

Well-formedness conditions

```
▶ exp_{sqrt} = choose \{[]g_1 \rightarrow s_1\}; while ^{\tau,\varphi} (g_0) \{ choose \{[]g_2 \rightarrow s_2\}; \}; choose \{[]g_3 \rightarrow s_3\};
```

$$WellFormCond(exp_{sqrt}) = valid(s_1) \land valid(s_2) \land valid(s_3) \land g_1 \land g_2 \land g_3$$

Progress conditions

$$prog(\mathbf{while}^{ au, arphi}(g) \ \{\vec{p}\}) \doteq (r = arphi) \wedge (au \Rightarrow r \geq 0) \wedge PathC(au_{end} \wedge g, end(\vec{p}), r > arphi)$$

where

- r is a new progress tracking variable (not an unknown)
- ightharpoonup au_{end} is the invariant for the last loop in $ec{p}$
 - Meaning, that we require intermediate loop invariants to carry enough information
- $end(\vec{p})$ is the fragment of \vec{p} after the last loop

$$RankCond(exp) = \bigwedge prog(\mathbf{while}^{\tau,\varphi}(g) \ \{\vec{p}\})$$

$$(\mathbf{while}^{\tau,\varphi}(g) \ \{\vec{p}\}) \in loops(exp)$$

where loops(exp) is the set of all **while** statements in the expanded scaffold exp.

Progress conditions

$$prog(\mathbf{while}^{ au, arphi}(g) \ \{\vec{p}\}) \doteq (r = arphi) \wedge (au \Rightarrow r \geq 0) \wedge PathC(au_{end} \wedge g, end(\vec{p}), r > arphi)$$

where

- ▶ r is a new progress tracking variable (not an unknown)
- ightharpoonup au_{end} is the invariant for the last loop in $ec{p}$
 - Meaning, that we require intermediate loop invariants to carry enough information
- $end(\vec{p})$ is the fragment of \vec{p} after the last loop

$$RankCond(exp) = \bigwedge prog(\mathbf{while}^{\tau,\varphi}(g) \ \{\vec{p}\})$$

$$(\mathbf{while}^{\tau,\varphi}(g) \ \{\vec{p}\}) \in loops(exp)$$

where loops(exp) is the set of all **while** statements in the expanded scaffold exp.

Progress conditions

```
▶ exp_{sqrt} = choose \{[]g_1 \rightarrow s_1\}; while ^{\tau,\varphi} (g_0) \{ choose \{[]g_2 \rightarrow s_2\}; \}; choose \{[]g_3 \rightarrow s_3\};
```

RankCond(exp_{sqrt}) =
$$(r = \varphi) \land (\tau \Rightarrow r \ge 0) \land (\tau \land g_0 \land g_2 \land s_2 \Rightarrow r' > \varphi')$$

Progress conditions

```
▶ exp_{sqrt} =  choose \{[]g_1 \to s_1\}; while ^{\tau,\varphi}(g_0) { choose \{[]g_2 \to s_2\}; }; choose \{[]g_3 \to s_3\};
```

$$\begin{aligned} \textit{RankCond}(\textit{exp}_{\textit{sqrt}}) = & \ (\textit{r} = \varphi) \land (\tau \Rightarrow \textit{r} \geq 0) \land \\ & \ \left(\tau \land \textit{g}_0 \land \textit{g}_2 \land \textit{s}_2 \Rightarrow \textit{r}' > \varphi'\right) \end{aligned}$$

Entire synthesis algorithm

- Input:
 - ▶ Scaffold $\langle \mathcal{F}, \mathcal{D}, \mathcal{R} \rangle$,
 - ▶ Maximum number of transitions *n*
 - ▶ Proof domain D_{prf}
- ▶ Output: Executable program or FAIL

```
exp := Expand_{\mathcal{D}\mathcal{R}}^{n,D_{prf}}(R_{flow});
sc := SafetyCond(exp, \mathcal{F}) \land
          WellFormCond(exp) \land
          RankCond(exp);
\pi := Solver(sc);
if (unsat(\pi))
       return FAIL:
return Exe^{\pi}(exp);
```

Concretization algorithm

$$Exe^{\pi}(p; \vec{p}) = Exe^{\pi}(p); Exe^{\pi}(\vec{p})$$

$$Exe^{\pi}(\text{while}^{\tau,\varphi}(g) \{\vec{p}\}) = \text{while}^{\pi(\tau),\pi(\varphi)}(\pi(g)) \{Exe^{\pi}(\vec{p})\}$$

$$Exe^{\pi}(\text{choose}\{[]g \to s\}) = \text{if} (\pi(g)) \{Stmt(\pi(s))\}$$

$$\text{else } \{\text{skip}\}$$

$$Exe^{\pi}(\text{choose}\{[]g_i \to s_i\}_{i=1...n}) = \text{if} (\pi(g)) \{Stmt(\pi(s))\}$$

$$\text{else } \{Exe^{\pi}(\text{choose}\{[]g_i \to s_i\}_{i=2...n})\}$$

$$Stmt\left(\bigwedge_{i=1...n} x_i = e_i\right) = t_1 := e_1; ...; t_n := e_n;$$

 $x_1 := t_1; ...; x_n := t_n$

Concretization algorithm

$$Exe^{\pi}(p; \vec{p}) = Exe^{\pi}(p); Exe^{\pi}(\vec{p})$$

$$Exe^{\pi}(\mathbf{while}^{\tau,\varphi}(g) \{\vec{p}\}) = \mathbf{while}^{\pi(\tau),\pi(\varphi)}(\pi(g)) \{Exe^{\pi}(\vec{p})\}$$

$$Exe^{\pi}(\mathbf{choose}\{[]g \to s\}) = \mathbf{if} (\pi(g)) \{Stmt(\pi(s))\}$$

$$\mathbf{else} \{\mathbf{skip}\}$$

$$Exe^{\pi}(\mathbf{choose}\{[]g_i \to s_i\}_{i=1...n}) = \mathbf{if} (\pi(g)) \{Stmt(\pi(s))\}$$

$$\mathbf{else} \{Exe^{\pi}(\mathbf{choose}\{[]g_i \to s_i\}_{i=2...n})\}$$

$$Stmt\Big(\bigwedge_{i=1...n} x_i = e_i\Big) = t_1 := e_1; ...; t_n := e_n;$$

 $x_1 := t_1; ...; x_n := t_n;$

$$\tau: (v = i^{2}) \land (x \ge (i - 1)^{2}) \land (i \ge 1)$$

$$g_{0}: v \le x$$

$$\varphi: x - (i - 1)^{2}$$

$$s_{1}: (v' = 1) \land (i' = 1) \land (x' = x) \land (r' = r)$$

$$s_{2}: (v' = v + 2i + 1) \land (i' = i + 1) \land (x' = x) \land (r' = r)$$

$$s_{3}: (v' = v) \land (i' = i) \land (x' = x) \land (r' = r)$$

$$\begin{split} \bigg[\left(x \geq 1 \wedge g_1 \wedge s_1 \Rightarrow \tau' \right) \wedge \left(\tau \wedge g_0 \wedge g_2 \wedge s_2 \Rightarrow \tau' \right) \wedge \left(\tau \wedge \neg g_0 \wedge g_3 \wedge s_3 \Rightarrow \left(i' - 1 \right)^2 \leq x' < i'^2 \right) \bigg] \wedge \\ \bigg[\textit{valid}(s_1) \wedge \textit{valid}(s_2) \wedge \textit{valid}(s_3) \bigg] \wedge \bigg[\left(r = \varphi \right) \wedge \left(\tau \Rightarrow r \geq 0 \right) \wedge \left(\tau \wedge g_0 \wedge g_2 \wedge s_2 \Rightarrow r' > \varphi' \right) \bigg] \end{split}$$

$$\begin{aligned} \tau : & \left(v = i^2 \right) \land \left(x \ge (i-1)^2 \right) \land (i \ge 1) \\ g_0 : & v \le x \\ \varphi : & x - (i-1)^2 \\ s_1 : & \left(v' = 1 \right) \land \left(i' = 1 \right) \land \left(x' = x \right) \land \left(r' = r \right) \\ s_2 : & \left(v' = v + 2i + 1 \right) \land \left(i' = i + 1 \right) \land \left(x' = x \right) \land \left(r' = r \right) \\ s_3 : & \left(v' = v \right) \land \left(i' = i \right) \land \left(x' = x \right) \land \left(r' = r \right) \end{aligned}$$

$$\begin{split} \bigg[\left(x \geq 1 \wedge g_1 \wedge s_1 \Rightarrow \tau' \right) \wedge \left(\tau \wedge g_0 \wedge g_2 \wedge s_2 \Rightarrow \tau' \right) \wedge \left(\tau \wedge \neg g_0 \wedge g_3 \wedge s_3 \Rightarrow \left(i' - 1 \right)^2 \leq x' < i'^2 \right) \bigg] \wedge \\ \bigg[\textit{valid}(s_1) \wedge \textit{valid}(s_2) \wedge \textit{valid}(s_3) \bigg] \wedge \bigg[\left(r = \varphi \right) \wedge \left(\tau \Rightarrow r \geq 0 \right) \wedge \left(\tau \wedge g_0 \wedge g_2 \wedge s_2 \Rightarrow r' > \varphi' \right) \bigg] \end{split}$$

$$\begin{split} \tau: & \left(v = i^{2}\right) \wedge \left(x \geq (i-1)^{2}\right) \wedge (i \geq 1) \\ g_{0}: & v \leq x \\ \varphi: & x - (i-1)^{2} \\ s_{1}: & \left(v' = 1\right) \wedge \left(i' = 1\right) \wedge \left(x' = x\right) \wedge \left(r' = r\right) \\ s_{2}: & \left(v' = v + 2i + 1\right) \wedge \left(i' = i + 1\right) \wedge \left(x' = x\right) \wedge \left(r' = r\right) \\ s_{3}: & \left(v' = v\right) \wedge \left(i' = i\right) \wedge \left(x' = x\right) \wedge \left(r' = r\right) \end{split}$$

Requirements for solvers

- Support for multiple positive and negative unknowns
 - $(\tau \land g \Rightarrow \tau') \land (\tau \land \neg g \Rightarrow \phi_{post})$
- Solutions are maximally weak
 - ensuring that the non-standard conditions $valid(s_i)$ will hold.

Requirements for solvers

- Support for multiple positive and negative unknowns
 - $(\tau \wedge g \Rightarrow \tau') \wedge (\tau \wedge \neg g \Rightarrow \phi_{post})$
- Solutions are maximally weak,
 - ensuring that the non-standard conditions $valid(s_i)$ will hold.

Tools

The VS³ project

- ightharpoonup Arithmetic verification tool VS_{LIA}^3
 - works over the theory of linear arithmetic
 - discovers (quantifier-free) invariants in DNF form with linear inequalities over program variables as the atomic facts
 - supports limits on data size in bits and a limit on the number of conjunctions/disjunctions
- $ightharpoonup VS_{QA}^3 = VS_{LIA}^3 + quadratic expressions (incomplete)$
- Predicate abstraction verification tool VS³_{PA}
 - works over a combination of the theories of equality with uninterpreted functions, arrays, and linear arithmetic
 - discovers (possibly) quantified invariants
 - requires a boolean template for the invariant and a set of predicates to put into template holes

• e.g.
$$[-] \land \forall k : [-] \Rightarrow [-]$$

► $VS_{AX}^3 = VS_{PA}^3 +$ user-specified axioms over uninterpreted

Tools

The VS³ project

- Arithmetic verification tool VS³_{LIA}
 - works over the theory of linear arithmetic
 - discovers (quantifier-free) invariants in DNF form with linear inequalities over program variables as the atomic facts
 - supports limits on data size in bits and a limit on the number of conjunctions/disjunctions
- $ightharpoonup VS_{QA}^3 = VS_{LIA}^3 +$ quadratic expressions (incomplete)
- Predicate abstraction verification tool VS³_{PA}
 - works over a combination of the theories of equality with uninterpreted functions, arrays, and linear arithmetic
 - discovers (possibly) quantified invariants
 - requires a boolean template for the invariant and a set of predicates to put into template holes

• e.g.
$$[-] \land \forall k : [-] \Rightarrow [-]$$

▶ $VS_{AX}^3 = VS_{PA}^3$ + user-specified axioms over uninterpreted symbols

Tools

The VS³ project

- Arithmetic verification tool VS³_{LIA}
 - works over the theory of linear arithmetic
 - discovers (quantifier-free) invariants in DNF form with linear inequalities over program variables as the atomic facts
 - supports limits on data size in bits and a limit on the number of conjunctions/disjunctions
- ▶ $VS_{QA}^3 = VS_{LIA}^3 + \text{quadratic expressions (incomplete)}$
- Predicate abstraction verification tool VS³_{PA}
 - works over a combination of the theories of equality with uninterpreted functions, arrays, and linear arithmetic
 - discovers (possibly) quantified invariants
 - requires a boolean template for the invariant and a set of predicates to put into template holes

• e.g.
$$[-] \land \forall k : [-] \Rightarrow [-]$$

 $VS_{AX}^3 = VS_{PA}^3 + \text{user-specified axioms over uninterpreted}$

Tools

The VS³ project

- Arithmetic verification tool VS³_{LIA}
 - works over the theory of linear arithmetic
 - discovers (quantifier-free) invariants in DNF form with linear inequalities over program variables as the atomic facts
 - supports limits on data size in bits and a limit on the number of conjunctions/disjunctions
- ▶ $VS_{QA}^3 = VS_{LIA}^3 + \text{quadratic expressions (incomplete)}$
- Predicate abstraction verification tool VS³_{PA}
 - works over a combination of the theories of equality with uninterpreted functions, arrays, and linear arithmetic
 - discovers (possibly) quantified invariants
 - requires a boolean template for the invariant and a set of predicates to put into template holes

• e.g.
$$[-] \land \forall k : [-] \Rightarrow [-]$$

► $VS_{AX}^3 = VS_{PA}^3 +$ user-specified axioms over uninterpreted symbols

Flowgraphs with initialization and finalization

We instead treat loops (*(T)) in *Expand* as $\circ; *(T); \circ$ to make things easier for the verification tools.

Swapping of values

Example

- ▶ $F_{pre} \doteq (x = c_1) \land (y = c_2)$
- $ightharpoonup F_{post} \doteq (x = c_2) \land (y = c_1)$
- $ightharpoonup R_{flow} \doteq \circ$
- $ightharpoonup R_{comp} \doteq \emptyset$
- $ightharpoonup R_{stack} \doteq \emptyset$

Synthesizer generates various versions, including

Swapping of values

Example

- ▶ $F_{pre} \doteq (x = c_1) \land (y = c_2)$
- $ightharpoonup F_{post} \doteq (x = c_2) \land (y = c_1)$
- $ightharpoonup R_{flow} \doteq \circ$
- $ightharpoonup R_{comp} \doteq \emptyset$
- $ightharpoonup R_{stack} \doteq \emptyset$

Synthesizer generates various versions, including

- | x := x + y;
- | y := x y;
- | x := x y;

Integral square root

▶
$$\mathcal{F} = (x \ge 1, (i-1)^2 \le x < i^2)$$

- ightharpoonup $R_{flow} \doteq *(\circ)$ and $R_{comp} \doteq \emptyset$
- ▶ $R_{stack} \doteq \{(int, 1)\}$ + quadratic expressions in D_{exp} , $D_{grd} =$ sequential search
- $ightharpoonup R_{stack} \stackrel{.}{=} \{(int,2)\} + linear expressions in <math>D_{exp}, D_{grd} = sequential search$
- R_{stack} = {(int, 3)} + quadratic + extra assumptions
 binary search (temporaries hold search range)

Integral square root

- ▶ $\mathcal{F} = (x \ge 1, (i-1)^2 \le x < i^2)$
- ▶ $R_{flow} \doteq *(\circ)$ and $R_{comp} \doteq \emptyset$
- ▶ $R_{stack} \doteq \{(\mathbf{int}, 1)\}$ + quadratic expressions in D_{exp} , $D_{grd} =$ sequential search
- ▶ $R_{stack} \doteq \{(int, 2)\}$ + linear expressions in D_{exp} , $D_{grd} =$ sequential search

```
\begin{array}{lll} v & := & 1; & i & := & 1; \\ \mathbf{while}^{\tau,\varphi} & \left(v \leq x\right) \\ | & v & := & v + 2i + 1; & \mathsf{i} + +; \\ \mathbf{return} & i - 1; & \end{array}
```

- $ightharpoonup R_{stack} = \{(\mathbf{int}, 3)\} + \mathsf{quadratic} + \mathsf{extra} \; \mathsf{assumptions}$
 - binary search (temporaries hold search range)

Integral square root

- ► $\mathcal{F} = (x \ge 1, (i-1)^2 \le x < i^2)$
- $R_{flow} \doteq *(\circ)$ and $R_{comp} \doteq \emptyset$
- ▶ $R_{stack} \doteq \{(int, 1)\}$ + quadratic expressions in D_{exp} , D_{grd} = sequential search
- ▶ $R_{stack} \doteq \{(int, 2)\}$ + linear expressions in D_{exp} , D_{grd} = sequential search

```
\begin{array}{lll} v := 1; & i := 1; \\ \mathbf{while}^{\tau,\varphi} & (v \leq x) \\ | & v := v + 2i + 1; & i + +; \\ \mathbf{return} & i - 1; \end{array}
```

- $ightharpoonup R_{stack} \doteq \{(int,3)\} + quadratic + extra assumptions$
 - binary search (temporaries hold search range)

Integral square root

- ▶ $\mathcal{F} = (x \ge 1, (i-1)^2 \le x < i^2)$
- ightharpoonup $R_{flow} \doteq *(\circ)$ and $R_{comp} \doteq \emptyset$
- ▶ $R_{stack} \doteq \{(\mathbf{int}, 1)\}$ + quadratic expressions in D_{exp} , $D_{grd} =$ sequential search
- ▶ $R_{stack} \doteq \{(\mathbf{int}, 2)\}$ + linear expressions in D_{exp} , D_{grd} = sequential search

```
\begin{array}{lll} v := 1; & i := 1; \\ \mathbf{while}^{\tau,\varphi} & (v \leq x) \\ | & v := v + 2i + 1; & \mathrm{i} + +; \\ \mathbf{return} & i - 1; \end{array}
```

- ▶ $R_{stack} \doteq \{(int, 3)\}$ + quadratic + extra assumptions
 - binary search (temporaries hold search range)

Non-recursive sorting

- $ightharpoonup \mathcal{F} = (\mathsf{true}, \forall k : 0 \le k < n \Rightarrow A[k] \le A[k+1])$
- ▶ D_{exp} includes swapping of array elements, R_{comp} allows swapping only, $R_{flow} \doteq *(*(\circ))$
- ▶ $R_{stack} \doteq \emptyset$: Bubble Sort and a non-standard version of Insertion Sort.
- $ightharpoonup R_{stack} \doteq \{(\mathsf{int},1)\}$: Selection Sort

Non-recursive sorting

- $ightharpoonup \mathcal{F} = (\mathsf{true}, \forall k : 0 \le k < n \Rightarrow A[k] \le A[k+1])$
- ▶ D_{exp} includes swapping of array elements, R_{comp} allows swapping only, $R_{flow} \doteq *(*(\circ))$
- ▶ $R_{stack} \doteq \emptyset$: Bubble Sort and a non-standard version of Insertion Sort.
- ▶ $R_{stack} \doteq \{(int, 1)\}$: Selection Sort

Non-recursive sorting

- $ightharpoonup \mathcal{F} = (\mathsf{true}, \forall k : 0 \le k < n \Rightarrow A[k] \le A[k+1])$
- ▶ D_{exp} includes swapping of array elements, R_{comp} allows swapping only, $R_{flow} \doteq *(*(\circ))$
- ▶ $R_{stack} \doteq \emptyset$: Bubble Sort and a non-standard version of Insertion Sort.
- ▶ $R_{stack} \doteq \{(\mathbf{int}, 1)\}$: Selection Sort.

Recursive divide-and-conquer sorting

- ▶ $\mathcal{F} = (\text{true}, \forall k : 0 \le k < n \Rightarrow A[k] \le A[k+1])$
- $ightharpoonup D_{exp}$ includes swapping and moving of array elements
- ► Flowgraph template includes recursive call ⊗
- $ightharpoonup R_{stack} \doteq \emptyset$, $R_{flow} \doteq \circledast$; \circledast ; \circ : Merge Sort.
- $ightharpoonup R_{stack} = \{(\mathsf{int},1)\}, R_{flow} = \circ; \circledast; \circledast$: Quick Sort

Recursive divide-and-conquer sorting

- ▶ $\mathcal{F} = (\text{true}, \forall k : 0 \le k < n \Rightarrow A[k] \le A[k+1])$
- $ightharpoonup D_{exp}$ includes swapping and moving of array elements
- ► Flowgraph template includes recursive call ⊛
- ► $R_{stack} \doteq \emptyset$, $R_{flow} \doteq \circledast$; \circledast ; \circ : Merge Sort.
- $ightharpoonup R_{stack} \doteq \{(\mathsf{int},1)\}, R_{flow} \doteq \circ; \circledast; \circledast: \mathsf{Quick} \mathsf{Sort}$

Recursive divide-and-conquer sorting

- ▶ $\mathcal{F} = (\text{true}, \forall k : 0 \le k < n \Rightarrow A[k] \le A[k+1])$
- $ightharpoonup D_{exp}$ includes swapping and moving of array elements
- ► Flowgraph template includes recursive call ⊛
- ► $R_{stack} \doteq \emptyset$, $R_{flow} \doteq \circledast$; \circledast ; \circ : Merge Sort.
- ▶ $R_{stack} \doteq \{(\mathsf{int}, 1)\}, R_{flow} \doteq \circ; \circledast; \circledast$: Quick Sort.

Dynamic programming

- Fibonacci
- ► Longest Common Subsequence
- Path-finding
 - Checkerboard (least-cost path on rectangular grid)
 - ► Single Source Shortest Path
 - ► All-pairs Shortest Path
- Matrix Chain Multiply (minimizing the number of multiplications)

Benchmarks

- ▶ Synthesis time 0.12-9658.52 seconds (median 14.23)
- ▶ Slowdown in respect to verification 1.09-92.28 (median 6.68)

Limitations not easily overcome

- Need to add new assumptions to compensate for incomplete VS³_{QA} (quadratic expression handling) and inefficient VS³_{AX}.
- Need a set of candidate predicates for VS³_{AX}

Scalability

More efficient verifiers are needed.

Relevance

Benchmarks

- ▶ Synthesis time 0.12-9658.52 seconds (median 14.23)
- ▶ Slowdown in respect to verification 1.09-92.28 (median 6.68)

Limitations not easily overcome

- Need to add new assumptions to compensate for incomplete VS³_{QA} (quadratic expression handling) and inefficient VS³_{AX}.
- ▶ Need a set of candidate predicates for VS³_{AX}

Scalability

More efficient verifiers are needed.

Relevance

Benchmarks

- ▶ Synthesis time 0.12-9658.52 seconds (median 14.23)
- ▶ Slowdown in respect to verification 1.09-92.28 (median 6.68)

Limitations not easily overcome

- Need to add new assumptions to compensate for incomplete VS³_{QA} (quadratic expression handling) and inefficient VS³_{AX}.
- Need a set of candidate predicates for VS³_{AX}

Scalability

More efficient verifiers are needed.

Relevance

Benchmarks

- ▶ Synthesis time 0.12-9658.52 seconds (median 14.23)
- ▶ Slowdown in respect to verification 1.09-92.28 (median 6.68)

Limitations not easily overcome

- Need to add new assumptions to compensate for incomplete VS³_{QA} (quadratic expression handling) and inefficient VS³_{AX}.
- ▶ Need a set of candidate predicates for VS³_{AX}

Scalability

More efficient verifiers are needed.

Relevance

E O F