
Static Analysis of Embedded DSL-s

Aivar Annamaa
University of Tartu

aivar.annamaa@gmail.com

February 6th, 2010



Problem

I DSL-s are often embedded as string literals in a GPL
I SQL, RegEx, HTML

I Mistakes pop up at runtime

I Especially error prone together with conditional concatenation



Example: SQL in Java

...

String sql = "select id, name from persons";

if (dept != null) {

sql += "where dept = ?";

}

// following may give runtime error

PreparedStatement stmt = conn.prepareStatement(sql);

...



Static analyzer for SQL embedded into Java

Should detect SQL errors at compile time

I Locate hotspots ie. method calls that cause runtime errors
when given bad SQL as argument (eg.
Connection.prepareStatement)

I Construct abstract value of argument expression
I Check abstract value for errors:

I perform exhaustive testing on possible concrete values against
real DB

I (or try to parse the abstract value directly)

I (Analyze correct usage of ResultSet)

I (Keep track of different DB schemas used in the program)



Aims

I Be sound: no errors from analyzer ⇒ no SQL prepare errors
at runtime

I Be fast enough for on-line usage (while typing), even in case
of big projects

I Be precise for common idioms of SQL construction
I single literals and unconditional intraprocedural concatenation

(90%)
I concatenations with few conditions or simple interprocedural

constructions (9%)

I Be tolerable in rare complex cases (loops, many conditions,
deep chains of method calls, etc.)



Conceptual framework for constructing abstract string

I Extract program slice for string expression at hotspot
I Perform constant propagation analysis (on that slice)

I for each CFG node compute abstract environment – a mapping
from string variables to abstract strings

Env: Var -> AbsStr

AbsStr ::= ConstStr String

| Seq AbsStr AbsStr

| Choice AbsStr AbsStr

| IntStr

| AnyStr



Expression evaluator

Computes abstract value of given expression in given environment

eval (StringLiteral s) env = ConstStr s

eval (Var n) env = env n

eval (Concat exp1 exp2) env =

Seq (eval exp1 env) (eval exp2 env)

eval (IntExp e) _ = IntStr

eval _ _ = AnyStr



Environment transformer for statements

Start at entry node with empty environment and work towards
hotspot using environment transformer (tr) at each statment

tr (Assign var expr) oldEnv = update in var (eval expr)

tr (Block []) oldEnv = oldEnv

tr (Block s:ss) oldEnv = tr (Block ss) (tr s oldEnv)

tr (IfElse ifBlock elseBlock) oldEnv =

merge (tr ifBlock oldEnv) (tr elseBlock oldEnv)

merge unions two environments pointwise using Choice



Handling loops using cheating approach

I For efficiency (and termination), pretend that loop bodies
execute always once or twice

I no need for fixpoint computation

I For soundness add AnyStr as choice to all variables assigned
in the loop-body

tr (Loop header body) oldEnv =

merge (merge onceEnv twiceEnv) anyEnv

where

onceEnv = tr body oldEnv

twiceEnv = tr body onceEnv

anyEnv = anyStrForAllAss body



Going interprocedural

I Expression may use current method parameters
I actual arguments at all possible callsites are analyzed

I Expression may include method calls
I All possible target methods get evaluated context-sensitively

I In both cases, same evaluation procedure is used recursively
I Depth of such recursion is limited:

I when limit is reached, then AnyStr is returned
I gains efficiency in deep chains of method calls and avoids

problems with recursive methods

I Needs class hierarchy analysis for better precision in case of
polymorphic methods



Interpretation of the result

I Constructing abstract string always terminates, because of
special treatments of loops and limited depth in
interprocedural analysis

I If resulting abstract string contains AnyStr, then
corresponding hotspot is reported as possible source of errors

I Otherwise:
I all possible concrete strings are generated from abstract string

(IntStr gets translated to ’1’)
I each string is sent to DB for parsing and validating
I if any of them raises an error, then hotspot is reported as

possible source of errors



Opportunity for modularity

...

String getQuery(String grouper) {

String sql = "select " + grouper + " as gr,"

+ "sum(income) as total_income "

+ "from results ";

if (!grouper.lowercase().equals("dept")) {

sql += " where period_year > 1970";

}

sql += "group by " + grouper;

}

...

stmt = conn.parseStatement(getQuery("dept"));

...

stmt = conn.parseStatement(getQuery("year"));

...



Modular dataflow analysis

I Continuous analysis (while typing) would be really nice

I Doing full-program analysis after each code edit may not be
feasible

I General idea of modular interprocedural dataflow analysis:
I each relevant method is analyzed independently and abstract

summary of it’s effect is cached (eg. in form of a table or
graph)

I later, if analysis of this method is needed in some context then
it’s cached summary is interpreted (instead of analyzing it
again)

I Opportunity for metaprogramming:
I compiling method summaries to real Java methods might give

better performance than interpreting summary data each time



Current implementation

I Implemented in Java as an Eclipse JDT plugin

I Works in “bacth-mode”, no modular on-line analysis yet

I Program slicing not explicitly present in the algorithm

I Working directly on AST, without separate CFG

I Abstract string construction works from hotspot backwards
I Can analyse business module of Compiere ERP system (200K

LOC, 250 hotspots) in less than a minute
I for 20 hotspots, result included AnyStr ie. at some point

analyzer had said “not sure”
I remaining 230 results expanded to 260 different concrete

strings
I 8 concrete strings didn’t pass validation by DB
I 4 of them real bugs



A screenshot


