Static Analysis of Embedded DSL-s

Aivar Annamaa
University of Tartu

aivar.annamaa@gmail.com

February 6th, 2010

Problem

» DSL-s are often embedded as string literals in a GPL
» SQL, RegEx, HTML

» Mistakes pop up at runtime

» Especially error prone together with conditional concatenation

Example: SQL in Java

String sql = "select id, name from persons";
if (dept != null) {
sql += "where dept = ?7";

3

// following may give runtime error
PreparedStatement stmt = conn.prepareStatement(sql);

Static analyzer for SQL embedded into Java

Should detect SQL errors at compile time

» Locate hotspots ie. method calls that cause runtime errors
when given bad SQL as argument (eg.
Connection.prepareStatement)

» Construct abstract value of argument expression
» Check abstract value for errors:
» perform exhaustive testing on possible concrete values against
real DB
» (or try to parse the abstract value directly)
» (Analyze correct usage of ResultSet)
» (Keep track of different DB schemas used in the program)

Aims

Be sound: no errors from analyzer = no SQL prepare errors
at runtime

Be fast enough for on-line usage (while typing), even in case
of big projects
Be precise for common idioms of SQL construction
> single literals and unconditional intraprocedural concatenation
(90%)
» concatenations with few conditions or simple interprocedural
constructions (9%)
Be tolerable in rare complex cases (loops, many conditions,
deep chains of method calls, etc.)

Conceptual framework for constructing abstract string

» Extract program slice for string expression at hotspot
» Perform constant propagation analysis (on that slice)

» for each CFG node compute abstract environment — a mapping
from string variables to abstract strings
Env: Var -> AbsStr

AbsStr ::= ConstStr String
| Seq AbsStr AbsStr
| Choice AbsStr AbsStr
| IntStr
| AnyStr

Expression evaluator

Computes abstract value of given expression in given environment

ConstStr s
env n

eval (Stringliteral s) env
eval (Var n) env
eval (Concat expl exp2) env

Seq (eval expl env) (eval exp2 env)

IntStr
AnyStr

eval (IntExp e)
eval

Environment transformer for statements

Start at entry node with empty environment and work towards
hotspot using environment transformer (tr) at each statment

tr (Assign var expr) oldEnv = update in var (eval expr)

tr (Block []) oldEnv = oldEnv
tr (Block s:ss) oldEnv = tr (Block ss) (tr s oldEnv)

tr (IfElse ifBlock elseBlock) oldEnv =
merge (tr ifBlock oldEnv) (tr elseBlock oldEnv)

merge unions two environments pointwise using Choice

Handling loops using cheating approach

» For efficiency (and termination), pretend that loop bodies
execute always once or twice

» no need for fixpoint computation

> For soundness add AnyStr as choice to all variables assigned
in the loop-body

tr (Loop header body) oldEnv =
merge (merge onceEnv twiceEnv) anyEnv
where
onceEnv = tr body oldEnv
twiceEnv = tr body onceEnv
anyEnv = anyStrForAllAss body

Going interprocedural

» Expression may use current method parameters

» actual arguments at all possible callsites are analyzed
» Expression may include method calls

> All possible target methods get evaluated context-sensitively
> In both cases, same evaluation procedure is used recursively
» Depth of such recursion is limited:

» when limit is reached, then AnyStr is returned

» gains efficiency in deep chains of method calls and avoids

problems with recursive methods
» Needs class hierarchy analysis for better precision in case of
polymorphic methods

Interpretation of the result

» Constructing abstract string always terminates, because of
special treatments of loops and limited depth in
interprocedural analysis

> If resulting abstract string contains AnyStr, then
corresponding hotspot is reported as possible source of errors
» Otherwise:

>

all possible concrete strings are generated from abstract string
(IntStr gets translated to '1")

» each string is sent to DB for parsing and validating
» if any of them raises an error, then hotspot is reported as

possible source of errors

Opportunity for modularity

String getQuery(String grouper) {
String sql = "select " + grouper + " as gr,"
+ "sum(income) as total_income "

+ "from results ";

if (!grouper.lowercase().equals("dept")) {

sql += " where period_year > 1970";

3

sql += "group by " + grouper;

stmt = conn.parseStatement (getQuery("dept"));

stmt = conn.parseStatement (getQuery("year"));

Modular dataflow analysis

v

Continuous analysis (while typing) would be really nice

v

Doing full-program analysis after each code edit may not be
feasible

v

General idea of modular interprocedural dataflow analysis:

» each relevant method is analyzed independently and abstract
summary of it's effect is cached (eg. in form of a table or
graph)

» later, if analysis of this method is needed in some context then
it's cached summary is interpreted (instead of analyzing it
again)

» Opportunity for metaprogramming:
» compiling method summaries to real Java methods might give
better performance than interpreting summary data each time

Current implementation

» Implemented in Java as an Eclipse JDT plugin

» Works in “bacth-mode”, no modular on-line analysis yet
» Program slicing not explicitly present in the algorithm

» Working directly on AST, without separate CFG

» Abstract string construction works from hotspot backwards

» Can analyse business module of Compiere ERP system (200K
LOC, 250 hotspots) in less than a minute

» for 20 hotspots, result included AnyStr ie. at some point
analyzer had said “not sure”

» remaining 230 results expanded to 260 different concrete
strings

» 8 concrete strings didn't pass validation by DB

» 4 of them real bugs

A screenshot

String sql = "SELECT AD Window_ ID, IsSOTrx, IsReadOnly FROM AD |
+ "WHERE AD Menu ID=? BEND Action='W'";

PreparedStatement pstmt = DB.prepareStatement (sgl, null);
pstmt.setInt (1, AD Menu ID);

ResultSet rs = pstmt.executeQuery();

if (rs.next())

1

[El Problems 2@ Javadoc] =3 Declaration} = Console} & Search}

8 errors, 50 warnings, 0 others

Description . Resource Path
4 @ FErrors (8 items)
| @ ORA-00904: "ISSOTRX": invalid identifier GridWindowVO.... fad/src/org/co
MTable java Jad/src/org/co

@ ORA-00904: "REFCOL"."ENTITYTYPE™ invalid identifier

(3 OBRA_NNG d hA A dnn al

