
1 / 25

Semi-automatic parallelization of iterative solvers

Oleg Batrashev
Distributed Systems Group

University of Tartu

February 5, 2010

Outline

⊲ Outline

Domain and
motivation

Idea of
semi-automatic
parallelization

Real examples

Static analysis

2 / 25

� Domain introduction and motivation

– scientific computing
– iterative solvers

� Idea of semi-automatic parallelization

– 1D Finite Difference with Jacobi solver

� Real examples that need parallelization

– matrix-vector multiplication
– preconditioners

� Static analysis

– alternatives

Domain and motivation

Outline

⊲
Domain and
motivation

Scientific
Computing

Parallel iterative
solvers
Conjugate
Gradient method

Parallel CG
Preconditioners
for parallel CG

Idea of
semi-automatic
parallelization

Real examples

Static analysis

3 / 25

Scientific Computing

Outline

Domain and
motivation

⊲
Scientific
Computing

Parallel iterative
solvers
Conjugate
Gradient method

Parallel CG
Preconditioners
for parallel CG

Idea of
semi-automatic
parallelization

Real examples

Static analysis

4 / 25

� scientific computing - number crunching

– process simulations, data analysis
– speed is of most importance
– methods and tools lag behind

� sparse linear systems in scientific computing

– most physics simulations: weather forecast, air and fluid
dynamics, structural mechanics

– huge systems of linear equations: millions and billions of
unknowns

– sparse: most values in the matrix are zeros
– general approach – iterative solvers with preconditioners

– more easily parallelizable than direct solvers

Parallel iterative solvers

Outline

Domain and
motivation
Scientific
Computing

⊲
Parallel
iterative solvers

Conjugate
Gradient method

Parallel CG
Preconditioners
for parallel CG

Idea of
semi-automatic
parallelization

Real examples

Static analysis

5 / 25

� need to solve Ax = b
� iterative solver

– take initial approximation x0 to the solution
– in 5 to 100 iterations

⊲ using previous approximation xi find next
approximation xi+1

� parallelize iterative solver (data parallelizm)

– distribute A and b between the nodes
– distribute x (each node is responsible for its own part of

the vector)
– intermediate vectors in each iteration “follow” x

distribution

Conjugate Gradient method

Outline

Domain and
motivation
Scientific
Computing

Parallel iterative
solvers

⊲

Conjugate
Gradient
method

Parallel CG
Preconditioners
for parallel CG

Idea of
semi-automatic
parallelization

Real examples

Static analysis

6 / 25

x = np.zeros(b.shape)
r = b - A*x

it = 0
while np.sqrt(sum(r**2))>TOLERANCE and it<MAX_ITER:

z = prec(r)

rho = dot(r.T,z)
if it==0:

p = z
else:

beta = rho/rho_prev
p = z + beta*p

q = A*p
alpha = rho/dot(p.T,q)
x += alpha*p
r -= alpha*q

rho_prev = rho
it += 1

Parallel CG

Outline

Domain and
motivation
Scientific
Computing

Parallel iterative
solvers
Conjugate
Gradient method

⊲ Parallel CG
Preconditioners
for parallel CG

Idea of
semi-automatic
parallelization

Real examples

Static analysis

7 / 25

� matrix A and vectors b, x, p, r, q are distributed
� 2 operations are parallelized: vector dot product,

matrix-vector multiplication

– each requires synchornization and data exchange
– communication pattern is static but only known at

run-time

� cg.py: ~75 lines, ~20 is CG code
� sparse.py: ~76 lines, ~20 lines sparse matrix data structure

and Ax code
� parallel.py: ~223 lines

– ~129 is data preparation for parallel calculations
– ~30 vector distribution/gather/parallel Ax/parallel dot

product

Preconditioners for parallel CG

Outline

Domain and
motivation
Scientific
Computing

Parallel iterative
solvers
Conjugate
Gradient method

Parallel CG

⊲
Preconditioners
for parallel CG

Idea of
semi-automatic
parallelization

Real examples

Static analysis

8 / 25

� Transformation to the original system: M−1Ax =M−1b

– reduce the number of iterations
– often implicitly

� “Preconditioner with robust coarse spaces”, University of
Bath, UK

– 2 weeks to understand and implement reference version
– optimization
– parallelization

Idea of semi-automatic parallelization

Outline

Domain and
motivation

⊲

Idea of
semi-automatic
parallelization

The problem

1D Finite
Difference method

Jacobi method
Implicit
implementation

Parallelization (1)

Parallelization
(2): reindexing

Semi-automatic
parallelization (1)

Semi-automatic
parallelization (2)

Real examples

Static analysis

9 / 25

The problem

Outline

Domain and
motivation

Idea of
semi-automatic
parallelization

⊲ The problem

1D Finite
Difference method

Jacobi method
Implicit
implementation

Parallelization (1)

Parallelization
(2): reindexing

Semi-automatic
parallelization (1)

Semi-automatic
parallelization (2)

Real examples

Static analysis

10 / 25

� three vectors x, y, and z
� distribute elements of those vectors between processes
� z = x+5*y is trivial
� sum(x) and dot(x,y) are also trivial
� But not

– forall 1<i<N-1: z[i] = x[i-1]+y[i+1]

– forall 1<i<N-1: z[inds[i]] = x[i]

� these kind of relations are common

1D Finite Difference method

11 / 25

� need to solve −∂
2u
∂x2 = f(x), a < x < b, u(a) = u(b) = 0

� discretise [a, b] into n+ 1 even sections, ∆x = b−a
n+1

� take unknowns ui ≈ u(xi), on the boundary u0 = un+2 = 0

� finite difference approximation for ∂
2u
∂x2

∂2u

∂x2
≈
u(x−∆x)− 2u(x) + u(x+ ∆x)

∆x2

� for each i = 1, . . . , n get one linear equation

−ui−1 + 2ui − ui+1 = ∆x2fi

a b

u1
u2 u3

u4

u5
u6

u7

Jacobi method

Outline

Domain and
motivation

Idea of
semi-automatic
parallelization

The problem

1D Finite
Difference method

⊲ Jacobi method
Implicit
implementation

Parallelization (1)

Parallelization
(2): reindexing

Semi-automatic
parallelization (1)

Semi-automatic
parallelization (2)

Real examples

Static analysis

12 / 25

� The system matrix

A =

























2 −1 0 0 0 0 0
−1 2 −1 0 0 0 0
0 −1 2 −1 0 0 0
0 0 −1 2 −1 0 0
0 0 0 −1 2 −1 0
0 0 0 0 −1 2 −1
0 0 0 0 0 −1 2

























� Jacobi method: iterative solver for Au = b

u
(k+1)
i = (bi −

n
∑

j=1,j 6=i

ai,ju
(k)
i)/ai,i i = 1, . . . , n

Implicit implementation

Outline

Domain and
motivation

Idea of
semi-automatic
parallelization

The problem

1D Finite
Difference method

Jacobi method

⊲
Implicit
implementation

Parallelization (1)

Parallelization
(2): reindexing

Semi-automatic
parallelization (1)

Semi-automatic
parallelization (2)

Real examples

Static analysis

13 / 25

for step in xrange(1000):
u[1:-1] = (f[1:-1] + u[0:-2] + u[2:]) / 2.0

u[1:-1]

f[1:-1]

u[0:-2]

u[2:]

� u
(k+1)
i = (fi + u

(k)
i−1 + u

(k)
i+1)/2

u
(k+1)

u
(k)

Parallelization (1)

Outline

Domain and
motivation

Idea of
semi-automatic
parallelization

The problem

1D Finite
Difference method

Jacobi method
Implicit
implementation

⊲
Parallelization
(1)

Parallelization
(2): reindexing

Semi-automatic
parallelization (1)

Semi-automatic
parallelization (2)

Real examples

Static analysis

14 / 25

� Distribute between 2 processes

P1 P2

� u
(k+1)
i = (fi + u

(k)
i−1 + u

(k)
i+1)/2

– left-hand side determines where expression is evaluated
– ghost values need to be received from other processes

� Local and ghost vector elements for process 1

P1 P2

� every iteration 1 value need to be sent from P1 to P2, and
vice versa

Parallelization (2): reindexing

Outline

Domain and
motivation

Idea of
semi-automatic
parallelization

The problem

1D Finite
Difference method

Jacobi method
Implicit
implementation

Parallelization (1)

⊲
Parallelization
(2): reindexing

Semi-automatic
parallelization (1)

Semi-automatic
parallelization (2)

Real examples

Static analysis

15 / 25

� store only local and ghost elements

P1

u
p1
0

0

u
p1
1

1

u
p1
2

2

u
p1
3

3

u
p1
4

4

u
p1
5

5

P2

u
p2
0

5

u
p2
1

6

u
p2
2

7

u
p2
3

8

u
p2
4

4

for step in xrange(1000):
u[1:-1] = (f[1:-1] + u[0:-2] + u[2:]) / 2.0

� reindexing slices with index arrays, for process 2 have

– 1:-1 with inds0=[0,1,2,3]

– 0:-2 with inds1=[4,0,1,2]

– 2: with inds2=[1,2,3,4]

� transform initial expression

u[inds0] = (f[inds0] + u[inds1] + u[inds2]) / 2.0

Semi-automatic parallelization (1)

Outline

Domain and
motivation

Idea of
semi-automatic
parallelization

The problem

1D Finite
Difference method

Jacobi method
Implicit
implementation

Parallelization (1)

Parallelization
(2): reindexing

⊲

Semi-automatic
parallelization
(1)

Semi-automatic
parallelization (2)

Real examples

Static analysis

16 / 25

� assume initial distribution of some vector is given Dx : Ix → P
(domain decomposition)

� at compile time

– find expressions that affect distribution and ghost values
– collect pairs of slices, for each pair

⊲ E(i, j) is a relation between indices of slices on LHS
and RHS

■ 1:-1 to 0:-2

– modify them to use index arrays

Semi-automatic parallelization (2)

Outline

Domain and
motivation

Idea of
semi-automatic
parallelization

The problem

1D Finite
Difference method

Jacobi method
Implicit
implementation

Parallelization (1)

Parallelization
(2): reindexing

Semi-automatic
parallelization (1)

⊲

Semi-automatic
parallelization
(2)

Real examples

Static analysis

17 / 25

� at run-time

– calculate ghost values from slice pairs

⊲ y[...] = ... x[...] ...

⊲ j is the index of ghost element for array x if

E(i, j)
∧

Dy(i) = rank
∧

Dx(j) 6= rank

– create index arrays with ghost values

Real examples

Outline

Domain and
motivation

Idea of
semi-automatic
parallelization

⊲ Real examples

Matrix-vector
multiplication

First-level
preconditioner

Coarse
(second)-level
preconditioner

Static analysis

18 / 25

Matrix-vector multiplication

Outline

Domain and
motivation

Idea of
semi-automatic
parallelization

Real examples

⊲
Matrix-vector
multiplication

First-level
preconditioner

Coarse
(second)-level
preconditioner

Static analysis

19 / 25

� sparse matrix triple storage format – 3 arrays of size nnz

– irows – row indices
– icols – column indices
– vals – matrix values

� matrix-vector multiplication y = Ax (in vectorised form)

y[irows[:]] += x[icols[:]] * vals[:]

� calculate ghost values from both sides of expression

– Ix = Iy = I0 ⊂ N, Iirows = Iicols = Ivals = I1 ⊂ N

– D0 : I0 → P Virows : I1 → I0,
– i is the index of ghost element for array icols if

⊲ Dy(Virows(i)) = rank
∧

Dx(Vicols(i))) 6= rank

– Vicols(i) is the index of ghost element for array x

First-level preconditioner

Outline

Domain and
motivation

Idea of
semi-automatic
parallelization

Real examples

Matrix-vector
multiplication

⊲
First-level
preconditioner

Coarse
(second)-level
preconditioner

Static analysis

20 / 25

� preconditioning z =Mr
� without overlap

– project z(i) = R(i)z with projection matrices R(i)

– local matrices A(i) = R(i)A
(

R(i)
)T

, local

preconditionersM (i) =
(

A(i)
)−1

– total preconditioner M =
∑

i

(

R(i)
)T
M (i)R(i)

� with overlap

– injection to the same element
– not sum in total preconditioner

Coarse (second)-level preconditioner

Outline

Domain and
motivation

Idea of
semi-automatic
parallelization

Real examples

Matrix-vector
multiplication

First-level
preconditioner

⊲

Coarse
(second)-level
preconditioner

Static analysis

21 / 25

� preconditioning z =Mr
� coarse grid on top of fine grid
� coarse nodes with unknowns rc
� restrict zc = Rz with restriction matrix R
� coarse matrix Ac = RART , coarse preconditioner Mc = A−1

c

� preconditioner M = RTMcR

Static analysis

Outline

Domain and
motivation

Idea of
semi-automatic
parallelization

Real examples

⊲ Static analysis

Why not a library

static analysis for
communication

Summary

22 / 25

Why not a library

Outline

Domain and
motivation

Idea of
semi-automatic
parallelization

Real examples

Static analysis

⊲
Why not a
library

static analysis for
communication

Summary

23 / 25

� usually 2 ways

– ad-hoc parallel structures

⊲ parallel hash map
⊲ too limited

– generalization of communication interfaces

⊲ local, ghost, border (overlap) values
⊲ still too limited – e.g. no map from coarse to fine

vectors
⊲ requires a lot of code writing

� the other way: use some general rules

– calculate how array elements are mapped based on
non-parallel code

static analysis for communication

Outline

Domain and
motivation

Idea of
semi-automatic
parallelization

Real examples

Static analysis

Why not a library

⊲

static analysis
for
communication

Summary

24 / 25

� communication and calculations

– managed by different hardware
– IO wait time

� with first and second level preconditioners

1. values of second level preconditioners are send
2. ghost values of first level preconditioner are sent
3. first level-preconditiner is calculated with local values
4. second level preconditioner is calculated
5. first level-preconditiner is calculated with ghost values

� code is interleaved and messy

Summary

Outline

Domain and
motivation

Idea of
semi-automatic
parallelization

Real examples

Static analysis

Why not a library

static analysis for
communication

⊲ Summary

25 / 25

1. semi-automatic parallelization

(a) assume distribution of some data is given
(b) scan expressions and extract relations
(c) apply algorithm that uses relations to find

i. distribution of other data
ii. communication pattern

(d) transform the code

� data dependencies, interprocedural analysis, alias analysis

2. optimize communication and calculation

� send data early
� data dependencies

	Outline
	Domain and motivation
	Scientific Computing
	Parallel iterative solvers
	Conjugate Gradient method
	Parallel CG
	Preconditioners for parallel CG

	Idea of semi-automatic parallelization
	The problem
	1D Finite Difference method
	Jacobi method
	Implicit implementation
	Parallelization (1)
	Parallelization (2): reindexing
	Semi-automatic parallelization (1)
	Semi-automatic parallelization (2)

	Real examples
	Matrix-vector multiplication
	First-level preconditioner
	Coarse (second)-level preconditioner

	Static analysis
	Why not a library
	static analysis for communication
	Summary

