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� Domain introduction and motivation

– scientific computing
– iterative solvers

� Idea of semi-automatic parallelization

– 1D Finite Difference with Jacobi solver

� Real examples that need parallelization

– matrix-vector multiplication
– preconditioners

� Static analysis

– alternatives
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� scientific computing - number crunching

– process simulations, data analysis
– speed is of most importance
– methods and tools lag behind

� sparse linear systems in scientific computing

– most physics simulations: weather forecast, air and fluid
dynamics, structural mechanics

– huge systems of linear equations: millions and billions of
unknowns

– sparse: most values in the matrix are zeros
– general approach – iterative solvers with preconditioners

– more easily parallelizable than direct solvers
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� need to solve Ax = b
� iterative solver

– take initial approximation x0 to the solution
– in 5 to 100 iterations

⊲ using previous approximation xi find next
approximation xi+1

� parallelize iterative solver (data parallelizm)

– distribute A and b between the nodes
– distribute x (each node is responsible for its own part of

the vector)
– intermediate vectors in each iteration “follow” x

distribution
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x = np.zeros(b.shape)
r = b - A*x

it = 0
while np.sqrt(sum(r**2))>TOLERANCE and it<MAX_ITER:

z = prec(r)

rho = dot(r.T,z)
if it==0:

p = z
else:

beta = rho/rho_prev
p = z + beta*p

q = A*p
alpha = rho/dot(p.T,q)
x += alpha*p
r -= alpha*q

rho_prev = rho
it += 1
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� matrix A and vectors b, x, p, r, q are distributed
� 2 operations are parallelized: vector dot product,

matrix-vector multiplication

– each requires synchornization and data exchange
– communication pattern is static but only known at

run-time

� cg.py: ~75 lines, ~20 is CG code
� sparse.py: ~76 lines, ~20 lines sparse matrix data structure

and Ax code
� parallel.py: ~223 lines

– ~129 is data preparation for parallel calculations
– ~30 vector distribution/gather/parallel Ax/parallel dot

product
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� Transformation to the original system: M−1Ax =M−1b

– reduce the number of iterations
– often implicitly

� “Preconditioner with robust coarse spaces”, University of
Bath, UK

– 2 weeks to understand and implement reference version
– optimization
– parallelization
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� three vectors x, y, and z
� distribute elements of those vectors between processes
� z = x+5*y is trivial
� sum(x) and dot(x,y) are also trivial
� But not

– forall 1<i<N-1: z[i] = x[i-1]+y[i+1]

– forall 1<i<N-1: z[inds[i]] = x[i]

� these kind of relations are common
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� need to solve −∂
2u
∂x2 = f(x), a < x < b, u(a) = u(b) = 0

� discretise [a, b] into n+ 1 even sections, ∆x = b−a
n+1

� take unknowns ui ≈ u(xi), on the boundary u0 = un+2 = 0

� finite difference approximation for ∂
2u
∂x2

∂2u

∂x2
≈
u(x−∆x)− 2u(x) + u(x+ ∆x)

∆x2

� for each i = 1, . . . , n get one linear equation

−ui−1 + 2ui − ui+1 = ∆x2fi

a b

u1
u2 u3

u4

u5
u6

u7
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� The system matrix

A =

























2 −1 0 0 0 0 0
−1 2 −1 0 0 0 0
0 −1 2 −1 0 0 0
0 0 −1 2 −1 0 0
0 0 0 −1 2 −1 0
0 0 0 0 −1 2 −1
0 0 0 0 0 −1 2

























� Jacobi method: iterative solver for Au = b

u
(k+1)
i = (bi −

n
∑

j=1,j 6=i

ai,ju
(k)
i )/ai,i i = 1, . . . , n



Implicit implementation

Outline

Domain and
motivation

Idea of
semi-automatic
parallelization

The problem

1D Finite
Difference method

Jacobi method

⊲
Implicit
implementation

Parallelization (1)

Parallelization
(2): reindexing

Semi-automatic
parallelization (1)

Semi-automatic
parallelization (2)

Real examples

Static analysis

13 / 25

for step in xrange(1000):
u[1:-1] = (f[1:-1] + u[0:-2] + u[2:]) / 2.0

u[1:-1]

f[1:-1]

u[0:-2]

u[2:]

� u
(k+1)
i = (fi + u

(k)
i−1 + u

(k)
i+1)/2

u
(k+1)

u
(k)
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� Distribute between 2 processes

P1 P2

� u
(k+1)
i = (fi + u

(k)
i−1 + u

(k)
i+1)/2

– left-hand side determines where expression is evaluated
– ghost values need to be received from other processes

� Local and ghost vector elements for process 1

P1 P2

� every iteration 1 value need to be sent from P1 to P2, and
vice versa
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� store only local and ghost elements

P1

u
p1
0

0

u
p1
1

1

u
p1
2

2

u
p1
3

3

u
p1
4

4

u
p1
5

5

P2

u
p2
0

5

u
p2
1

6

u
p2
2

7

u
p2
3

8

u
p2
4

4

for step in xrange(1000):
u[1:-1] = (f[1:-1] + u[0:-2] + u[2:]) / 2.0

� reindexing slices with index arrays, for process 2 have

– 1:-1 with inds0=[0,1,2,3]

– 0:-2 with inds1=[4,0,1,2]

– 2: with inds2=[1,2,3,4]

� transform initial expression

u[inds0] = (f[inds0] + u[inds1] + u[inds2]) / 2.0
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� assume initial distribution of some vector is given Dx : Ix → P
(domain decomposition)

� at compile time

– find expressions that affect distribution and ghost values
– collect pairs of slices, for each pair

⊲ E(i, j) is a relation between indices of slices on LHS
and RHS

■ 1:-1 to 0:-2

– modify them to use index arrays
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� at run-time

– calculate ghost values from slice pairs

⊲ y[...] = ... x[...] ...

⊲ j is the index of ghost element for array x if

E(i, j)
∧

Dy(i) = rank
∧

Dx(j) 6= rank

– create index arrays with ghost values
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� sparse matrix triple storage format – 3 arrays of size nnz

– irows – row indices
– icols – column indices
– vals – matrix values

� matrix-vector multiplication y = Ax (in vectorised form)

y[irows[:]] += x[icols[:]] * vals[:]

� calculate ghost values from both sides of expression

– Ix = Iy = I0 ⊂ N, Iirows = Iicols = Ivals = I1 ⊂ N

– D0 : I0 → P Virows : I1 → I0,
– i is the index of ghost element for array icols if

⊲ Dy(Virows(i)) = rank
∧

Dx(Vicols(i))) 6= rank

– Vicols(i) is the index of ghost element for array x
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� preconditioning z =Mr
� without overlap

– project z(i) = R(i)z with projection matrices R(i)

– local matrices A(i) = R(i)A
(

R(i)
)T

, local

preconditionersM (i) =
(

A(i)
)−1

– total preconditioner M =
∑

i

(

R(i)
)T
M (i)R(i)

� with overlap

– injection to the same element
– not sum in total preconditioner
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� preconditioning z =Mr
� coarse grid on top of fine grid
� coarse nodes with unknowns rc
� restrict zc = Rz with restriction matrix R
� coarse matrix Ac = RART , coarse preconditioner Mc = A−1

c

� preconditioner M = RTMcR
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� usually 2 ways

– ad-hoc parallel structures

⊲ parallel hash map
⊲ too limited

– generalization of communication interfaces

⊲ local, ghost, border (overlap) values
⊲ still too limited – e.g. no map from coarse to fine

vectors
⊲ requires a lot of code writing

� the other way: use some general rules

– calculate how array elements are mapped based on
non-parallel code
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� communication and calculations

– managed by different hardware
– IO wait time

� with first and second level preconditioners

1. values of second level preconditioners are send
2. ghost values of first level preconditioner are sent
3. first level-preconditiner is calculated with local values
4. second level preconditioner is calculated
5. first level-preconditiner is calculated with ghost values

� code is interleaved and messy
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1. semi-automatic parallelization

(a) assume distribution of some data is given
(b) scan expressions and extract relations
(c) apply algorithm that uses relations to find

i. distribution of other data
ii. communication pattern

(d) transform the code

� data dependencies, interprocedural analysis, alias analysis

2. optimize communication and calculation

� send data early
� data dependencies
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