Semi-automatic parallelization of iterative solvers

Oleg Batrashev
Distributed Systems Group
University of Tartu

February 5, 2010

Doutline	Domain introduction and motivation
Domain and motivation Idea of semi-automatic parallelization	scientific computingiterative solvers
Real examples	Idea of semi-automatic parallelization
Static analysis	- 1D Finite Difference with Jacobi solver
	Real examples that need parallelization
	matrix-vector multiplicationpreconditioners
	Static analysis
	- alternatives

Domain and Motivation

Scientific

Computing

Parallel iterative

solvers

Conjugate

Gradient method

Parallel CG

Preconditioners

for parallel CG

Idea of semi-automatic

parallelization

Real examples

Static analysis

Domain and motivation

Scientific Computing

Outline

Domain and motivation

Scientific

- ▶ Computing
- Parallel iterative solvers

solvers Conjugate

Gradient method

Parallel CG Preconditione

Preconditioners for parallel CG

Idea of semi-automatic parallelization

Real examples

- □ scientific computing number crunching
 - process simulations, data analysis
 - speed is of most importance
 - methods and tools lag behind
- □ sparse linear systems in scientific computing
 - most physics simulations: weather forecast, air and fluid dynamics, structural mechanics
 - huge systems of linear equations: millions and billions of unknowns
 - sparse: most values in the matrix are zeros
 - general approach iterative solvers with preconditioners
 - more easily parallelizable than *direct solvers*

Parallel iterative solvers

Outline

Domain and motivation

Scientific
Computing
Parallel
iterative solvers
Conjugate

Parallel CG Preconditioners for parallel CG

Gradient method

Idea of semi-automatic parallelization

Real examples

- \square need to solve Ax = b
- \Box iterative solver
 - take initial approximation x_0 to the solution
 - in 5 to 100 iterations
 - \triangleright using previous approximation x_i find next approximation x_{i+1}
- □ parallelize iterative solver (data parallelizm)
 - distribute A and b between the nodes
 - distribute x (each node is responsible for its own part of the vector)
 - intermediate vectors in each iteration "follow" x distribution

Conjugate Gradient method

Outline

Domain and motivation
Scientific
Computing
Parallel iterative solvers
Conjugate
Gradient
method
Parallel CG

for parallel CG Idea of semi-automatic parallelization

Preconditioners

Real examples

```
x = np.zeros(b.shape)
r = b - A*x
it = 0
while np.sqrt(sum(r**2))>TOLERANCE and it<MAX ITER:
    z = prec(r)
    rho = dot(r.T,z)
    if it==0:
        p = z
    else:
        beta = rho/rho_prev
        p = z + beta*p
    q = A*p
    alpha = rho/dot(p.T,q)
    x += alpha*p
    r -= alpha*q
    rho prev = rho
    it. += 1
```

Parallel CG

Outline

Domain and motivation
Scientific
Computing
Parallel iterative solvers
Conjugate
Gradient method
Parallel CG
Preconditioners

Idea of semi-automatic parallelization

for parallel CG

Real examples

- \square matrix A and vectors b, x, p, r, q are distributed
- □ 2 operations are parallelized: vector dot product, matrix-vector multiplication
 - each requires synchornization and data exchange
 - communication pattern is static but only known at run-time
- \Box cg.py: ~75 lines, ~20 is CG code
- □ sparse.py: ~76 lines, ~20 lines sparse matrix data structure and Ax code
- \square parallel.py: ~223 lines
 - ∼129 is data preparation for parallel calculations
 - ~30 vector distribution/gather/parallel Ax/parallel dot product

Preconditioners for parallel CG

Outline

Domain and
motivation
Scientific
Computing
Parallel iterative
solvers
Conjugate
Gradient method
Parallel CG
Preconditioners

Idea of semi-automatic parallelization

> for parallel CG

- Real examples
- Static analysis

- \square Transformation to the original system: $M^{-1}Ax = M^{-1}b$
 - reduce the number of iterations
 - often implicitly
- □ "Preconditioner with robust coarse spaces", University of Bath, UK
 - 2 weeks to understand and implement reference version
 - optimization
 - parallelization

Domain and motivation

Idea of semi-automatic

▶ parallelization

The problem 1D Finite Difference method

Jacobi method Implicit implementation

Parallelization (1)

 ${\bf Parallelization}$

(2): reindexing

 ${\bf Semi-automatic}$

parallelization (1)

 ${\bf Semi-automatic}$

parallelization (2)

Real examples

Static analysis

Idea of semi-automatic parallelization

The problem

Outline Domain and motivation Idea of semi-automatic parallelization > The problem 1D Finite Difference method Jacobi method Implicit implementation Parallelization (1) Parallelization (2): reindexing Semi-automatic parallelization (1) Semi-automatic parallelization (2) Real examples

```
    □ three vectors x, y, and z
    □ distribute elements of those vectors between processes
    □ z = x+5*y is trivial
    □ sum(x) and dot(x,y) are also trivial
    □ But not
    □ forall 1<i<N-1: z[i] = x[i-1]+y[i+1]</li>
    □ forall 1<i<N-1: z[inds[i]] = x[i]</li>
    □ these kind of relations are common
```

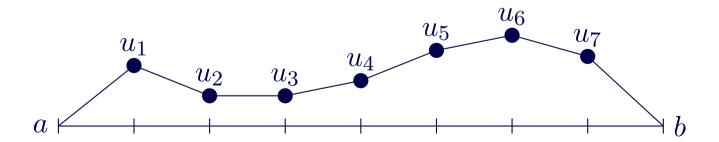
1D Finite Difference method

- \square need to solve $-\frac{\partial^2 u}{\partial x^2} = f(x), \ a < x < b, \ u(a) = u(b) = 0$
- \square discretise [a,b] into n+1 even sections, $\Delta x = \frac{b-a}{n+1}$
- \Box take unknowns $u_i \approx u(x_i)$, on the boundary $u_0 = u_{n+2} = 0$
- \Box finite difference approximation for $\frac{\partial^2 u}{\partial x^2}$

$$\frac{\partial^2 u}{\partial x^2} \approx \frac{u(x - \Delta x) - 2u(x) + u(x + \Delta x)}{\Delta x^2}$$

 \square for each i = 1, ..., n get one linear equation

$$-u_{i-1} + 2u_i - u_{i+1} = \Delta x^2 f_i$$



Jacobi method

Outline

Domain and motivation

Idea of semi-automatic parallelization

The problem
1D Finite
Difference method

▶ Jacobi method

Implicit implementation

Parallelization (1)

 ${\bf Parallelization}$

(2): reindexing Semi-automatic

parallelization (1)

Semi-automatic

parallelization (2)

Real examples

Static analysis

 \Box The system matrix

$$A = \begin{pmatrix} 2 & -1 & 0 & 0 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 2 & \end{pmatrix}$$

 \square Jacobi method: iterative solver for Au = b

$$u_i^{(k+1)} = (b_i - \sum_{j=1, j \neq i}^n a_{i,j} u_i^{(k)}) / a_{i,i} \quad i = 1, \dots, n$$

Implicit implementation

Outline

Domain and motivation

Idea of semi-automatic parallelization

The problem
1D Finite
Difference method

Jacobi method Implicit

> implementation

Parallelization (1)

Parallelization

(2): reindexing

Semi-automatic

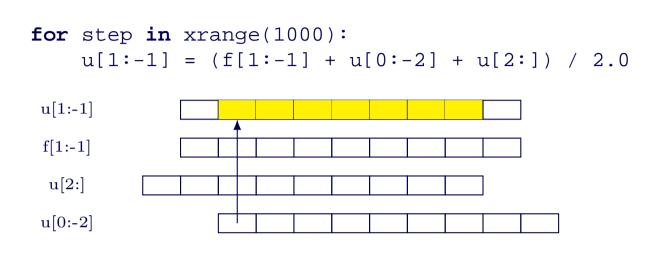
parallelization (1)

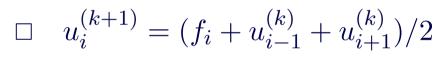
Semi-automatic

parallelization (2)

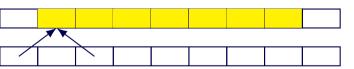
Real examples

Static analysis





 $u^{(k+1)}$ $u^{(k)}$



Parallelization (1)

Outline

Domain and motivation

Idea of semi-automatic parallelization

The problem
1D Finite
Difference method
Jacobi method
Implicit
implementation

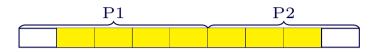
Parallelization

Parallelization
(2): reindexing
Semi-automatic
parallelization (1)
Semi-automatic
parallelization (2)

Real examples

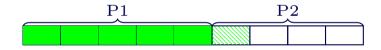
Static analysis

□ Distribute between 2 processes



$$\square \quad u_i^{(k+1)} = (f_i + u_{i-1}^{(k)} + u_{i+1}^{(k)})/2$$

- left-hand side determines where expression is evaluated
- ghost values need to be received from other processes
- □ Local and ghost vector elements for process 1



□ every iteration 1 value need to be sent from P1 to P2, and vice versa

Parallelization (2): reindexing

Outline

Domain and motivation

Idea of semi-automatic parallelization

The problem

1D Finite
Difference method

Jacobi method Implicit implementation

Parallelization (1)

Parallelization (2): reindexing

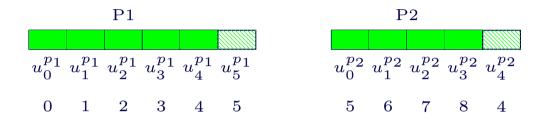
Semi-automatic parallelization (1)

Semi-automatic parallelization (2)

Real examples

Static analysis

 \Box store only local and ghost elements



```
for step in xrange(1000):

u[1:-1] = (f[1:-1] + u[0:-2] + u[2:]) / 2.0
```

- \Box reindexing slices with *index arrays*, for process 2 have
 - 1:-1 with inds0=[0,1,2,3]
 - 0:-2 with inds1=[4,0,1,2]
 - 2: with inds2=[1,2,3,4]
- \Box transform initial expression

```
u[inds0] = (f[inds0] + u[inds1] + u[inds2]) / 2.0
```

Semi-automatic parallelization (1)

Outline

Domain and motivation

Idea of semi-automatic parallelization

The problem
1D Finite
Difference method

Jacobi method Implicit implementation

Parallelization (1)

Parallelization
(2): reindexing
Semi-automatic
parallelization

 \triangleright (1)

Semi-automatic parallelization (2)

Real examples

- assume initial distribution of some vector is given $D_{\mathbf{x}}: I_{\mathbf{x}} \to P$ (domain decomposition)
- \Box at compile time
 - find expressions that affect distribution and ghost values
 - collect pairs of slices, for each pair
 - E(i,j) is a relation between indices of slices on LHS and RHS
 - 1:-1 to 0:-2
 - modify them to use index arrays

Semi-automatic parallelization (2)

Outline

Domain and motivation

Idea of semi-automatic parallelization

The problem

1D Finite
Difference method

Jacobi method Implicit implementation

Parallelization (1)

Parallelization

(2): reindexing

Semi-automatic

parallelization (1) Semi-automatic

parallelization > (2)

Real examples

Static analysis

- \Box at run-time
 - calculate ghost values from slice pairs

$$\triangleright \quad y[\ldots] = \ldots x[\ldots] \ldots$$

j is the index of ghost element for array x if

$$E(i,j) \bigwedge D_{y}(i) = \operatorname{rank} \bigwedge D_{x}(j) \neq \operatorname{rank}$$

- create index arrays with ghost values

Domain and motivation

Idea of semi-automatic parallelization

▶ Real examples

Matrix-vector multiplication First-level preconditioner Coarse (second)-level preconditioner

Static analysis

Real examples

Matrix-vector multiplication

Outline

Domain and motivation

Idea of semi-automatic parallelization

Real examples

Matrix-vector

multiplication

First-level

preconditioner

Coarse

(second)-level

preconditioner

Static analysis

- \square sparse matrix triple storage format -3 arrays of size nnz
 - irows row indices
 - icols column indices
 - vals matrix values
- \square matrix-vector multiplication y = Ax (in vectorised form)

□ calculate ghost values from both sides of expression

-
$$I_x = I_y = I_0 \subset \mathbb{N}$$
, $I_{irows} = I_{icols} = I_{vals} = I_1 \subset \mathbb{N}$

- $D_0: I_0 \to P \quad V_{\text{irows}}: I_1 \to I_0,$
- i is the index of ghost element for array icols if

$$D_y(V_{\text{irows}}(i)) = \operatorname{rank} \bigwedge D_x(V_{\text{icols}}(i))) \neq \operatorname{rank}$$

- $V_{\text{icols}}(i)$ is the index of ghost element for array x

First-level preconditioner

Outline

Domain and motivation

Idea of semi-automatic parallelization

Real examples

Matrix-vector multiplication

First-level

> preconditioner Coarse (second)-level

preconditioner

- \square preconditioning z = Mr
- \square without overlap
 - project $z^{(i)} = R^{(i)}z$ with projection matrices $R^{(i)}$
 - local matrices $A^{(i)} = R^{(i)} A \left(R^{(i)}\right)^T$, local preconditioners $M^{(i)} = \left(A^{(i)}\right)^{-1}$
 - total preconditioner $M = \sum_{i} (R^{(i)})^{T} M^{(i)} R^{(i)}$
- \square with overlap
 - injection to the same element
 - not sum in total preconditioner

Coarse (second)-level preconditioner

Outline

Domain and motivation

Idea of semi-automatic parallelization

Real examples

Matrix-vector
multiplication
First-level
preconditioner
Coarse
(second)-level
preconditioner

- \square preconditioning z = Mr
- \Box coarse grid on top of fine grid
- \square coarse nodes with unknowns r_c
- \square restrict $z_c = Rz$ with restriction matrix R
- \square coarse matrix $A_c = RAR^T$, coarse preconditioner $M_c = A_c^{-1}$
- \square preconditioner $M = R^T M_c R$

Domain and motivation

Idea of semi-automatic parallelization

Real examples

> Static analysis

Why not a library static analysis for communication Summary

Why not a library

Outline

Domain and motivation

Idea of semi-automatic parallelization

Real examples

Static analysis

- \square usually 2 ways
 - ad-hoc parallel structures
 - ▶ parallel hash map
 - ▶ too limited
 - generalization of communication interfaces
 - ⊳ local, ghost, border (overlap) values
 - still too limited e.g. no map from coarse to fine vectors
 - ▶ requires a lot of code writing
- \Box the other way: use some general rules
 - calculate how array elements are mapped based on non-parallel code

static analysis for communication

Outline

Domain and motivation

Idea of semi-automatic parallelization

Real examples

Static analysis

Why not a library static analysis for

communication Summary

- □ communication and calculations
 - managed by different hardware
 - IO wait time
- \square with first and second level preconditioners
 - 1. values of second level preconditioners are send
 - 2. ghost values of first level preconditioner are sent
 - 3. first level-preconditiner is calculated with local values
 - 4. second level preconditioner is calculated
 - 5. first level-preconditiner is calculated with ghost values
- □ code is interleaved and messy

Summary

Outline

Domain and motivation

Idea of semi-automatic parallelization

Real examples

Static analysis

Why not a library static analysis for communication

> Summary

- 1. semi-automatic parallelization
 - (a) assume distribution of some data is given
 - (b) scan expressions and extract relations
 - (c) apply algorithm that uses relations to find
 - i. distribution of other data
 - ii. communication pattern
 - (d) transform the code
 - □ data dependencies, interprocedural analysis, alias analysis
- 2. optimize communication and calculation
 - \Box send data early
 - \Box data dependencies