Untyped general polymorphic functions

Martin Pettai

February 5, 2010

Introduction

e We would like to have a functional language where it is
possible to define general polymorphic functions

Return type of a function is uniquely determined by the
argument type

All polymorphic functions where the implied function on types
belongs to a certain large class of total functions, should be
definable

Higher-order polymorphic functions

Static type checking

e We will see how polymorphic functions can be defined in

dynamically typed languages with typecase

extensional polymorphism, which uses typecase in a statically
typed language

our language, which uses typecase in untyped functions in an
otherwise statically typed language

Dynamacally typed languages with typecase

e Run-time values are tagged with types, e.g. 3 is internally
(Int, 3)

e We can also include pure types (without a value) as ordinary
run-time objects

e typeof operator to get the type of a value, e.g. typeof 3
==> Int

e In such a language types can be computed with (e.g.

branching, recursion) as easily as values

Dynamacally typed languages with typecase

e We can easily define polymorphic functions:

let £ =\ x .
typecase (typeof x) of
Int -> x + 3;
String -> x ++ "s";
_ -> "ERROR";
end
in

(f 3, £ "symbol", f True)
=> (3, "symbols", "ERROR")

Dynamacally typed languages with typecase

e We can use typecase inside any expression:
let £ =\ x .
100 * typecase (typeof x) of

Int -> x;
String -> length x;
_ -> 13;

end

in
[f 3, £ "symbol", f Truel
=> [300, 600, 1300]

Dynamacally typed languages with typecase

e We can have recursion over types:

let rec £ =\ x .
typecase (typeof x) of
Int -> x;
List _ ->
let y =map f x
in typecase (typeof y) of List a ->
typecase a of

Int -> Just (sum y);
Maybe Int ->
case y of
Just z :: zs > z;
-> 0;

end; end; end; end

Dynamacally typed languages with typecase

e Suppose we also have typed functions, e.g.
\ (x : Int) : Int . x + 2 has type Int -> Int

Dynamacally typed languages with typecase

e We can also have higher-order functions:
let reverseargs f =
let rec revtypes t cont =
typecase t of
Unit -> cont t;
List _ -> cont t;
(t1 -> t2) -> revtypes t2 (\ u . tl -> cont u)
in let rec proc ts cont =
typecase ts of
Unit -> cont f;
List _ -> cont f;
(t > ts’) >\ (x : t) : ts’ .
proc ts’ (\ g . cont (g %))
in
proc (revtypes (typeof f) (ANt . t)) (\ g . g

Statically typed functional languages

Polymorphic functions are more difficult to define
There are only typed functions, no untyped functions

Usually the argument type and result type must be specified
(or inferred by the compiler) and the function type is
constructed from these

These types may contain universally quantified type variables
(this gives us parametric polymorphism), e.g. forall a.
List (a,a) -> Maybe a

Ad-hoc polymorphism is more difficult to achieve

Ezxtenstonal polymorphism

Introduced by Dubois, Rouaix, and Weis in 1995
Example:
let rec generic flat =

case dl list -> d2 list of

t1 list list -> t2 list => (function 1 ->
flat (flatten 1))

| t list -> t list => (function 1 -> 1)

Branching only on the type of a polymorphic value

A type inference algorithm is used to annotate subexpressions
(including polymorphic variables) with types

Another algorithm is used to check that polymorphic values
are only used at the types for which they are defined

e For this, branching and recursion on the inferred type is
performed

Ezxtensional polymorphism: problems

e Type system is complicated

e Must include polymorphic types
e Polymorphic values have several types: the general type
scheme, the type scheme for each branch, the inferred types

for the used instances
e Type inference is complicated
e The type of a variable is not constant
e The return type of a function might not be uniquely
determined by the argument type
e Higher-order (impredicative) polymorphism difficult to achieve
e Higher-order polymorphic types make type inference
undecidable

Our approach: drop the polymorphic types

e Because polymorphic types create many problems, we leave
polymorphic functions untyped, i.e. they do not have a type in
the type system (although they have an implicit type outside
the type system)

e Our untyped polymorphic functions can use higher-order

polymorphism, typecase, and pure types
e Expressions will be reduced in two phases: static
(compile-time) and dynamic (run-time) phase

Typecases and other type-level constructs will be reduced in
the static phase

If (and only if) the program is not type-correct, type errors will
occur during static-phase reductions

For dynamic-phase reductions, type information is not needed
and type errors cannot occur

The type system only defines types for the expressions that
cannot be reduced further in the static phase (we call those
expressions box expressions)

Return type of an untyped polymorphic function is uniquely

P [R [R T T ST SR

Our language: syntax

SIMPLETYPE ::= Unit | List SIMPLETYPE
| SIMPLETYPE -> SIMPLETYPE
EXPR ::= VAR | VAR : SIMPLETYPE | unit | nil SIMPLETYPE

TYPE ::
NAT ::

cons EXPR EXPR | typeof EXPR | EXPR EXPR
tlam VAR (VAR :< TYPE) . EXPR
vliam VAR (VAR : EXPR) : EXPR . EXPR
iffun EXPR then EXPR else EXPR
iftype EXPR then EXPR else EXPR
tcase EXPR of Unit -> EXPR; List VAR -> EXPR;
(VAR -> VAR) -> EXPR
vcase EXPR of nil -> EXPR; cons VAR VAR -> EXPR
SIMPLETYPE
SIMPLETYPE | Type SIMPLETYPE | Fun NAT
11 2|

Our language: box expressions

BOX ::= VAR : SIMPLETYPE | unit | nil SIMPLETYPE
| cons BOX_v BOX_v | BOX_v BOX_v
| tlam VAR (VAR :< TYPE) . EXPR
| vliam VAR (VAR : SIMPLETYPE) : SIMPLETYPE . EXPR
| vcase BOX_v of nil -> BOX_v; cons VAR VAR -> BOX_v
| SIMPLETYPE

BOX_v ::= VAR : SIMPLETYPE | unit | nil SIMPLETYPE

| cons BOX_v BOX_v | BOX_v BOX_v
| vlam VAR (VAR : SIMPLETYPE) : SIMPLETYPE . BOX_v
| vcase BOX_v of nil -> BOX_v; cons VAR VAR -> BOX_v

Our language: final expressions

FINAL ::= VAR : SIMPLETYPE | unit | nil SIMPLETYPE
| cons FINAL FINAL
| tlam VAR (VAR :< TYPE) . EXPR
| vlam VAR (VAR : SIMPLETYPE) : SIMPLETYPE . EXPR
| SIMPLETYPE

Our language: type rules

(x : t):t unit : Unit nil t:List t
by it by :List t

cons b; by :List t tlam x3 (x2 :< 7) . e:max(7,Fun 0)

(viam x3 (x2 : t1) : to . €):(t1 =>) t:Type t
b :List t1 by : to bz : to
(vcase by of nil -> by; cons x3 xp => b3):tp
b : (tl -> tg) by :ty
b1 byt

Our language: type ordering

e To be able to verify the termination of type-level recursion, we
define on the set TYPE a partial order that is well-founded and

computable:
t1 < o th < t3 t1 < tr n <mar N2
thh < t3 Type t1 < Type t Fun n; < Fun np
t <List t t1 <(t1 => t) th < (t1 => 1)

t1 < Type t t <Fun n Type t <Fun n

Our language: example

tlet reverseargs{0} f =
tlet revtypes{i} t cont{0} =
tcase t of
Unit -> cont t;
List _ -> cont t;
(t1 -> t2) -> revtypes t2 (tlam u . tl -> cont u)
in tlet proc{1l} ts cont{0} =
tcase ts of
Unit -> cont f;
List _ -> cont f;
(t => ts’) -> vlam (x : t) : ts’
proc ts’ (tlam g . cont (g x))
in
proc (revtypes (typeof f) (tlam t . t)) (tlam g . g)

Our language: example

o If we apply reverseargs to £ : Unit -> (Unit -> Unit)
-> List Unit -> Unit, it will reduce in the type level to
the expression

vlam (x1 : List Unit) : (Unit -> Unit) -> Unit -> Unit
vlam (x2 : Unit -> Unit) : Unit -> Unit
vliam (x3 : Unit) : Unit
(f : Unit -> (Unit -> Unit) -> List Unit -> Unit
) x3 x2 x1

e which has type List Unit -> (Unit -> Unit) -> Unit
-> Unit.

Our language vs dynamically typed languages

o If we do not require decidability of type checking

e We can drop the kind annotations and use the same syntax as
the dynamically typed language
o Type checking only uses type-level information
o |f the type checking terminates, the program is guaranteed not
to produce type errors at run time
e Thus we have statically type-checked the dynamically typed
program

Conclusion

e We have a language that allows defining very general
higher-order polymorphic functions

e which can be defined almost as easily as in dynamically typed
languages with typecase
e the type system is very simple (no need for polymorphic types)
e But we have not been able to prove the decidability of type
checking
e Maybe it is necessary to change the kind system

The End

<O <Fr o«

