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� Oz language

– syntax of declarative model
– dataflow variables
– addition: threads, ports, cells

� Programming with Oz

– in declarative model
– in multiagent dataflow model
– in distributed programming

� Example: P2P chat
� Conclusions
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� I wanted to study concurrent programming

– was suggested the book “Concepts, Techniques, and

Models of Computer Programming” by Peter van Roy
and Seif Haridi

� give a course on concurrent programming languages

– give a quick overview of some topics
– suggestions, remarks are welcome
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of non-theoretical talk on Oz

� the paper “A concurrent lambda calculus with futures.” by
J. Hiehren, J.Schwinghammer, G. Smolka, 2006

Many ideas in Alice ML (except those for
typing) are inspired by, and inherited from, the
concurrent constraint programming language
Mozart-Oz.

� future is a read-only dataflow variable
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� Statements
skip

〈s1〉〈s2〉

local 〈x〉 in 〈s〉 end

〈x1〉 = 〈x2〉

〈x〉 = 〈v〉

if 〈x〉 then 〈s1〉 else 〈s2〉 end

case 〈x〉 of 〈ptn〉 then 〈s1〉 else 〈s2〉 end

proc {〈x〉 〈y1〉 ... 〈yn〉} end

{〈x〉 〈y1〉 ... 〈yn〉}
� Atom (symbolic constant)

person nil true false ’with spaces’ ’|’

� Record (label with a set of feature/value pairs)
〈label〉(1 : 〈x1〉 ... n : 〈xn〉 a1 : 〈xn+1〉 ... am : 〈xn+m〉

person(1:"Oleg" 2:male city:Tartu year:2009)
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� single-assignment
X=5 X=6 throws exception

� logical, i.e. may be

– unbound
declare X

local X in ... end

– bound to a value
X=5

– bound to another variable
X=Y

� = is unification, not assignment
X=5 is equivalent to 5=X

� unification goes recursively both ways
person(name:X age:15) = L(name:"George" age:Y)



Single-assignment store

Outline

Motivation

Justification

Oz language

Oz (declarative)
kernel
Dataflow
variables

⊲

Single-
assignment
store

Variables and
values

Partial values

Dataflow

Ports

Other features

Programming in
Oz

Example: P2P
chat

Conclusions

8 / 31

Conceptually (implementation may be more optimal),

� declare X maps variable identifier X to the new variable

x1 in the store

"X" x1 unbound

inside the store

� the following declare X maps X to the new variable x2

"X" x1 unbound

x2 unbound

inside the store
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� bound variables X=Y become indistinguishable

– change of X (x1) relfects on Y (y1) and v.v.

"X"

"Y"

x1

y1

inside store

� variable bound to a value is just the value

– x1 becomes “unneeded”

"X" x1 5
inside store
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declare X Y

X=person(name:"George" age:Y)

results in

"X"

"Y"

x1 person

"George" x2 unbound

name age

inside the store

� binding Y=6 results in X equal to person(name:"George"

age:6)



Dataflow

Outline

Motivation

Justification

Oz language

Oz (declarative)
kernel
Dataflow
variables
Single-
assignment
store
Variables and
values

Partial values

⊲ Dataflow

Ports

Other features

Programming in
Oz

Example: P2P
chat

Conclusions

11 / 31

� Reading unbound variable value blocks until it is bound
� Some operations require value

– operators +,-,*, etc.
declare X Y

Y=X+1

– condition in if statement
– value and pattern in case statement

� Many operations do not require value

– save variable into data structure
declare X Y=person(name:_)
Y.name=X

X="Richard"

– send variable over a network
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� in Oz streams are lists with unbound tail
Ls=1|2|5|Xs

� to extend we bind the tail to cons record
Xs=’|’(7 Xs2) (with operator Xs=7|Xs2)

– where Xs2 is a new tail

� The problem

– several threads can read the tail
case Xs of X|Xs2 then

– non-deterministic append is not possible

� Port - abstraction with a stream

– {NewPort Ls ?Port} - returns port
– {Send Port X} - non-det binds the tail
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� exceptions

– raise 〈x〉 end

– try 〈s1〉 catch 〈s2〉 end

� cells (mutable variables)

– {NewCell X ?C}

– X=@C - get value
– C:=X - set value
– X=C:=Y - exchange value
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fun {AppendF Xs Ys}
case Xs
of nil then Ys
[] X|Xs2 then X|{AppendF Xs2 Ys}
end

end
proc {AppendP Xs Ys Zs}

case Xs
of nil then Zs=Ys
[] X|Xs2 then Zs2 in

{AppendP Xs2 Ys Zs2}
Zs=X|Zs2

end
end

� switch last 2 lines to create a hole
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� Declarative programming in Oz

– much like functional
– but procedural
– slightly less restrictive

⊲ can create holes and fill in other places

– slightly more error-prone

⊲ may forget to fill a hole

– still completely deterministic
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proc {PMap F Xs ?Zs}
case Xs
of nil then Zs=nil
[] X|Xs2 then Zs2 in

Zs=thread {F X} end|Zs2
thread {PMap F Xs2 Zs2} end

end
end

� Can insert thread construct at any place

– nothing ever breaks
– unless exceptions are there too
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� A single thread

– reads messages from a stream (list)
– after a message is processed changes state

� Can be done with infinite recursion on a list
� Shorter to define with FoldL

– Sin - input stream
– Fun - transform function

fun {NewPortObject Init Fun}
Sin Sout in
thread {FoldL Sin Fun Init Sout} end
{NewPort Sin}

end
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� synchronous

C S

proc {ServerProc Msg}
case Msg
of calc(X Y) then

Y=X*X+5.0*X+6.0
end

end
Server={NewPortObject2 ServerProc}
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proc {ClientProc Msg}
case Msg
of work(Y) then Y1 Y2 in

{Send Server calc(10.0 Y1)}
{Wait Y1}
{Send Server calc(20.0 Y2)}
{Wait Y2}
Y=Y1+Y2

end
end
Client={NewPortObject2 ClientProc}
{Browse {Send Client work($)}}

� Wait returns when the argument is bound to a value
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C S

proc {AClientProc Msg}
case Msg
of work(Y) then Y1 Y2 in

{Send Server calc(10.0 Y1)}
{Send Server calc(20.0 Y2)}
Y=Y1+Y2

end
end
Client={NewPortObject2 AClientProc}
{Browse {Send Client work($)}}
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C S

proc {ServerProc Msg}
case Msg
of calc(X ?Y Client) then X1 D in

{Send Client delta(D)}
X1=X+D
Y=X1*X1+2.0*X1+2.0

end
end
Server={NewPortObject2 ServerProc}
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proc {ClientProc Msg}
case Msg
of work(?Z) then Y in

{Send Server calc(10.0 Y Client)}
thread Z=Y+100.0 end

[] delta(?D) then
D=1.0

end
end
Client={NewPortObject2 ClientProc}
{Browse {Send Client work($)}}

� adding new protocols is easy
� and fun
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Mozart is an Oz VM + libraries

� network transparency

– almost no changes of code to distribute

� network awareness

– can change entity (DV, cell, port, value) distribution
protocols

– protocols: stationary, mobile, eager/lazy copying, ...

� openness
� fault tolerance

– can install asyncronous watchers on entities
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� Manager on one site
� Proxies on all sites
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� port object (agent) with state
� maintains list of ports
� broadcasts messages

Multiport
Ports
FMessages

add(Key Port ?Result)
remove(Key Port ?Result)
message(M)
status(?Ports ?FMessages)

� on add(Key Port ?Result)

– adds Port with name Key to the list
– binds Result to true or false
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Multiport
Ports
FMessages

add(Key Port ?Result)
remove(Key Port ?Result)
message(M)
status(?Ports ?FMessages)

P2P Chat
Multiport

new(Name Port)
says(...)
say(T)

Chat GUI
Names

says(T who:Who)
add(Name)
remove(Name)

Other P2P Chat
...

...

add,remove

message(says)

status

says say

new,says



Track connected users

Outline

Motivation

Justification

Oz language

Programming in
Oz

Example: P2P
chat

Multiport object

Agents

⊲

Track
connected
users

Conclusions

29 / 31

� GUI needs to show connected peers

– constantly update it

� Multiport holds unbound variable for future events
(messages)

– shares on status(?Ports ?FMessages) message

fun {MultiPortProc State Message}
state(ports:Ps futureMessages:Fs) = State
NewFs

in
Message|NewFs = Fs
...
state(ports:Key#P|Ps futureMessages:NewFs)

end
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� concurrent programming can be simple and fun

– without mutable variables

� Oz/Mozart is a great platform to play with concurrent
and distributed programming

Limitations

� futures vs logic variables

– allow to determine dataflow
– static dataflow -> static type inference

� dataflow variables are not good for theory

– are futures as expressive?
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