
1 / 31

Concurrent programming with dataflow variables

Oleg Batrashev
Distributed Systems Group

University of Tartu

January 31, 2009

Outline

⊲ Outline

Motivation

Justification

Oz language

Programming in
Oz

Example: P2P
chat

Conclusions

2 / 31

� Oz language

– syntax of declarative model
– dataflow variables
– addition: threads, ports, cells

� Programming with Oz

– in declarative model
– in multiagent dataflow model
– in distributed programming

� Example: P2P chat
� Conclusions

Motivation

Outline

⊲ Motivation

Justification

Oz language

Programming in
Oz

Example: P2P
chat

Conclusions

3 / 31

� I wanted to study concurrent programming

– was suggested the book “Concepts, Techniques, and

Models of Computer Programming” by Peter van Roy
and Seif Haridi

� give a course on concurrent programming languages

– give a quick overview of some topics
– suggestions, remarks are welcome

Justification

Outline

Motivation

⊲ Justification

Oz language

Programming in
Oz

Example: P2P
chat

Conclusions

4 / 31

of non-theoretical talk on Oz

� the paper “A concurrent lambda calculus with futures.” by
J. Hiehren, J.Schwinghammer, G. Smolka, 2006

Many ideas in Alice ML (except those for
typing) are inspired by, and inherited from, the
concurrent constraint programming language
Mozart-Oz.

� future is a read-only dataflow variable

Oz language

Outline

Motivation

Justification

⊲ Oz language

Oz (declarative)
kernel
Dataflow
variables
Single-
assignment
store
Variables and
values

Partial values

Dataflow

Ports

Other features

Programming in
Oz

Example: P2P
chat

Conclusions

5 / 31

Oz (declarative) kernel

Outline

Motivation

Justification

Oz language

⊲

Oz
(declarative)
kernel

Dataflow
variables
Single-
assignment
store
Variables and
values

Partial values

Dataflow

Ports

Other features

Programming in
Oz

Example: P2P
chat

Conclusions

6 / 31

� Statements
skip

〈s1〉〈s2〉

local 〈x〉 in 〈s〉 end

〈x1〉 = 〈x2〉

〈x〉 = 〈v〉

if 〈x〉 then 〈s1〉 else 〈s2〉 end

case 〈x〉 of 〈ptn〉 then 〈s1〉 else 〈s2〉 end

proc {〈x〉 〈y1〉 ... 〈yn〉} end

{〈x〉 〈y1〉 ... 〈yn〉}
� Atom (symbolic constant)

person nil true false ’with spaces’ ’|’

� Record (label with a set of feature/value pairs)
〈label〉(1 : 〈x1〉 ... n : 〈xn〉 a1 : 〈xn+1〉 ... am : 〈xn+m〉

person(1:"Oleg" 2:male city:Tartu year:2009)

Dataflow variables

Outline

Motivation

Justification

Oz language

Oz (declarative)
kernel

⊲
Dataflow
variables

Single-
assignment
store
Variables and
values

Partial values

Dataflow

Ports

Other features

Programming in
Oz

Example: P2P
chat

Conclusions

7 / 31

� single-assignment
X=5 X=6 throws exception

� logical, i.e. may be

– unbound
declare X

local X in ... end

– bound to a value
X=5

– bound to another variable
X=Y

� = is unification, not assignment
X=5 is equivalent to 5=X

� unification goes recursively both ways
person(name:X age:15) = L(name:"George" age:Y)

Single-assignment store

Outline

Motivation

Justification

Oz language

Oz (declarative)
kernel
Dataflow
variables

⊲

Single-
assignment
store

Variables and
values

Partial values

Dataflow

Ports

Other features

Programming in
Oz

Example: P2P
chat

Conclusions

8 / 31

Conceptually (implementation may be more optimal),

� declare X maps variable identifier X to the new variable

x1 in the store

"X" x1 unbound

inside the store

� the following declare X maps X to the new variable x2

"X" x1 unbound

x2 unbound

inside the store

Variables and values

Outline

Motivation

Justification

Oz language

Oz (declarative)
kernel
Dataflow
variables
Single-
assignment
store

⊲
Variables and
values

Partial values

Dataflow

Ports

Other features

Programming in
Oz

Example: P2P
chat

Conclusions

9 / 31

� bound variables X=Y become indistinguishable

– change of X (x1) relfects on Y (y1) and v.v.

"X"

"Y"

x1

y1

inside store

� variable bound to a value is just the value

– x1 becomes “unneeded”

"X" x1 5
inside store

Partial values

Outline

Motivation

Justification

Oz language

Oz (declarative)
kernel
Dataflow
variables
Single-
assignment
store
Variables and
values

⊲ Partial values

Dataflow

Ports

Other features

Programming in
Oz

Example: P2P
chat

Conclusions

10 / 31

declare X Y

X=person(name:"George" age:Y)

results in

"X"

"Y"

x1 person

"George" x2 unbound

name age

inside the store

� binding Y=6 results in X equal to person(name:"George"

age:6)

Dataflow

Outline

Motivation

Justification

Oz language

Oz (declarative)
kernel
Dataflow
variables
Single-
assignment
store
Variables and
values

Partial values

⊲ Dataflow

Ports

Other features

Programming in
Oz

Example: P2P
chat

Conclusions

11 / 31

� Reading unbound variable value blocks until it is bound
� Some operations require value

– operators +,-,*, etc.
declare X Y

Y=X+1

– condition in if statement
– value and pattern in case statement

� Many operations do not require value

– save variable into data structure
declare X Y=person(name:_)
Y.name=X

X="Richard"

– send variable over a network

Ports

Outline

Motivation

Justification

Oz language

Oz (declarative)
kernel
Dataflow
variables
Single-
assignment
store
Variables and
values

Partial values

Dataflow

⊲ Ports

Other features

Programming in
Oz

Example: P2P
chat

Conclusions

12 / 31

� in Oz streams are lists with unbound tail
Ls=1|2|5|Xs

� to extend we bind the tail to cons record
Xs=’|’(7 Xs2) (with operator Xs=7|Xs2)

– where Xs2 is a new tail

� The problem

– several threads can read the tail
case Xs of X|Xs2 then

– non-deterministic append is not possible

� Port - abstraction with a stream

– {NewPort Ls ?Port} - returns port
– {Send Port X} - non-det binds the tail

Other features

Outline

Motivation

Justification

Oz language

Oz (declarative)
kernel
Dataflow
variables
Single-
assignment
store
Variables and
values

Partial values

Dataflow

Ports

⊲ Other features

Programming in
Oz

Example: P2P
chat

Conclusions

13 / 31

� exceptions

– raise 〈x〉 end

– try 〈s1〉 catch 〈s2〉 end

� cells (mutable variables)

– {NewCell X ?C}

– X=@C - get value
– C:=X - set value
– X=C:=Y - exchange value

Programming in Oz

Outline

Motivation

Justification

Oz language

⊲
Programming
in Oz

Declarative
model
Comparison with
functional
Declarative
concurrent
model
Port objects
(Agents)

RMI (1)

RMI (2)

Asynchronous
RMI
RMI with
callback u/
thread (1)

RMI with
callback u/
thread (2)

Distributed
programming

Protocol for DV

Example: P2P
chat

Conclusions
14 / 31

Declarative model

Outline

Motivation

Justification

Oz language

Programming in
Oz

⊲
Declarative
model

Comparison with
functional
Declarative
concurrent
model
Port objects
(Agents)

RMI (1)

RMI (2)

Asynchronous
RMI
RMI with
callback u/
thread (1)

RMI with
callback u/
thread (2)

Distributed
programming

Protocol for DV

Example: P2P
chat

Conclusions
15 / 31

fun {AppendF Xs Ys}
case Xs
of nil then Ys
[] X|Xs2 then X|{AppendF Xs2 Ys}
end

end
proc {AppendP Xs Ys Zs}

case Xs
of nil then Zs=Ys
[] X|Xs2 then Zs2 in

{AppendP Xs2 Ys Zs2}
Zs=X|Zs2

end
end

� switch last 2 lines to create a hole

Comparison with functional

Outline

Motivation

Justification

Oz language

Programming in
Oz
Declarative
model

⊲

Comparison
with
functional

Declarative
concurrent
model
Port objects
(Agents)

RMI (1)

RMI (2)

Asynchronous
RMI
RMI with
callback u/
thread (1)

RMI with
callback u/
thread (2)

Distributed
programming

Protocol for DV

Example: P2P
chat

Conclusions

16 / 31

� Declarative programming in Oz

– much like functional
– but procedural
– slightly less restrictive

⊲ can create holes and fill in other places

– slightly more error-prone

⊲ may forget to fill a hole

– still completely deterministic

Declarative concurrent model

Outline

Motivation

Justification

Oz language

Programming in
Oz
Declarative
model
Comparison with
functional

⊲

Declarative
concurrent
model

Port objects
(Agents)

RMI (1)

RMI (2)

Asynchronous
RMI
RMI with
callback u/
thread (1)

RMI with
callback u/
thread (2)

Distributed
programming

Protocol for DV

Example: P2P
chat

Conclusions
17 / 31

proc {PMap F Xs ?Zs}
case Xs
of nil then Zs=nil
[] X|Xs2 then Zs2 in

Zs=thread {F X} end|Zs2
thread {PMap F Xs2 Zs2} end

end
end

� Can insert thread construct at any place

– nothing ever breaks
– unless exceptions are there too

Port objects (Agents)

Outline

Motivation

Justification

Oz language

Programming in
Oz
Declarative
model
Comparison with
functional
Declarative
concurrent
model

⊲
Port objects
(Agents)

RMI (1)

RMI (2)

Asynchronous
RMI
RMI with
callback u/
thread (1)

RMI with
callback u/
thread (2)

Distributed
programming

Protocol for DV

Example: P2P
chat

Conclusions
18 / 31

� A single thread

– reads messages from a stream (list)
– after a message is processed changes state

� Can be done with infinite recursion on a list
� Shorter to define with FoldL

– Sin - input stream
– Fun - transform function

fun {NewPortObject Init Fun}
Sin Sout in
thread {FoldL Sin Fun Init Sout} end
{NewPort Sin}

end

RMI (1)

Outline

Motivation

Justification

Oz language

Programming in
Oz
Declarative
model
Comparison with
functional
Declarative
concurrent
model
Port objects
(Agents)

⊲ RMI (1)

RMI (2)

Asynchronous
RMI
RMI with
callback u/
thread (1)

RMI with
callback u/
thread (2)

Distributed
programming

Protocol for DV

Example: P2P
chat

Conclusions
19 / 31

� synchronous

C S

proc {ServerProc Msg}
case Msg
of calc(X Y) then

Y=X*X+5.0*X+6.0
end

end
Server={NewPortObject2 ServerProc}

RMI (2)

Outline

Motivation

Justification

Oz language

Programming in
Oz
Declarative
model
Comparison with
functional
Declarative
concurrent
model
Port objects
(Agents)

RMI (1)

⊲ RMI (2)

Asynchronous
RMI
RMI with
callback u/
thread (1)

RMI with
callback u/
thread (2)

Distributed
programming

Protocol for DV

Example: P2P
chat

Conclusions
20 / 31

proc {ClientProc Msg}
case Msg
of work(Y) then Y1 Y2 in

{Send Server calc(10.0 Y1)}
{Wait Y1}
{Send Server calc(20.0 Y2)}
{Wait Y2}
Y=Y1+Y2

end
end
Client={NewPortObject2 ClientProc}
{Browse {Send Client work($)}}

� Wait returns when the argument is bound to a value

Asynchronous RMI

Outline

Motivation

Justification

Oz language

Programming in
Oz
Declarative
model
Comparison with
functional
Declarative
concurrent
model
Port objects
(Agents)

RMI (1)

RMI (2)

⊲
Asynchronous
RMI

RMI with
callback u/
thread (1)

RMI with
callback u/
thread (2)

Distributed
programming

Protocol for DV

Example: P2P
chat

Conclusions
21 / 31

C S

proc {AClientProc Msg}
case Msg
of work(Y) then Y1 Y2 in

{Send Server calc(10.0 Y1)}
{Send Server calc(20.0 Y2)}
Y=Y1+Y2

end
end
Client={NewPortObject2 AClientProc}
{Browse {Send Client work($)}}

RMI with callback u/ thread (1)

Outline

Motivation

Justification

Oz language

Programming in
Oz
Declarative
model
Comparison with
functional
Declarative
concurrent
model
Port objects
(Agents)

RMI (1)

RMI (2)

Asynchronous
RMI

⊲

RMI with
callback u/
thread (1)

RMI with
callback u/
thread (2)

Distributed
programming

Protocol for DV

Example: P2P
chat

Conclusions
22 / 31

C S

proc {ServerProc Msg}
case Msg
of calc(X ?Y Client) then X1 D in

{Send Client delta(D)}
X1=X+D
Y=X1*X1+2.0*X1+2.0

end
end
Server={NewPortObject2 ServerProc}

RMI with callback u/ thread (2)

Outline

Motivation

Justification

Oz language

Programming in
Oz
Declarative
model
Comparison with
functional
Declarative
concurrent
model
Port objects
(Agents)

RMI (1)

RMI (2)

Asynchronous
RMI
RMI with
callback u/
thread (1)

⊲

RMI with
callback u/
thread (2)

Distributed
programming

Protocol for DV

Example: P2P
chat

Conclusions
23 / 31

proc {ClientProc Msg}
case Msg
of work(?Z) then Y in

{Send Server calc(10.0 Y Client)}
thread Z=Y+100.0 end

[] delta(?D) then
D=1.0

end
end
Client={NewPortObject2 ClientProc}
{Browse {Send Client work($)}}

� adding new protocols is easy
� and fun

Distributed programming

Outline

Motivation

Justification

Oz language

Programming in
Oz
Declarative
model
Comparison with
functional
Declarative
concurrent
model
Port objects
(Agents)

RMI (1)

RMI (2)

Asynchronous
RMI
RMI with
callback u/
thread (1)

RMI with
callback u/
thread (2)

⊲
Distributed
programming

Protocol for DV

Example: P2P
chat

Conclusions
24 / 31

Mozart is an Oz VM + libraries

� network transparency

– almost no changes of code to distribute

� network awareness

– can change entity (DV, cell, port, value) distribution
protocols

– protocols: stationary, mobile, eager/lazy copying, ...

� openness
� fault tolerance

– can install asyncronous watchers on entities

Protocol for DV

Outline

Motivation

Justification

Oz language

Programming in
Oz
Declarative
model
Comparison with
functional
Declarative
concurrent
model
Port objects
(Agents)

RMI (1)

RMI (2)

Asynchronous
RMI
RMI with
callback u/
thread (1)

RMI with
callback u/
thread (2)

Distributed
programming

⊲
Protocol for
DV

Example: P2P
chat

Conclusions

25 / 31

� Manager on one site
� Proxies on all sites

Example: P2P chat

Outline

Motivation

Justification

Oz language

Programming in
Oz

⊲
Example: P2P
chat

Multiport object

Agents

Track connected
users

Conclusions

26 / 31

Multiport object

Outline

Motivation

Justification

Oz language

Programming in
Oz

Example: P2P
chat

⊲
Multiport
object

Agents

Track connected
users

Conclusions

27 / 31

� port object (agent) with state
� maintains list of ports
� broadcasts messages

Multiport
Ports
FMessages

add(Key Port ?Result)
remove(Key Port ?Result)
message(M)
status(?Ports ?FMessages)

� on add(Key Port ?Result)

– adds Port with name Key to the list
– binds Result to true or false

Agents

Outline

Motivation

Justification

Oz language

Programming in
Oz

Example: P2P
chat

Multiport object

⊲ Agents

Track connected
users

Conclusions

28 / 31

Multiport
Ports
FMessages

add(Key Port ?Result)
remove(Key Port ?Result)
message(M)
status(?Ports ?FMessages)

P2P Chat
Multiport

new(Name Port)
says(...)
say(T)

Chat GUI
Names

says(T who:Who)
add(Name)
remove(Name)

Other P2P Chat
...

...

add,remove

message(says)

status

says say

new,says

Track connected users

Outline

Motivation

Justification

Oz language

Programming in
Oz

Example: P2P
chat

Multiport object

Agents

⊲

Track
connected
users

Conclusions

29 / 31

� GUI needs to show connected peers

– constantly update it

� Multiport holds unbound variable for future events
(messages)

– shares on status(?Ports ?FMessages) message

fun {MultiPortProc State Message}
state(ports:Ps futureMessages:Fs) = State
NewFs

in
Message|NewFs = Fs
...
state(ports:Key#P|Ps futureMessages:NewFs)

end

Conclusions

Outline

Motivation

Justification

Oz language

Programming in
Oz

Example: P2P
chat

⊲ Conclusions

Wrap up

30 / 31

Wrap up

Outline

Motivation

Justification

Oz language

Programming in
Oz

Example: P2P
chat

Conclusions

⊲ Wrap up

31 / 31

� concurrent programming can be simple and fun

– without mutable variables

� Oz/Mozart is a great platform to play with concurrent
and distributed programming

Limitations

� futures vs logic variables

– allow to determine dataflow
– static dataflow -> static type inference

� dataflow variables are not good for theory

– are futures as expressive?

	Outline
	Motivation
	Justification
	Oz language
	Oz (declarative) kernel
	Dataflow variables
	Single-assignment store
	Variables and values
	Partial values
	Dataflow
	Ports
	Other features

	Programming in Oz
	Declarative model
	Comparison with functional
	Declarative concurrent model
	Port objects (Agents)
	RMI (1)
	RMI (2)
	Asynchronous RMI
	RMI with callback u/ thread (1)
	RMI with callback u/ thread (2)
	Distributed programming
	Protocol for DV

	Example: P2P chat
	Multiport object
	Agents
	Track connected users

	Conclusions
	Wrap up

