
Private computations on humans

Interactive seminar on privacy-preserving data mining

Dan Bogdanov

Mandatory graph

The plans for tonight

- First, we gather some data while preserving everyones' privacy.
- Then we will process the data with privacy-preserving methods.
- Finally, we analyze the method and look at more interesting cases.

Privacy-preserving data collection

We need volunteers

- We will have three data miners.
- Three people will make one miner.
- Please, nine volunteers.
 - Two pens or pencils per team.
 - One (or two) calculators per team.

Role distribution

- Distribute the roles in the miners.
 - The Database stores incoming data.
 - The Processor performs computations.
 - The Network does message exchange.

One slide of theory

- Assume that you have a value s.
- Generate values $s_1, s_2 \leftarrow \mathbb{Z}_n$.
- Find $s_3 = s s_1 s_2 \mod n$.
- Learning up to two of the values s_i will reveal nothing about s_i .
- This is a secret sharing scheme.

Collecting private data

- I. Choose your private value s.
- 2. Divide it into shares s_1, s_2 and s_3 .
- 3. Securely send the three shares to three separate data miners.

Today's example

- The miners are going to gather and process the data.
- Everyone else will be clients.
- We will find the average age and income of the people in this room.
- Don't worry privacy is preserved :)

The task

- Use secret sharing to hide your age and monthly income.
 - The age is in years, the income in Estonian kroons, after tax deductions. Use integers.
- On each of the three slips write:
 - your first name and initial of the surname
 - one share of both the age and income

Cheat sheet

- Let *s* be your secret value.
- Generate values $s_1, s_2 \leftarrow \mathbb{Z}_{1000000}$.
 - Compute $s_3 = s s_1, s_2 \mod 1000000$.

First name and initial:

Dan BAge (in years):

834756 Monthly income (EEK): 65783 First name and initial:

Dan B

Age (in years):

234993

Monthly income (EEK): 340832 First name and initial:

Dan B

Age (in years):

930276

Monthly income (EEK): Brod istagrid

Cheat sheet

First name and initial:

Dan BAge (in years):

834756 Monthly income (EEK): 65783 First name and initial:

Dan B

Age (in years):

234993 Monthly income (EEK): 340832 First name and initial:

Age (in years):

930276 Monthly income (EEK): 3rd Share

- Clients send each piece to a separate miner by raising your hand when you're ready.
- Miners the Network will collect the inputs and the Database will write them in the table.

The interactive part

- Why was the privacy preserved?
- What kinds of attacks are there?
 - I. How could the data miners attack?
 - 2. How could the clients attack?
 - 3. How could the outsiders attack?
- Is it better than standard systems?

Processing the data

First slide of theory

- We have shared values \boldsymbol{u} and $\boldsymbol{v}.$
- We want to compute $u \oplus v$.
- This is called share computing.
- It is usually achieved with secure multi-party computation protocols.

Addition is easy

- We are using the additive secret sharing scheme.
- The scheme is (+,+)-homomorphic.
- When we add the shares, we get the shares of the sum.
- Let's do this now.

The task

- In each data miner the Processor should add all the shares together.
- The addition should be $\mod 10^6$
- The Database should verify the computations.
- Clients, try to predict the results.

The interactive part

- Why was the privacy preserved?
- What kinds of attacks are there?
 - I. How could the data miners attack?

Publishing the results

Straight to the point

 We need three volunteers from the clients. You will be data analysts.

 Request computation results from the data miners via the Network

Number of people:

MI #people

Sum of ages:

SUM_age₁ Sum of incomes: SUM_inCome₁ Number of people:

M2 #people

Sum of ages:

SUM_age2

Sum of incomes: SUM_inCome₂ Number of people:

M3 #people

Sum of ages:

SUM_age3

Sum of incomes: SUM_income₃

The reconstruction

- Analysts should verify that the number of people match.
- Now separately add together the shares of age and income.
- Divide both results by the number of people.
- Say the results out loud.

The interactive part

- Why was the privacy preserved?
- Do the results seem to be correct?
- What can go wrong during the reconstruction process?

Private multiplication

One slide of theory

- Multiplication can't be done locally, given the secret sharing we used.
- The miners have to exchange information about inputs.
- How to do that without losing the privacy guarantees?

Protocol setup

- The data miners will be the same.
- We need two factors as inputs.
- We need two volunteers.
- Both volunteers pick an input factor and divide it into shares.
- Send it to the data miners.

Round 1, generate!

- We start by creating randomness.
- Miner *i* will choose random values $r_{ij}, r_{ik}, s_{ij}, s_{ik}, t_{ij}$ where *j* is the number of the next miner and *k* is the previous miner.
- Send each value m_{ij} to miner j.

Round 2, hide values!

Hide the shares with randomness:

 $\hat{a}_{ij} \leftarrow u_i + r_{ki}$ $\hat{b}_{ij} \leftarrow v_i + s_{ki}$ $\hat{a}_{ik} \leftarrow u_i + r_{ji}$ $\hat{b}_{ik} \leftarrow v_i + s_{ji}$

• Send each value m_{ij} to miner j.

Round 3, compute!

Compute shares of the product:

 $w_i \leftarrow u_i v_i + u_i \hat{b}_{ji} + u_i \hat{b}_{ki}$

 $+ v_i \hat{a}_{ji} + v_1 \hat{a}_{ki} - \hat{a}_{ij} \hat{b}_{ji}$

 $-\hat{b}_{ij}\hat{a}_{ji}+r_{ij}s_{ik}+s_{ij}r_{ik}$

 $-t_{ij}+t_{ki}$.

Publish results

- Publish the shares of w as before.
- The volunteers can verify, if their factors exist in the product.

The interactive part

- Why was the privacy preserved?
- Is this protocol easier to attack than the addition protocol?
- Why?
- Where is the performance bottleneck in such protocols?

More multiplications

- Can we send the values for more than one multiplication in a single message?
- Do we get the same security?
- How would you multiply 1000 values together?

1000 multiplications

- How would you usually do this?
- Is this optimal in share computing?
- How many protocol executions?
- How could we decrease the number of protocol executions?

If you want more, find out about

sharemind

http://sharemind.cs.ut.ee/