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Overview

◮ Cellular automata (ca) are synchronous distributed systems
where the next state of each device only depends on the
current state of its neighbors.

◮ Their implementation on a computer is straightforward,
making them very good tools for simulation and qualitative
analysis.

◮ It is instead very difficult to recover the properties of the
global dynamics by only looking at the local description.
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Life is a Game

Ideated by John Horton Conway (1960s) popularized by Martin
Gardner.
The checkboard is an infinite square grid.
Each case of the checkboard is “surrounded” by those within a
chess’ king’s move, and can be “living” or “dead”.

1. A “dead” case surrounded by exactly three living cases,
becomes living.

2. A living case surrounded by two or three living cases, survives.

3. A living case surrounded by one or no living cases, dies of
isolation.

4. A living case surrounded by four or more living cases, dies of
overpopulation.
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Simple rule, complex behavior

The structures of the Game of Life can exhibit a wide range of
behaviors.
This is a glider, which repeats itself every four iterations, after
having moved:

Gliders can transmit information between regions of the
checkboard.
Actually, using gliders and other complex structures, any planar
circuit can be simulated inside the Game of Life.
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Glider in motion, t = 0
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Glider in motion, t = 1
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Glider in motion, t = 2
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Glider in motion, t = 3
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Glider in motion, t = 4
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The ingredients of a recipe

A cellular automaton (ca) is a quadruple A = 〈d , Q,N , f 〉 where

◮ d > 0 is an integer—dimension

◮ Q = {q1, . . . , qn} is finite nonempty—set of states

◮ N = {n1, . . . , nk } is a finite subset of Z
d—neighborhood

◮ f : QN → Q is a function—local map

Special neighborhoods are:

◮ the von Neumann neighborhood of radius r

vN(r) = {x ∈ Z
d |

∑d
i=1 |xi | ≤ r }

◮ the Moore neighborhood of radius r

M(r) = {x ∈ Z
d | max1≤i≤d |xi | ≤ r }
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For d = 2, this is von Neumann’s neighborhood vN(1)...
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and this is Moore’s neighborhood M(1).
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Configurations

A d-dimensional configuration is a map c : Z
d → Q.

We consider the following distance on configurations:

if c1 and c2 differ on M(n) but coincide on M(n − 1)

then dM(c1, c2) = 2−n

Two configurations are “near” according to dM iff they are “equal
on a large zone around the origin”.
dM induces the product topology—which makes QZ

d
compact.

We also consider translations given by

cx(y) = c(x + y) for all y ∈ Z
d
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From local to global

Let A = 〈d , Q,N , f 〉 be a ca.

The global map of A is FA : QZ
d → QZ

d
defined by

(FA(c))(x) = f (c(x + n1), . . . , c(x + nk))

We say that A is injective, surjective, etc. if FA is.
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Hedlund’s theorem (1969)

Let F : QZ
d → QZ

d
.

The following are equivalent:

1. F is a ca global map

2. F is continuous and commutes with the translations

Reason why:

◮ translation invariance ⇒ only need to determine F (c)(0)

◮ QZ
d

compact ⇒ F uniformly continuous ⇒ F (c)(0) only
depends on c |

M(n) for n large enough

Consequence: a composition of ca yields a ca.
(This can also be seen from the local rules.)
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Special configurations and states

◮ Periodic configurations cover the d-dimensional space with a
repeated regular pattern.

◮ q-finite configurations only have finitely many points in states
other than q.

◮ Quiescent states satisfy f (q, . . . , q) = q.
In this case, we call A(q) the restriction of A to q-finite
configurations.

The state 0 in Conway’s Game of Life is quiescent.
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Garden-of-Eden configuration and orphan patterns

A Garden-of-Eden (GoE) for a ca A is a configuration c that has
no predecessor according to the global law of A—that is,

FA(c ′) 6= c ∀c ′ ∈ QZ
d

A pattern p is orphan if every configuration where it occurs is a
GoE.
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An orphan pattern for a simple ca

Consider the AND ca on two neighbors

◮ d = 1

◮ Q = {0, 1}

◮ N = {0, 1}

◮ f (a, b) = a AND b

The pattern 101 is orphan:

· · · 1 0 1 · · · ·
· · · 1 1 1 1 · · ·
· · · · ↑ · · · · ·
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The Garden-of-Eden lemma

Let A be a ca. The following are equivalent:

1. A has a GoE configuration

2. A has an orphan pattern

Proof:

◮ For each n, consider the restriction pn of c to M(n).

◮ A has no orphan pattern ⇒ each pn has a predecessor ⇒
extend that to a configuration c ′

n.

◮ QZ
d

compact ⇒ the sequence {c ′
n} has a limit point c ′.

◮ Then FA(c ′) = c by continuity.

Corollary: ca surjectivity is co-r.e.
Reason why: try all patterns until one has no predecessors.
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“Not injectivity, but almost”

Cellular automata are “not finitar, but almost”.
It seems reasonable that surjectivity for ca may be equivalent to
“not injectivity, but almost”.
Say that two distinct patterns p1, p2 : E → Q are mutually erasable
(m.e.) for A if

◮ (ci )|E = pi and

◮ (c1)|Zd\E = (c2)|Zd\E

imply FA(c1) = FA(c2).
Call pre-injective a ca that has no two m.e. patterns.
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Moore-Myhill’s theorem (1962)

The following are equivalent:

1. A is surjective

2. A is pre-injective

Reason why:
◮ Call boundary of E (w.r.t. N ) the sets of neighbors of points

of E that are not in E

◮ Then the size of the boundary of a dD hypercube is bounded
by a polynomial of degree d − 1

◮ The thesis follows by a counting argument

Corollary: (Richardson, 1972)

1. injective ca are surjective

2. if A has a quiescent state q, then

A surjective ⇔ A(q) injective
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A surjective, non-injective ca

Let d = 1, Q = {0, 1}, N = {−1, 0, 1}, f (a, b, c) = a ⊕ c ,

◮ Non-injectivity: put

c0(x) = 0 ∀x ∈ Z ; c1(x) = 1 ∀x ∈ Z

then FA(c0) = FA(c1) = c0.

◮ Surjectivity:

1. for every a and k, the equation a⊕ x = k has a unique solution
2. for every b and k, the equation x ⊕ b = k has a unique solution

Thus every configuration has exactly four predecessors.
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Balancement

Let A = 〈d , Q, M(r), f 〉 be a ca.
(Observe that all ca may be written as such.)

For each n, define Fn : Q{1,...,n+2r}d → Q{1,...,n}d as

(Fn(p))(x) = f (p(x + n1), . . . , p(x + n|M(r)|))

We say that A is n-balanced if

|(Fn(p))−1| = Q(n+2r)d−nd

∀p ∈ Q{1,...,n+2r}d ,

i.e., if every pattern on a d-hypercube of side n has the same
number of pre-images.
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A 1-balanced, nonsurjective ca

The majority ca is defined by the local function

f (a, b, c) =

{
0 if a + b + c ≤ 1
1 if a + b + c ≥ 2

Then the string 01001 is a GoE:

· · · 0 1 0 0 1 · · ·
· · · 1 0 1 0 0 · · ·
· · · ↑ · · ·
· · · 0 1 0 · · ·
· · · ↑ · · ·
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The balancement theorem (Maruoka and Kimura, 1976)

Let A = 〈d , Q, M(r), f 〉, U ⊆ Z
d . The following are equivalent:

1. A is surjective

2. A is n-balanced for all n

Reason why:

◮ Boundary grows slower than support

◮ If n-balanced for all n then no pattern is orphan

◮ If not n-balanced for some n, employ “rarest” patterns to find
(larger) orphan pattern
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Loss of output state in ca

◮ The Garden-of-Eden theorem says that non-surjective ca are
precisely those that lose output state within finite range

◮ How does one measure the amount of lost state?

Given A = 〈d , Q,N , f 〉, let Outf (n) be the number of non-orphan
patterns with support a d-hypercube of side n.
Consider then the loss of state at side n

ΛA(n) = nd − log|Q| Outf (n)

measured in qits (q = |Q |; 1 qit=log2 q bits)
Then A is surjective iff ΛA is identically zero.
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How much information do non-surjective ca lose?

Theorem (Capobianco, 2008)
If A is nonsurjective then limn→∞ ΛA(n) = +∞
Proof: (for d = 1)

◮ “Large” non-orphan is juxtaposition of “small” non-orphans
⇒ Outf (m + n) ≤ Outf (m) · Outf (n) for all m and n

◮ By Fekete’s lemma, there exists δ < 1 such that

log|Q| Outf (n)

n
< δ

for all n large enough

◮ For those values of n, ΛA(n) > n · (1 − δ)
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The invertibility problem

Reversibility

A ca A is reversible if

1. A is invertible, and

2. F−1
A is the global evolution function of some ca.

Thus, a ca is reversible iff the reverse ca exists.
This seems more than just existence of inverse global evolution.
Reversible ca are important in physical modelization because
Physics, at microscopical scale, is reversible.
Fact ca reversibility is r.e.
Reason why: try composing A with other ca in all possible ways
until a combination yields the identity ca.
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Richardson’s reversibility principle (1972)

The following are equivalent:

1. A is reversible

2. A is bijective

Thus, existence of inverse ca comes at no cost from existence of
inverse global evolution.
Reason why:

◮ QZ
d

compact metrizable ⇒ F−1
A continuous

◮ FA commutes with shift ⇒ F−1
A does

◮ apply Hedlund’s theorem
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A scheme of the current situation

Reversible
(r.e.)

Properly
Surjective

Non−Surjective
(r.e.)
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Can reversibility be checked?

Let C be a class of cellular automata.
The invertibility problem for C states:

given an element A of C,
determine whether FA is invertible.

Meaning: invertibility of the global dynamics of any ca in C can be
inferred algorithmically by looking at its local description.

Silvio Capobianco



Introduction
Surjectivity
Reversibility

From infinite to finite
Conclusion

There and back again
The invertibility problem

One is too little...

Theorem (Amoroso and Patt, 1972)
The invertibility problem for 1D ca is decidable.
Reason why:

◮ surjectivity of 1D ca can be determined via a suitable graph

◮ injectivity of 1D surjective ca can be checked “within finite
range”

Additional results:

1. surjectivity of 1D ca is decidable.

2. there are computable bounds for inverse neighborhood radius
of 1D ca—though none is known that is polynomial
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... but two is too much

“Although the techniques we employ are in principle adaptable to

arrays of higher dimension, it turns out that they are difficult to

manage beyond dimension one.”

Theorem (Kari, 1990)
The invertibility problem for 2D ca—and consequently for dD ca

with d > 2—is undecidable.
Reason why: undecidability of Hao Wang’s Tiling Problem:

given a set of square tiles with colored sides,
determine if there is a tiling of the plane

where pairs of adjacent sides always have same color
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There and back again
The invertibility problem

Kari’s method

◮ Consider a set of tiles T .

◮ Consider a special set of tiles S , whose tiles also have arrows.
(This set has a special, “plane filling” property.)

◮ Construct a ca with Q = T × S × {0, 1} and whose rule says:
◮ if both tilings are correct then XOR with pointed neighbor
◮ otherwise do nothing

◮ Then there is a valid tiling with T iff the ca is non-reversible.

Corollary: for d ≥ 2 there is no computable bound for inverse
neighborhood radius.
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From infinite to finite

◮ For now, we have only considered ca on infinite grids.

◮ We now consider laws induced the same way, on toroidal
supports—equivalently, on periodic configurations.

◮ If A = 〈d , Q,N , f 〉 and a hypercube of side n contains N ,

call An the transformation induced by A on Q(Z/nZ)d .

◮ We call locally non-reversible those ca local rules that induce
non-surjective transformations for some values of the size n.
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Local (non-)reversibility

Local reversibility is co-r.e.

◮ Reason why: Try all periodic configurations until a GoE is
found.

Reversible ca are locally reversible.

◮ Reason why: A reversible ⇒ (pre)image of a periodic
configuration is also periodic—with same period(s)

Non-surjective ca are locally non-reversible.

◮ Reason why: Extend an orphan pattern to a periodic
configuration.
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A scheme of the updated situation

Reversible
(r.e.)

Properly
Surjective

Non−Surjective
(r.e.)

Class
ResidualLocally

Reversible
Locally Non−Reversible

(r.e.)

Silvio Capobianco



Introduction
Surjectivity
Reversibility

From infinite to finite
Conclusion

The residual class (Toffoli and Margolus, 1990)

It is made of local rules that

◮ always determine reversible ca on hypercubes

◮ always determine properly surjective ca on the whole space

It is non-r.e. (in particular, non-empty)
Reason why:

◮ Suppose otherwise

◮ Then global non-reversibility is union of r.e. properties

◮ But global reversibility is r.e. ⇒ violation of Kari’s theorem
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The complexity issue

We can consider the finitary version of the invertibility problem:

given A and n,
determine if An is reversible

Theorem (Clementi, 1994)
The invertibility problem for hypercubic ca is co-NP-complete.
Reason why: a polynomial reduction such that

◮ a Turing machine stops within given time from empty tape

◮ iff a toroidal 2D ca is non-injective
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Suggested readings

◮ T. Toffoli, N. Margolus. (1990) Invertible cellular automata:
A review. Physica D 45, pp. 229–253.
http://pm1.bu.edu/~tt/publ/ica.ps

◮ J. Kari. (2005) Theory of cellular automata: a survey. Theor.

Comp Sci. 334, pp. 3–33.
doi:10.1016/j.tcs.2004.11.021

◮ T. Toffoli, S. Capobianco, P. Mentrasti. (2008) When—and
how—can a cellular automaton be rewritten as a lattice gas?
Theor. Comp Sci. 403, pp. 71–88.
doi:10.1016/j.tcs.2008.04.047
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Thank you for attention!
Any questions?

Silvio Capobianco
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