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This work in context
• I am interested in:

• Semantics of programming languages based on 
lambda-calculus.

• Formalised in type theoretic theorem provers 
such as Agda, Epigram and Coq

• In these systems:

• Proofs and programs are the same

• The types of programs can express their 
specifications



What’s the problem?

• Doing these things in detail, as you are 
forced to do in a theorem prover, makes it 
very important to use appropriate  
representations of things

• The greater the level of detail, the greater 
the choice of representation

• A general problem for formal mathematics 
and programming language semantics



Finite sets
data Fin : Nat -> Set where
  fzero : Fin (suc n)
  fsuc  : Fin n -> Fin (suc n)

Example usage:
safe_lookup : Fin n -> Array X n -> X

 Fin zero

 Fin (suc zero)

 Fin (suc (suc zero)fzerofsuc fzero

fzero

Pictorial enumeration of the first three instances:



Untyped Lambda calculus

data Lam : Nat -> Set where
  var : Fin n -> Lam n
  λ   : Lam (suc n) -> Lam n
  app : Lam n -> Lam n -> Lam n

The well-scoped lambda terms

Example expressions:

λ (var fzero)            -- identity function
λ (λ (var (fsuc fzero))) -- ‘K’ combinator



What can you go from 
here?

• Define syntactic operations:

• Weakening, substitution, etc.

• Implement an evaluator/normaliser

• Extend it:

• Data types, effects, annotate with simple 
or dependent types, etc.



Implementing Weakening

weak : Lam n -> Lam (suc n)
weak (var x)   = var (fsuc x)
weak (app t u) = app (weak t) (weak u)
weak (λ t)     = λ ? -- we’re stuck

We need to generalise from adding a new variable at the 
end of the context to an arbitrary position

Weakening adds a fresh variable at the ‘zero’ position and 
increments the rest



Thinning: A solution?
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new variable

tlam : Fin (suc n) -> Lam n -> Lam (suc n)
tlam x (var y)   = var (tvar x y)
tlam x (app t u) = app (tlam x t) (tlam x u)
tlam x (λ t)     = λ (tlam (fsuc x) t) 

We implement it for terms as follows:

Ordinary weakening for terms is now easy:
weak : Lam n -> Lam (suc n)
weak t = tlam fzero t



A better solution: Order 
Preserving Embeddings
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data OPE : Nat -> Nat -> Set where
  done : OPE zero zero
  skip : OPE m n -> OPE m (suc n)
  keep : OPE m n -> OPE (suc m) (suc n)

The identity OPE (id : OPE n n) is recursively defined

The weakening OPE is a now easy to define:

oweak : OPE n (suc n)
oweak = skip id

OPEs



olam : OPE m n -> (Lam m -> Lam n)
olam f (var x)   = var (ovar x)
olam f (app t u) = app (olam f t) (olam f u)
olam f (λ t)     = λ (olam (keep f) t)

We can easily define the following operation lifting an OPE 
to a function on lambda expressions

Action of OPEs

Ordinary weakening for terms is now easy:

weak : Lam n -> Lam (suc n)
weak t = olam oweak t



OPEs form a category
• The objects are natural numbers: 0, 1, ...

• The morphisms are OPEs: f, g, ...

• For every object n an OPE id : OPE n n

• For every  f : OPE l m  and  g : OPE m n 
there is an operation • such that                       
f • g :  OPE l n

• and the following properties hold:

• f • id = f and id • f = f

• f • (g • h) = (f • g) • h



Why is this a good 
representation?

• Avoids reasoning about functions, first 
order structures are easier to deal with

• Avoids junk, captures only what we want

• Simple (elegant?) algebraic structure



Big-step Normalisation

• Central part of my thesis:

• based on “Big-step Normalisation” by 
Altenkirch and Chapman

• Published (soon!) in Special issue of 
Journal of Functional Programming. 2009. 
Eds. C. McBride and T. Uustalu

• Big win: simplified reasoning about 
weakenings; avoids problematic reasoning 
about context extensions.



Dependent types

• OPEs are helpful here for well-typed 
terms, as even defining variables requires 
reference to weakening.

• If we implement weakening by referring to 
variables we quickly get into a knot.

• OPEs avoid this and the fact the form a 
category become an integral part of the 
definition.


