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Stone duality

Marshall Harvey Stone (1936)

Totally disconnected compact spaces

(Stone spaces)

m

Boolean algebras.

This was the starting point of a whole area of

research known as Stone duality.

Dualities are generally good for translating prob-

lems form one space to another where it could

be easier to solve.
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Stone duality

Marshall Harvey Stone (1937)

Hillary Priestley (1970)

spectral spaces (T0)

m 1937

bounded distributive lattices.

m 1970

Priestley spaces (Hausdorff)

Definition. A Priestley space is a compact

ordered space 〈X;T,≤〉 such that for every x, y ∈
X, if x 6≥ y then there exists a clopen upper set

U such that y ∈ U and x /∈ U .

A spectral space is a stably compact space

with a basis of compact open sets.
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Semantics of programming languages:

is about developing techniques for designing

and describing programming languages.

Semantics approaches include:

• axiomatic (the program logic) – an exam-

ple is Hoare logic.

• operational – an example is Java Abstract

Machine.

• denotational – gives mathematical mean-

ing of language constructs.
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Denotational semantics:

uses a category to interpret programming lan-

guage constructs;

• data types ⇐⇒ objects,

• programs ⇐⇒ morphisms.
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Domains – Dana Scott (1969):

Sets, topological spaces, vectors spaces, and

groups are not a good choice for denotational

semantics.

Domains = ordered sets + certain conditions.

From now on:

• data types ⇐⇒ domains,

• programs ⇐⇒ functions between domains.

Scott topologies on domains to measure com-

putability.
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Stone duality and computer science

Samson Abramsky(1991)

Logical representation for bifinite domains (a

particular Cartesian-closed category of domains).

In this framework,

• bifinite domains ⇐⇒ propositional theories,

• functions ⇐⇒ program logic axiomatising

the properties of domains.

The domain interpretation via bifinite domains

and the logical interpretation are Stone duals

to each other and specify each other up to

isomorphism.
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Stably compact spaces

Abramsky’s work was extended by Achim Jung

et al to a class of topological spaces, stably

compact spaces defined as follows.

Definition. A stably compact space is a topo-

logical space which is sober, compact, locally

compact, and for which the collection of com-

pact saturated subsets is closed under finite

intersections, where a saturated set is an in-

tersection of open sets.

These spaces contains coherent domains in their

Scott topologies.

Coherent domains include bifinite domains and

other interesting Cartesian-closed categories of

domains such as FS.
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Achim Jung’s work in more detail

If 〈X, T〉 is a stably compact space then its lat-
tice BX of observable properties is defined as
follows:

BX = {〈O, K〉 | O ∈ T, K ∈ KX and O ⊆ K},
where KX is the set of compact saturated sub-
sets of X.

The computational interpretation is as follows.
For a point x ∈ X and a property 〈O, K〉 ∈ BX:

• x ∈ O ⇐⇒ x satisfies the property 〈O, K〉,

• x ∈ X \K ⇐⇒ x does not satisfy the prop-
erty 〈O, K〉, and

• x ∈ K \O ⇐⇒ the property 〈O, K〉 is unob-
servable for x.
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Proximity relation

On the lattice BX of observable properties a

binary relation (strong proximity relation)was

defined as:

〈O, K〉 ≺ 〈O′, K′〉 def⇐⇒ K ⊆ O′.

The computational interpretation of the strong

proximity relation ≺ can be stated as follows:

〈O, K〉 ≺ 〈O′, K′〉

m

(∀x ∈ X) either 〈O′, K′〉 is observably satisfied for x

or 〈O, K〉 is (observably) not satisfied for x.

Thus we can say that ≺ behaves like a classical

implication.
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BX and ≺ abstractly:

Definition. A binary relation ≺ on a bounded

distributive lattice 〈L;∨,∧,0,1〉 is called a prox-

imity if, for every a, x, y ∈ L and M ⊆fin L,

(≺≺) ≺ ◦ ≺ = ≺,

(∨− ≺) M ≺ a ⇐⇒
∨

M ≺ a,

(≺ −∧) a ≺ M ⇐⇒ a ≺
∧

M,

(≺ −∨) a ≺ x ∨ y =⇒ (∃ x′, y′ ∈ L) x′ ≺ x, y′ ≺ y

and a ≺ x′ ∨ y′,
(∧− ≺) x ∧ y ≺ a =⇒ (∃ x′, y′ ∈ L) x ≺ x′, y ≺ y′

and x′ ∧ y′ ≺ a.

A strong proximity lattice is a bounded dis-

tributive lattice 〈L;∨,∧,0,1〉 together with a

proximity relation ≺ on L.

The lattice order is always a proximity relation.
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Approximable relations:

Capturing continuous maps between stably

compact spaces

Definition. Let 〈L1;∨,∧,0,1;≺1〉 and

〈L2;∨,∧,0,1;≺2〉 be strong proximity lattices

and let ` be a binary relation from L1 to L2.

The relation ` is called approximable if for ev-

ery a ∈ L1, b ∈ L2, M1 ⊆fin L1 and M2 ⊆fin L2,

(` − ≺2) ` ◦ ≺2 = `,

(≺1 − `) ≺1 ◦ ` = `,

(∨− `) M1 ` b ⇐⇒
∨

M1 ` b,

(` −∧) a ` M2 ⇐⇒ a `
∧

M2,

(` −∨) a `
∨

M2 =⇒ (∃ N ⊆fin L1) a ≺1
∨

N

and (∀n ∈ N)(∃ m ∈ M2) n ` m.
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Basic aim of this work

The primary aim is to introduce Priestley

spaces to the world of semantics of pro-

gramming languages.

This can be done by answering the following

question:

How can Priestley duality for bounded distribu-

tive lattices be extended to strong proximity

lattices?

Logically the answer is interesting because the-

ories (or models) of BX are represented by

prime filters, which are the points of the Priest-

ley dual space of BX as a bounded distributive

lattice.
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Apartness relations:

To answer the question (MFPS 2006) we equip

Priestley spaces with the following relation:

Definition. A binary relation ∝ on a Priest-

ley space 〈X;≤, T〉 is called an apartness if, for

every a, c, d, e ∈ X,

(∝T) ∝ is open in 〈X;T〉 × 〈X;T〉
(↓∝↑) a ≤ c ∝ d ≤ e =⇒ a ∝ e,

(∝∀) a ∝ c ⇐⇒ (∀b ∈ X) a ∝ b or b ∝ c,

(∝↑↑) a ∝ (↑c ∩ ↑d) =⇒ (∀b ∈ X) a ∝ b, b ∝ c

or b ∝ d,

(↓↓∝) (↓c ∩ ↓d) ∝ a =⇒ (∀b ∈ X) d ∝ b, c ∝ b

or b ∝ a.

The relation 6≥ is always an apartness.
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The answer is:

The dual of a strong proximity lattice L

is the corresponding Priestley space of

prime filters, equipped with the apart-

ness,

F ∝≺ G
def⇐⇒ (∃ x ∈ F )(∃ y /∈ G) x ≺ y.

Vice versa, the dual of a Priestley space X

with apartness ∝ is the lattice of clopen

upper sets equipped with the strong

proximity,

A ≺∝ B
def⇐⇒ A ∝ (X \B).

Up to isomorphism, the correspondence

is one-to-one.
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Concerning the morphisms...

We proof that:

Continuous order-preserving maps that

reflect the apartness relation are in one-

to-one correspondence with lattice ho-

momorphisms that preserve the strong

proximity relation.

Let X1 and X2 be Priestley spaces with

apartness relation. Then (weakly) sep-

arating relations from X1 to X2 are in

one-to-one correspondence with (weakly)

approximable relations from the dual of

X1 to the dual of X2.
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Separating relations:

Definition. Let 〈X1;≤1;T1〉 and 〈X2;≤2, T2〉
be Priestley spaces with apartness relations ∝1

and ∝2, respectively, and let n be a binary

relation from X1 to X2. The relation n is called

separating (or a separator) if it is open in T1×
T2 and if, for every a, b ∈ X1, d, e ∈ X2 and

{di | 1 ≤ i ≤ n} ⊆ X2,

(↓1n↑2) a ≥1 b n d ≥2 e =⇒ a n e,

(∀n) b n d ⇐⇒ (∀c ∈ X1) b ∝1 c or c n d,

(n∀) b n d ⇐⇒ (∀c ∈ X2) b n c or c ∝2 d,

(nn↑) b n
⋂
↓di =⇒ (∀c ∈ X1) b ∝1 c

or (∃ i) c n di.

The relation n is called weakly separating (or

weak separator) if it satisfies all of the above

conditions, but not necessarily (nn↑).

17



Priestley and stably compact spaces

What is the direct relationship between

the Priestley spaces equipped with apart-

ness relations stably compact spaces?

The answer is the following:

Theorem. Let 〈X;≤, T〉 be a Priestley space

with apartness ∝. Then 〈core(X), T′〉, where

core(X) = {x ∈ X | {y ∈ X | x ∝ y} = X \ ↓x}
and

T′ = {O∩core(X) | O is an open lower subset of X},
is a stably compact space.

Moreover, every stably compact space can be

obtained in this way and is a retract of a Priest-

ley space with apartness.

18



Concerning morphisms again ...

We show that continuous maps between

stably compact spaces are equivalent

to separators between Priestley spaces

equipped with apartness.
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Thanks for your attention!
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