Inductive Cyclic Data Structures

Makoto Hamana

Department of Computer Science, Gunma University, Japan
(joint with Tarmo Uustalu and Varmo Vene)

1st, Febrary, 2009
http://www.cs.gunma-u.ac.jp/~hamana/

This Work

- How to inductively capture cylces
\triangleright Intend to apply it to functional programming

Introduction

\triangleright Terms are a convenient and concise representation of inductive data structures in functional programming
(i) Representable by inductive datatypes
(ii) pattern matching, structural recursion
(iii) Reasoning: structural induction
(iv) Initial algebra property
\triangleright But...

Introduction

\triangleright How about cyclic data structures?

\triangleright How can we represent this data in functional programming?
\triangleright Give up to use pattern matching, composition, structural recursion and structural induction
\triangleright Not inductive (usually believed so)

This Work

- Cyclic Data Structures
(i) Syntax: μ-terms
(ii) Implementation: nested datatypes in Haskell
(iii) Semantics: domains and traced categories
(iv) Application: A syntax for Arrows with loops

Idea

\triangleright A syntax of fixpoint expressions by $\boldsymbol{\mu}$-terms is widely used
\triangleright Consider the simplest case: cyclic lists

\triangleright This is representable by

$$
\mu x . \operatorname{cons}(5, \operatorname{cons}(6, x))
$$

\triangleright But: not the unique representation

```
\mux.\muy.cons(5, cons(6, x))
\mux.cons(5, \muy.cons(6, \muz.x))
\mux.cons(5, cons(6, \mux.cons(5, cons(6, x))))
```

All are the same in the equational theory of μ-terms.
\triangleright Thus: structural induction is not available

Idea

$\triangleright \mu$-term may have free variable considered as a dangling pointer

$$
\operatorname{cons}(6, x)
$$

"incomplete" cyclic list
\triangleright To obtain the unique representation of cyclic and incomplete cyclic lists, always attach exactly one μ-binder in front of cons:

$$
\mu x_{1} \cdot \operatorname{cons}\left(5, \mu x_{2} \cdot \operatorname{cons}\left(6, x_{1}\right)\right)
$$

\triangleright seen as uniform addressing of cons-cells
\triangleright No axioms
\triangleright Inductive
\triangleright Initial algebra for abstract syntax with variable binding by Fiore, Plotkin and Turi [LICS'1999]

Cyclic Signature and Syntax

\triangleright Cyclic signature $\boldsymbol{\Sigma}$

$$
\begin{aligned}
\text { nil }^{(0)}, & \operatorname{cons}(m,-)^{(1)} \quad \text { for each } m \in \mathbb{Z} \\
& \frac{x, y \vdash x}{\vdash \vdash \mu \cdot \operatorname{cons}(5, \mu y \cdot \operatorname{cons}(6, x))}
\end{aligned}
$$

\triangleright De Bruijn notation:

$$
\vdash \operatorname{cons}(5, \operatorname{cons}(6, \uparrow 2))
$$

\triangleright Construction rules:

$$
\frac{1 \leq i \leq n}{n \vdash \uparrow i} \quad \frac{f^{(k)} \in \Sigma \quad n+1 \vdash t_{1} \cdots n+1 \vdash t_{k}}{n \vdash f\left(t_{1}, \ldots, t_{k}\right)}
$$

Cyclic Lists as Initial Algebra

$\triangleright \mathbb{F}$: category of finite cardinals and all functions between them
\triangleright Def. A binding algebra is an algebra of signature functor on Set $^{\mathbb{F}}$
\triangleright E.g. the signature functor $\boldsymbol{\Sigma}:$ Set $^{\mathbb{F}} \rightarrow$ Set $^{\mathbb{F}}$ for cyclic lists

$$
\Sigma A=1+\mathbb{Z} \times A(-+1)
$$

\triangleright The presheaf of variables: $\mathbf{V}(n)=n$
\triangleright The initial $\mathrm{V}+\Sigma$-algebra $(C$, in $: \mathrm{V}+\Sigma C \rightarrow C)$

$$
C(n) \cong n+1+\mathbb{Z} \times C(n+1) \quad \text { for each } n \in \mathbb{N}
$$

$\triangleright C(n)$: represents the set of all incomplete cyclic lists possibly containing free variables $\{1, \ldots, n\}$
$\triangleright \boldsymbol{C}(0)$: represents the set of all complete (i.e. no dangling pointers) cyclic lists

Cyclic Lists as Initial Algebra

\triangleright Examples

$$
\begin{aligned}
\uparrow 2 & \in C(2) \\
\operatorname{cons}(6, \uparrow 2) & \in C(1) \\
\operatorname{cons}(5, \operatorname{cons}(6, \uparrow 2)) & \in C(0)
\end{aligned}
$$

\triangleright Destructor:

$$
\begin{aligned}
& \text { tail }: C(n) \rightarrow C(n+1) \\
& \operatorname{tail}(\operatorname{cons}(m, t))=t
\end{aligned}
$$

\triangleright Idioms in functional programming: map, fold
\triangleright How to follow a pointer: translation into semantical structures

Cyclic Data Structures as Nested Datatypes

\triangleright Haskell implementation
\triangleright The initial algebra characterisation induces implementation
\triangleright Explains the work [Ghani, Hamana, Uustalu and Vene, TFP'06]
\triangleright Inductive datatype indexed by natural numbers

```
data Zero
data Incr n = One|S n
data CList n}=\mathrm{ Ptr n
```

| Nil
| Cons Int (CList (Incr n))
$\triangleright c f$.
$C(n) \cong n+1+\mathbb{Z} \times C(n+1)$
\triangleright Examples

Ptr (S One)
Cons 6 (Ptr (S One)) :: CList (Incr Zero)
Cons 5 (Ptr (Cons 6 (S One))) :: CList Zero

Cyclic Lists to Haskell's Internally Cyclic Lists

\triangleright Translation

$$
\begin{aligned}
& \operatorname{tra}:: \text { CList } n \rightarrow[[\text { Int }]] \rightarrow[\text { Int }] \\
& \text { tra Nil } \quad p s=[] \\
& \text { tra }(\text { Cons a as) } p s=\text { let } x=a:(\operatorname{tra} a s(x: p s)) \text { in } x \\
& \operatorname{tra}(\operatorname{Ptr} i) \quad p s=\text { nth } i p s
\end{aligned}
$$

\triangleright The accumulating parameter $\boldsymbol{p s}$ keeps a newly introduced pointer \boldsymbol{x} by let
\triangleright Example

tra (Cons 5 (Cons $6(\operatorname{Ptr}(S$ One $)))$) []
$\Rightarrow 5: 6: 5: 6: 5: 6: 5: 6: 5: 6: .$.
\triangleright Makes a true cycle in the heap memory, due to graph reduction
\triangleright Dereference operation is very cheap
\triangleright Better: semantic explanation - to more nicely understand tra

Domain-theoretic interpretation

\triangleright Semantics of cyclic structures has been traditionally given as their infinite expansion in a cpo
\triangleright Fits into nicely our algebraic setting
\triangleright Cppo $_{\perp}$: cpos and strict continuous functions Cppo: cpos and continuous functions

Domain-theoretic interpretation

\triangleright Let $\boldsymbol{\Sigma}$ be the cyclic signature for lists

$$
\text { nil }^{(0)}, \quad \operatorname{cons}(m,-)^{(1)} \quad \text { for each } m \in \mathbb{Z}
$$

\triangleright The signature functor $\boldsymbol{\Sigma}_{\mathbf{1}}: \mathbf{C p p o}_{\perp} \rightarrow \mathbf{C p p o}_{\perp}$ is defined by

$$
\Sigma_{1}(X)=1_{\perp} \oplus \mathbb{Z}_{\perp \perp} \otimes X_{\perp}
$$

\triangleright The initial $\boldsymbol{\Sigma}_{\mathbf{1}}$-algebra \boldsymbol{D} is a cpo of all finite and infinite possibly partial lists
\triangleright Define a clone $\langle\boldsymbol{D}, \boldsymbol{D}\rangle \in \boldsymbol{S e t}^{\mathbb{F}}$ by

$$
\langle D, D\rangle_{n}=\left[D^{n}, D\right]=\operatorname{Cppo}\left(D^{n}, D\right)
$$

\triangleright The least fixpoint operator in Cppo: $\operatorname{fix}(\boldsymbol{F})=\bigsqcup_{i \in \mathbb{N}} \boldsymbol{F}^{\boldsymbol{i}}(\perp)$
$\triangleright\langle\boldsymbol{D}, \boldsymbol{D}\rangle$ can be a $\mathbf{V}+\boldsymbol{\Sigma}$-algebra

$$
\llbracket-\rrbracket: C \longrightarrow\langle D, D\rangle .
$$

Domain-theoretic interpretation

\triangleright The unique homomorphism in Set $^{\mathbb{F}}$

$$
\begin{aligned}
\llbracket-\rrbracket: C & \longrightarrow\langle D, D\rangle \\
\llbracket \text { nil } \rrbracket_{n} & =\lambda \Theta . \text { nil } \\
\llbracket \mu x . \operatorname{cons}(m, t) \rrbracket_{n} & =\lambda \Theta \cdot \mathrm{fix}\left(\lambda x . \operatorname{cons}^{D}\left(m, \llbracket t \rrbracket_{n+1}(\Theta, x)\right)\right. \\
\llbracket x \rrbracket_{n} & =\lambda \Theta \cdot \pi_{x}(\Theta)
\end{aligned}
$$

\triangleright Example of interpretation

$$
\begin{aligned}
\llbracket \mu x . \operatorname{cons}(5, \mu y . \operatorname{cons}(6, x)) \rrbracket_{0}(\epsilon) & =\operatorname{fix}\left(\lambda x \cdot \operatorname { c o n s } ^ { D } \left(5, \operatorname{fix}\left(\lambda y \cdot \operatorname{cons}^{D}\left(6, \pi_{x}(x, y)\right)\right)\right.\right. \\
& =\operatorname{fix}\left(\lambda x \cdot \operatorname{cons}^{D}\left(5, \operatorname{cons}^{D}(6, x)\right)\right. \\
& =\operatorname{cons}(5, \operatorname{cons}(6, \operatorname{cons}(5, \operatorname{cons}(6, \ldots
\end{aligned}
$$

```
tra :: CList \(a \rightarrow[[\) Int \(]] \rightarrow\) [Int ]
tra Nil ps = []
tra (Cons \(a \operatorname{as}) p s=\) let \(x=a:(\operatorname{tra} a s(x: p s))\) in \(x\)
tra \((\operatorname{Ptr} i) \quad p s=\) nth \(i p s\)
```


Interpretation in traced cartesian categories

\triangleright A more abstract semantics for cyclic structures in terms of traced symmetric monoidal categories [Hasegawa PhD thesis, 1997]
\triangleright Let \mathcal{C} be an arbitrary cartesian category having a trace operator Tr

$$
\begin{aligned}
\llbracket n \vdash i \rrbracket & =\pi_{i} \\
\llbracket n \vdash \mu x . f\left(t_{1}, \ldots, t_{k}\right) \rrbracket & =\operatorname{Tr}^{D}\left(\Delta \circ \llbracket f \rrbracket_{\Sigma} \circ\left\langle\llbracket n+1 \vdash t_{1} \rrbracket, \ldots, \llbracket n+1 \vdash t_{1} \rrbracket\right\rangle\right)
\end{aligned}
$$

\triangleright This categorical interpretation is the unique homomorphism

$$
\llbracket-\rrbracket: C \longrightarrow\langle D, D\rangle
$$

to a $\mathrm{V}+\boldsymbol{\Sigma}$-algebra of clone $\langle\boldsymbol{D}, \boldsymbol{D}\rangle$ defined by $\langle\boldsymbol{D}, \boldsymbol{D}\rangle_{n}=\mathcal{C}\left(D^{n}, D\right)$
\triangleright Examples
(i) $\mathcal{C}=$ cpos and continuous functions
(ii) $\mathcal{C}=$ Freyd category generated by Haskell's Arrows

Application: A New Syntax for Arrows

\triangleright Arrows [Hughes'00] are a programming concept in Haskell to make a program involving complex "wiring"-like data flows easier

- Example: a counter circuit


```
newtype Automaton b c = Auto (b -> (c, Automaton b c))
counter :: Automaton Int Int
counter = proc reset -> do
    -- Paterson's notation [ICFP'01]
    rec output <- returnA -< if (reset==1) then 0 else next
        next <- delay 0 -< output+1
    returnA -< output
```


Application: A New Syntax for Arrows

\triangleright Paterson defined an Arrow with a loop operator called ArrowLoop
class Arrow _A => ArrowLoop _A where loop :: _A (b,d) (c,d) -> _A b c
\triangleright Arrow (or, Freyd category)
is a cartesian-center premonoidal category [Heunen, Jacobs, Hasuo'06]
\triangleright ArrowLoop
is a cartesian-center traced premonoidal category [Benton, Hyland'03]
\triangleright Cyclic sharing theory is interpreted in a cartesian-center traced monoidal category [Hasegawa'97]
\triangleright What happens when cyclic terms are interpreted as Arrows with loops?

Application: A New Syntax for Arrows

\triangleright Term syntax for ArrowLoop
\triangleright Example: a counter circuit

\triangleright Intended computation

$$
\mu x . \text { Cond }(\text { reset, Const0, Delay0 }(\operatorname{Inc}(x)))
$$

where reset is a free variable
\triangleright term : : Syntx (Incr Zero)
term $=\operatorname{Cond}(\operatorname{Ptr}(S$ One $)$, Const0, Delay0 $(\operatorname{Inc}(\operatorname{Ptr}(S(S$ One) $))))$

Translation from cyclic terms to Arrows with loops

```
tl :: (Ctx n, ArrowSigStr _A d) => Syntx n -> _A [d] d
tl (Ptr i) = arr (\xs -> nth i xs)
tl (Const0) = loop (arr dup <<< const0 <<< arr (\(xs,x)->()))
tl (Inc t) = loop (arr dup <<< inc <<< tl t <<< arr supp)
tl (Delay0 t) = loop (arr dup <<< delay0 <<< tl t <<< arr supp)
tl (Cond (s,t,u)) = loop (arr dup <<< cond <<< arr (\((x,y),z)-> (x,y,z))
    <<< (tl s &&& tl t) &&& tl u <<< arr supp)
```

\triangleright This is the same as Hasegawa's interpretation of cyclic sharing structures

$$
\begin{aligned}
\llbracket n \vdash i \rrbracket & =\pi_{i} \\
\llbracket n \vdash \mu x . f\left(t_{1}, \ldots, t_{k}\right) \rrbracket & =T r^{D}\left(\Delta \circ \llbracket f \rrbracket_{\Sigma} \circ\left\langle\llbracket n+1 \vdash t_{1} \rrbracket, \ldots, \llbracket n+1 \vdash t_{1} \rrbracket\right\rangle\right)
\end{aligned}
$$

\triangleright Define an Arrow by term

```
term = Cond(Ptr(S One),Const0,Delay0(Inc(Ptr(S(S One)))))
counter' :: Automaton Int Int
counter' = tl term <<< arr (\x-> [x])

\section*{Simulation of circuit}
- Let test_input be
(1) reset (by the signal 1),
(2) count +1 (by the signal 0 ),
(3) reset,
(4) count +1 ,
(5) count \(+1, \ldots\)
```

test_input = [1,0,1,0,0,1,0,1]
run1 = partRun counter test_input -- original
run2 = partRun counter' test_input -- cyclic term

```

In Haskell interpreter
> run1
\([0,1,0,1,2,0,1,0]\)
> run2
\([0,1,0,1,2,0,1,0]\)

\section*{Summary}
\(\triangleright\) Inductive characterisation of cyclic sharing terms
\(\triangleright\) Semantics
\(\triangleright\) Implementations in Haskell
\(\triangleright\) Application of good connections between semantics and functional programming

\section*{Next}
\(\triangleright\) How to handle "sharing" has been clarified
\(\triangleright\) Dependently-typed programming for cyclic sharing structures, in Agda```

