Inductive Cyclic Data Structures

Makoto Hamana

Department of Computer Science, Gunma University, Japan

(joint with Tarmo Uustalu and Varmo Vene)

1st, Febrary, 2009

http://www.cs.gunma-u.ac.jp/~hamana/

This Work

- ▷ How to inductively capture cylces
- ▷ Intend to apply it to functional programming

Introduction

- Terms are a convenient and concise representation of inductive data structures in functional programming
 - (i) Representable by inductive datatypes
 - (ii) pattern matching, structural recursion
 - (iii) Reasoning: structural induction
 - (iv) Initial algebra property
- \triangleright But ...

Introduction

▷ How about cyclic data structures?

- ▷ How can we represent this data in functional programming?
- ▷ Give up to use pattern matching, composition, structural recursion and structural induction
- ▷ Not inductive (usually believed so)

This Work

- Cyclic Data Structures
 - (i) Syntax: μ -terms
 - (ii) Implementation: nested datatypes in Haskell
 - (iii) Semantics: domains and traced categories
 - (iv) Application: A syntax for Arrows with loops

Idea

- \triangleright A syntax of fixpoint expressions by μ -terms is widely used
- ▷ Consider the simplest case: cyclic lists

 \triangleright This is representable by

 $\mu x.cons(5, cons(6, x))$

 \triangleright But: not the unique representation

 $\begin{array}{l} \mu x.\mu y.\operatorname{cons}(5,\operatorname{cons}(6,x))\\ \mu x.\operatorname{cons}(5,\mu y.\operatorname{cons}(6,\mu z.x))\\ \mu x.\operatorname{cons}(5,\operatorname{cons}(6,\mu x.\operatorname{cons}(5,\operatorname{cons}(6,x))))\end{array}$

All are the same in the equational theory of μ -terms.

▷ Thus: structural induction is not available

Idea

 $\triangleright \mu$ -term may have free variable considered as a dangling pointer

 $\mathsf{cons}(6,x)$

"incomplete" cyclic list

 \triangleright To obtain the unique representation of cyclic and incomplete cyclic lists, always attach exactly one μ -binder in front of **cons**:

 $\mu x_1.cons(5, \mu x_2.cons(6, x_1))$

- ▷ seen as uniform addressing of cons-cells
- ▷ No axioms
- \triangleright Inductive
- Initial algebra for abstract syntax with variable binding by Fiore, Plotkin and Turi [LICS'1999]

 \triangleright Cyclic signature Σ

nil⁽⁰⁾,
$$\cos(m, -)^{(1)}$$
 for each $m \in \mathbb{Z}$
$$\frac{x, y \vdash x}{x \vdash \mu y. \cos(6, x)}$$
$$\vdash \mu x. \cos(5, \mu y. \cos(6, x))$$

▷ De Bruijn notation:

 $\vdash \mathsf{cons}(5,\mathsf{cons}(6,\uparrow \! 2))$

 \triangleright Construction rules:

 $rac{1 \leq i \leq n}{n dash \uparrow i} \qquad rac{f^{(k)} \in \Sigma \quad n+1 dash t_1 \ \cdots \ n+1 dash t_k}{n dash f(t_1,\ldots,t_k)}$

- $\triangleright~\mathbb{F}$: category of finite cardinals and all functions between them
- \triangleright **Def.** A binding algebra is an algebra of signature functor on **Set**^{\mathbb{F}}
- \triangleright **E.g.** the signature functor $\Sigma : \mathbf{Set}^{\mathbb{F}} \to \mathbf{Set}^{\mathbb{F}}$ for cyclic lists

$$\Sigma A = 1 + \mathbb{Z} imes A(-+1)$$

- \triangleright The presheaf of variables: V(n) = n
- \triangleright The initial V+ Σ -algebra $(C, \text{ in }: V + \Sigma C \rightarrow C)$

 $C(n) \cong n+1+\mathbb{Z} imes C(n+1)$ for each $n \in \mathbb{N}$

- Designable C(n): represents the set of all incomplete cyclic lists possibly containing free variables $\{1, \ldots, n\}$
- \triangleright C(0): represents the set of all complete (i.e. no dangling pointers) cyclic lists

Cyclic Lists as Initial Algebra

▷ Examples

 $egin{aligned} &\uparrow 2 \in C(2)\ & ext{cons}(6,\uparrow 2) \in C(1)\ & ext{cons}(5, ext{cons}(6,\uparrow 2)) \in C(0) \end{aligned}$

▷ Destructor:

tail : $C(n) \rightarrow C(n+1)$ tail(cons(m, t)) = t

▷ Idioms in functional programming: map, fold

▷ How to follow a pointer: translation into semantical structures

Cyclic Data Structures as Nested Datatypes

- ▷ Haskell implementation
- > The initial algebra characterisation induces implementation
- ▷ Explains the work [Ghani, Hamana, Uustalu and Vene, TFP'06]
- Inductive datatype indexed by natural numbers

```
data Zero

data Incr n = One | S n

data CList n = Ptr n

| Nil

| Cons Int (CList (Incr n))
```

 \triangleright cf. $C(n)\cong n+1+\mathbb{Z} imes C(n+1)$

Examples
 Ptr (S One)
 Cons 6 (Ptr (S One))
 Cons 5 (Ptr (Cons 6 (S One)))
 CList Zero
 11

Cyclic Lists to Haskell's Internally Cyclic Lists

▷ Translation

```
tra :: CList n \rightarrow [[Int]] \rightarrow [Int]tra Nilps = []tra (Cons a as) ps = let x = a : (tra <math>as (x : ps)) in xtra (Ptr i)ps = nth i ps
```

 \triangleright The accumulating parameter ps keeps a newly introduced pointer x by let

 ▷ Example tra (Cons 5 (Cons 6 (Ptr (S One)))) []
 ⇒ 5:6:5:6:5:6:5:6:5:6:...

- \triangleright Makes a true cycle in the heap memory, due to graph reduction
- ▷ Dereference operation is very cheap
- ▷ Better: semantic explanation to more nicely understand tra

Domain-theoretic interpretation

- Semantics of cyclic structures has been traditionally given as their infinite expansion in a cpo
- ▷ Fits into nicely our algebraic setting
- ▷ Cppo⊥: cpos and strict continuous functions
 Cppo : cpos and continuous functions

Domain-theoretic interpretation

 $\,\vartriangleright\,$ Let Σ be the cyclic signature for lists

$$\operatorname{\mathsf{nil}}^{(0)}, \quad \operatorname{\mathsf{cons}}(m,-)^{(1)} \quad \text{for each } m \in \mathbb{Z}.$$

 \vartriangleright The signature functor $\Sigma_1: Cppo_\perp \to Cppo_\perp$ is defined by

$$\Sigma_1(X) = 1_ot \oplus \mathbb{Z}_{otot} \otimes X_ot$$

- Dash The initial Σ_1 -algebra D is a cpo of all finite and infinite possibly partial lists
- $Descript{Define}$ a clone $\langle D,D
 angle\in {f Set}^{\mathbb F}$ by

$$\left\langle D,D\right\rangle _{n}=\left[D^{n},D\right]=\mathsf{Cppo}(D^{n},D)$$

- \triangleright The least fixpoint operator in **Cppo**: $\operatorname{fix}(F) = igsqcup_{i\in\mathbb{N}} F^i(ot)$
- arphi $\langle D, D
 angle$ can be a $\mathbf{V} + \Sigma$ -algebra

$$\llbracket -
rbracket : C \longrightarrow \langle D, D
angle.$$

Domain-theoretic interpretation

 \triangleright The unique homomorphism in $\mathbf{Set}^{\mathbb{F}}$

$$\begin{split} \llbracket - \rrbracket : C &\longrightarrow \langle D, D \rangle \\ \llbracket \mathsf{nil} \rrbracket_n &= \lambda \Theta.\mathsf{nil} \\ \llbracket \mu x.\mathsf{cons}(m, t) \rrbracket_n &= \lambda \Theta.\mathsf{fix}(\lambda x.\mathsf{cons}^D(m, \llbracket t \rrbracket_{n+1}(\Theta, x))) \\ \llbracket x \rrbracket_n &= \lambda \Theta.\pi_x(\Theta) \end{split}$$

▷ Example of interpretation

 $\llbracket \mu x.\operatorname{cons}(5, \mu y.\operatorname{cons}(6, x)) \rrbracket_0(\epsilon) = \operatorname{fix}(\lambda x.\operatorname{cons}^D(5, \operatorname{fix}(\lambda y.\operatorname{cons}^D(6, \pi_x(x, y))))$ $= \operatorname{fix}(\lambda x.\operatorname{cons}^D(5, \operatorname{cons}^D(6, x)))$ $= \operatorname{cons}(5, \operatorname{cons}(6, \operatorname{cons}(5, \operatorname{cons}(6, x))))$

 $= cons(5, cons(6, cons(5, cons(6, \dots$

```
tra :: CList a \rightarrow [[Int]] \rightarrow [Int]

tra Nil ps = []

tra (Cons a as) ps = let x = a : (tra <math>as (x : ps)) in x

tra (Ptr i) ps = nth i ps
```

Interpretation in traced cartesian categories

 A more abstract semantics for cyclic structures in terms of traced symmetric monoidal categories [Hasegawa PhD thesis, 1997]

 \triangleright Let ${\cal C}$ be an arbitrary cartesian category having a trace operator Tr

 $\llbracket n \vdash i \rrbracket = \pi_i$ $\llbracket n \vdash \mu x.f(t_1, \dots, t_k) \rrbracket = Tr^D(\Delta \circ \llbracket f \rrbracket_{\Sigma} \circ \langle \llbracket n+1 \vdash t_1 \rrbracket, \dots, \llbracket n+1 \vdash t_1 \rrbracket \rangle)$

▷ This categorical interpretation is the unique homomorphism

 $\llbracket - \rrbracket : C \longrightarrow \langle D, D \rangle$

to a V+ Σ -algebra of clone $\langle D,D
angle$ defined by $\langle D,D
angle_n=\mathcal{C}(D^n,D)$

- ▷ Examples
 - (i) C = cpos and continuous functions
 - (ii) C = Freyd category generated by Haskell's Arrows

Application: A New Syntax for Arrows

- Arrows [Hughes'00] are a programming concept in Haskell to make a program involving complex "wiring"-like data flows easier
- ▷ Example: a counter circuit


```
newtype Automaton b c = Auto (b -> (c, Automaton b c))
```

Application: A New Syntax for Arrows

▷ Paterson defined an Arrow with a loop operator called ArrowLoop

class Arrow _A => ArrowLoop _A where loop :: _A (b,d) (c,d) -> _A b c

▷ Arrow (or, Freyd category)

is a cartesian-center premonoidal category [Heunen, Jacobs, Hasuo'06]

▷ ArrowLoop

is a cartesian-center traced premonoidal category [Benton, Hyland'03]

- Cyclic sharing theory is interpreted
 in a cartesian-center traced monoidal category [Hasegawa'97]
- ▷ What happens when cyclic terms are interpreted as Arrows with loops?

Application: A New Syntax for Arrows

- ▷ Term syntax for ArrowLoop
- ▷ Example: a counter circuit

 \triangleright Intended computation

$\mu x.Cond(reset, Const0, Delay0(Inc(x)))$

where reset is a free variable

▷ term :: Syntx (Incr Zero)

term = Cond(Ptr(S One),Const0,DelayO(Inc(Ptr(S(S One)))))

Translation from cyclic terms to Arrows with loops

tl	:: (Ctx n, Arr	owSigStr _A d) => Syntx n -> _A [d] d
tl	(Ptr i)	= arr (\xs -> nth i xs)
tl	(Const0)	= loop (arr dup <<< const0 <<< arr (\(xs,x)->()))
tl	(Inc t)	<pre>= loop (arr dup <<< inc</pre>
tl	(Delay0 t)	= loop (arr dup <<< delay0 <<< tl t <<< arr supp)
tl	(Cond (s,t,u))	= loop (arr dup <<< cond <<< arr(\((x,y),z)->(x,y,z))
		<<< (tl s &&& tl t) &&& tl u <<< arr supp)

▷ This is the same as Hasegawa's interpretation of cyclic sharing structures

 $\llbracket n \vdash i
rbracket = \pi_i$

 $\llbracket n \vdash \mu x.f(t_1,\ldots,t_k) \rrbracket = Tr^D(\Delta \circ \llbracket f \rrbracket_{\Sigma} \circ \langle \llbracket n+1 \vdash t_1 \rrbracket,\ldots,\llbracket n+1 \vdash t_1 \rrbracket \rangle)$

 \triangleright Define an Arrow by term

term = Cond(Ptr(S One),Const0,Delay0(Inc(Ptr(S(S One)))))
counter' :: Automaton Int Int

counter' = tl term <<< arr $(x \rightarrow [x])$

Simulation of circuit

- ▷ Let test_input be
 - (1) reset (by the signal 1),
 - (2) count +1 (by the signal 0),
 - (3) reset,
 - (4) count +1,
 - (5) count +1, ...

```
test_input = [1,0,1,0,0,1,0,1]
run1 = partRun counter test_input -- original
run2 = partRun counter' test_input -- cyclic term
```

In Haskell interpreter

```
> run1
[0,1,0,1,2,0,1,0]
```

> run2

[0,1,0,1,2,0,1,0]

Summary

- ▷ Inductive characterisation of cyclic sharing terms
- \triangleright Semantics
- ▷ Implementations in Haskell
- Application of good connections between semantics and functional programming

- ▷ How to handle "sharing" has been clarified
- ▷ **Dependently-typed programming** for cyclic sharing structures, in Agda