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Attack trees (J. D. Weiss 1991, B. Schneier 1999)
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Attacker financial game (A. Buldas et al. 2006)
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Multi-parameter Attack Trees (A. Buldas et al., 2006)

Gains – the value gained from the successful attack

Costi – the cost of the elementary attack, pi – success probability

π
−

i = q−

i · Penalty−i – the expected penalty, unsuccessful attack

π
+
i = q+

i · Penalty+
i – the expected penalty, successful attack
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Attacker adaptiveness

Current models all assume that all attacks take place simultanously, in
the same time.

In the real life, attacker has the option to choose different strategy
during the execution of attack tree, after some elementary attack
succeeds, or fails.
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In the real life, attacker has the option to choose different strategy
during the execution of attack tree, after some elementary attack
succeeds, or fails.

Full-adaptive model

attacker can choose any not-used attack for the next step,

rather complicated to analyze, we will not go there.

Semi-adaptive model

attacker fixes the order of the attacks,

attacker has the option to skip some attacks from the previously fixed

order.
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Semi-adaptive model

Simplified attacker actions:

Create the attack tree F with the set of elementary attacks
X = {X1,X2, . . . ,Xn}.
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Choose subset S ⊆ X and create the subtree, i.e. choose one possible
way of realizing the attack tree F .
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Simplified attacker actions:

Create the attack tree F with the set of elementary attacks
X = {X1,X2, . . . ,Xn}.

Choose subset S ⊆ X and create the subtree, i.e. choose one possible
way of realizing the attack tree F .

Choose the permutation α for the subset S , i.e. choose the order of
the attacks, eq α = {X2,X3,X1}.

Evaluate the outcome of the subtree S and permutation α.

Choose the maximum outcome for all different combinations of
permuations α and subtrees S .
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Evaluating the outcome of attack tree

Outcomesemiadaptive = max{Outcomeα : S ⊆ X ,F(S := true) = true, α}

Outcomeα = pα · Gains −
n

∑

i=1

pα,i · Expensesi
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Evaluating the outcome of attack tree

Outcomesemiadaptive = max{Outcomeα : S ⊆ X ,F(S := true) = true, α}

Outcomeα = pα · Gains −
n

∑

i=1

pα,i · Expensesi

Theorem:

Outcomesemiadaptive ≥ OutcomeJW08 ≥ OutcomeBuldas06
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Algorithm 1: Evaluating the outcome of permutation α

Data: Variables A, variable counter i , path probability p

Result: sum - outcome of the permutation α

sum := 0;1

if evaluating F(A) and in the path from leaf Xα(i) to root of the tree,2

some node will get value t or f then

compute_outcome(A, i + 1, p);return sum;3

A[α(i)] := t; if F(A) = t then4

sum := sum + p · pα(i) ·
[

Gains −
∑

j∈A(Costj + π
j
i )

]

;5

else6

compute_outcome
(

A, i + 1, p · pα(i)

)

;7

A[α(i)] := f; if F(A) = f then8

sum := sum + p · (1 − pα(i)) ·
[

−
∑

j∈A(Costj + π
j
i )

]

;9

else10

compute_outcome
(

A, i + 1, p ·
(

1 − pα(i)

))

;11

return sum;12
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Algorithm 2: Evaluating the probability pα(i)

Data: Variables {X1, . . . ,Xn}, permutation α

Result: pα,i - probability of the permutation α

forall node Z in {X1, . . . ,Xn} do1

Z .t := 0; Z .f := 0;2

for i := 1 to n do3

Find the path (Y0,Y1, . . . ,Ym) from the root Y0 to leaf Ym = Xα(i);4

pα,α(i) =
∏m

i=1 (1 − Zj .a);5

(where Zj is the second subnode of the node Yj−1 after the node Yj6

and a =

{

t if Yj−1 is OR-node

f if Yj−1 is AND-node
);

Xα(i).t := pα(i);7

Xα(i).f := 1 − pα(i);8

Update the parameters for the nodes {Ym−1,Ym−2, . . . ,Y0};9

return pα,i ;10
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Computational complexity

Computing the outcome of permutation (Algorithm 1) has exponential
complexity.

Computing the probability pα,i (Algorithm 2) is efficient.

All together, for finding the best outcome, we have something in the
order of

O(2n · n! · n2)
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Semi-adaptive blocking model

We also consider elementary attacks, which block the whole attack
tree, when they fail.

The real life analogue for capturing the attacker, imprisonment or
death penalty.

Algorithms 1 and 2 require only a slight change.

However, the complexity for computing pα,α(i) becomes also
exponential and therefore the model is even more difficult to compute.
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Results and Questions

Results:

We have yet another way to compute the outcome of the attack tree,
which yields even bigger outcomes.

The model unfortunately has exponential complexity, again.
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Results and Questions

Results:

We have yet another way to compute the outcome of the attack tree,
which yields even bigger outcomes.

The model unfortunately has exponential complexity, again.

Questions:

Applying theorems from the last article (Jürgenson and Willemson,
2008) to this model as well and optimizing the computions?

Applying genetic programming concepts to attack trees and outcome
computions?

Learning Bayesian networks to come up with other interesting models?
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