A Judgmental Formulation of Modal Logic

Sungwoo Park Pohang University of Science and Technology South Korea

> Estonian Theory Days Jan 30, 2009

Outline

- Study of logic
 - Model theory vs Proof theory
 - Classical logic vs Constructive logic
- Judgmental analysis of propositional logic
- Modal logic
- Summary

Model vs. Proof

Model theory

- Model /
 - Eg. assignment of truth values
- Semantic consequence $A_1, \dots, A_n \vDash_I C$ $A_1, \dots, A_n \vDash C$

ig A	B	$A \wedge B$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

Proof theory

- Inference rules
 - use premises
 to obtain the conclusion
- Syntactic entailment
 A₁, ..., A_n ⊢ C

$$\frac{A \quad B}{A \land B} \land \mathsf{I}$$

$$\frac{A \wedge B}{A} \wedge \mathsf{E}_{\mathsf{L}} \qquad \frac{A \wedge B}{B} \wedge \mathsf{E}_{\mathsf{R}}$$

Classical Logic

- Every proposition is either true or false.
- Concerned with:
 - "whether a given proposition is true or not."
- Tautologies in classical logic

$$A \lor \neg A$$
$$\neg \neg A \supset A$$
$$((A \supset B) \supset A) \supset A$$

Constructive Logic

- We know only what we can prove.
- Concerned with:

- "how a given proposition becomes true."

• Not provable in constructive logic

$$A \lor \neg A$$
$$\neg \neg A \supset A$$
$$((A \supset B) \supset A) \supset A$$

This talk is about Constructive Proof Theory.

- Per Martin-Löf. On the meaning of the logical constants and the justifications of the logical laws, Nordic Journal of Philosophical Logic, 1(1):11-60, 1996.
- Frank Pfenning and Rowan Davies. A judgmental reconstruction of modal logic, Mathematical Structures in Computer Science, 11(4)-511-540, 2001.

Outline

- Study of logic
 - Model theory vs Proof theory
 - Classical logic vs Constructive logic
- Judgmental analysis of propositional logic
- Judgmental analysis of modal logic
- Summary

Judgments and Proofs

- A judgment = an object of knowledge that may or may not be provable.
 - If there exists a proof,
 - the judgment becomes evident.
 - we know the judgment.
- Examples
 - "1 1 is equal to 0" is true.
 - "1 + 1 is equal to 0" is false.
 - "It is snowing" is true.
 - "1 1 is equal to 0" is false.

Inference Rules and Axioms

• A proof consists of applications of inference rules.

$$\frac{J_1 \quad J_2 \quad \cdots \quad J_n}{J} R$$

- J_i are premises $(1 \le i \le n)$.
- *J* is a conclusion.

- "If J_1 through J_n (premises) hold, then J (conclusion) holds."

• If n = 0 (no premise), the inference rule is an axiom.

Proposition

- A statement such that we know what counts as a verification of it.
 - If A is a proposition, we know how to check the validity of the proof of its truth.
- Example: "It is raining."

"My coat is wet" is true Rain *"It is raining"* is true

• Secondary notion

Proposition

· Without arithmetic rules, what is the meaning of

"1 - 1 is equal to 0"?

"m *is equal to* I" is true "I *is equal to* m" is true "m *is equal to* n" is true <u>"m *is equal to* n" is true</u> "m-1 *is equal to* n-1" is true Pred

Propositional Logic

• Propositions

 $A ::= P \mid A \land A \mid A \supset A \mid A \lor A \mid \top \mid \bot$

• Judgments:

$A \ true \iff A \ is true$

Natural Deduction System

- Introduced by Gentzen, 1934
- For each connective \land , \lor , \supset , ...
 - introduction rule: how to establish a proof
 - elimination rule: how to exploit an existing proof

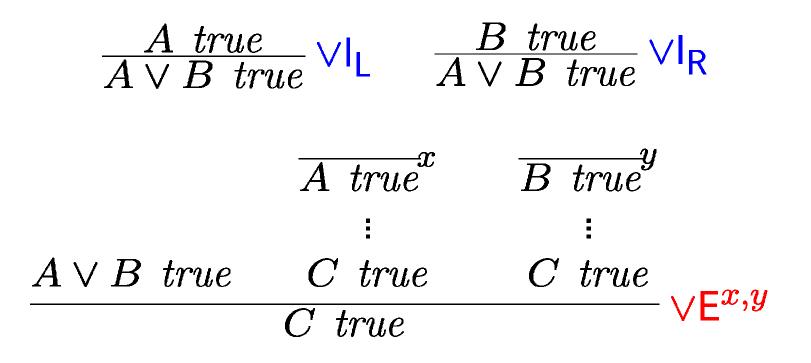
$$\frac{A \ true}{A \land B} \ \frac{B \ true}{true} \land |$$

 $\frac{A \wedge B \ true}{A \ true} \wedge \mathsf{E}_{\mathsf{L}} \qquad \frac{A \wedge B \ true}{B \ true} \wedge \mathsf{E}_{\mathsf{R}}$

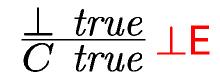
Implication

$$\overline{A \ true}^{x} \\ \vdots \\ \overline{A \ D \ B \ true} \xrightarrow{x} \underline{A \ D \ B \ true} A \ true} \xrightarrow{A \ D \ E} \underline{A \ D \ B \ true} A \ \underline{A \ D \ E}$$

Disjunction



Truth and Falsehood



What if Elimination Rules were ...

Too strong

$$\frac{A \ true}{A \land B} \ \frac{B \ true}{true} \land |$$

$$\frac{A \land B \ true}{\perp \ true} ???$$

• Too weak

$$\frac{A \ true}{A \land B} \ \frac{B \ true}{true} \land |$$

$$\frac{A \wedge B \ true}{\top \ true} ???$$

Elimination Rules are OK

- Local soundness
 - Elimination rules are not too strong.

$$\frac{A \ true}{A \ true} \ \begin{array}{c} \mathcal{E} \\ \mathcal{E} \\ \mathcal{E} \\ \frac{A \land B \ true}{A \ true} \land \mathsf{E} \\ \end{array} \xrightarrow{\mathsf{A}} R \qquad \mathcal{E} \\ \begin{array}{c} \mathcal{D} \\ \mathcal{E} \\ \mathcal{E} \\ \mathcal{E} \\ \end{array} \xrightarrow{\mathsf{A}} R \qquad \mathcal{D} \\ \mathcal{E} \\ \mathcal{E} \\ \mathcal{E} \\ \end{array}$$

- Local completeness
 - Elimination rules are not too weak

$$A \wedge \overset{\mathcal{D}}{B} true \implies_{E} \frac{A \wedge \overset{\mathcal{D}}{B} true}{A \ true} \wedge \mathsf{E}_{\mathsf{L}} \quad \frac{A \wedge \overset{\mathcal{D}}{B} true}{B \ true} \wedge \mathsf{E}_{\mathsf{R}}$$

Local Soundness and Completeness

$$A \supset \overset{\mathcal{D}}{B} true \implies_{E} \frac{A \supset \overset{\mathcal{D}}{B} true}{\frac{B true}{A \supset B true}} \xrightarrow{A true}^{x} \supset \mathsf{E}$$

Hypothetical Judgments

Definition

 $A_1 \ true, \dots, A_n \ true \vdash C \ true$ $\iff C \ true \ is provable under assumptions$ $A_1 \ true, \dots, A_n \ true.$

• Substitution principle

If $\Gamma \vdash A$ true and Γ, A true $\vdash J$, then $\Gamma \vdash J$.

Inference Rules

$$\frac{A \ true \in \Gamma}{\Gamma \vdash A \ true} \ \mathsf{Hyp}$$

$$\frac{\Gamma, A \ true \vdash B \ true}{\Gamma \vdash A \supset B \ true} \supset I \qquad \frac{\Gamma \vdash A \supset B \ true}{\Gamma \vdash B \ true} \supset E$$

$$\frac{\Gamma \vdash A \ true}{\Gamma \vdash A \land B \ true} \land I \qquad \frac{\Gamma \vdash A \land B \ true}{\Gamma \vdash A \ true} \land E_{\mathsf{L}} \qquad \frac{\Gamma \vdash A \land B \ true}{\Gamma \vdash B \ true} \land E_{\mathsf{R}}$$

$$\frac{\Gamma \vdash A \ true}{\Gamma \vdash A \lor B \ true} \lor I_{\mathsf{L}} \qquad \frac{\Gamma \vdash B \ true}{\Gamma \vdash A \lor B \ true} \lor I_{\mathsf{R}}$$

$$\frac{\Gamma \vdash A \lor B \ true}{\Gamma \vdash C \ true} \qquad \forall \mathsf{R}$$

$$\frac{\Gamma \vdash A \lor B \ true}{\Gamma \vdash T \ true} \ \top \qquad \frac{\Gamma \vdash L \ true}{\Gamma \vdash C \ true} \perp \mathsf{E}$$

21

Outline

- Study of logic
- Judgmental analysis of propositional logic
- Judgmental analysis of modal logic
 - Modal necessity
 - Modal possibility
 - Lax modality O
- Summary

POSTECH

Modal Logic

- Modalities \Box and \diamondsuit
 - $-\Box A$: necessarily A
 - $-\diamondsuit A$: possibly A
- Spatial interpretation:
 - $-\Box A$: everywhere A
 - $-\diamondsuit A$: somewhere A
- Temporal interpretation:
 - $-\Box A$: always A
 - $-\diamondsuit A$: sometime A

Modal necessity

First Judgments, Then Propositions.

Validity Judgment

• A valid

$$A \ valid \iff \cdot \vdash A \ true$$

 \approx *A* is valid if *A* is true at a world about which we know nothing, or at any world.

- Modal proposition $\Box A$
 - Introduction rule

$$\frac{A \ valid}{\Box A \ true} \Box \mathsf{I}$$

New Forms of Hypothetical Judgments

• Definition

 $B_1 \ valid, \dots, B_m \ valid; A_1 \ true, \dots, A_n \ true \vdash C \ true \\ \iff C \ true \ \text{is provable under assumptions} \\ B_1 \ valid, \dots, B_m \ valid, A_1 \ true, \dots, A_n \ true.$

• Substitution principle

If Δ ; $\Gamma \vdash A$ true and Δ ; Γ , A true $\vdash J$, then Δ ; $\Gamma \vdash J$. If Δ ; $\Gamma \vdash A$ valid and Δ , A valid; $\Gamma \vdash J$, then Δ ; $\Gamma \vdash J$. If Δ ; $\cdot \vdash A$ true and Δ , A valid; $\Gamma \vdash J$, then Δ ; $\Gamma \vdash J$.

Modal necessity

$$\frac{\Delta; \cdot \vdash A \ true}{\Delta; \Gamma \vdash \Box A \ true} \Box I$$

$\frac{\Delta; \Gamma \vdash \Box A \ true \quad \Delta, A \ valid; \Gamma \vdash C \ true}{\Delta; \Gamma \vdash C \ true} \Box \mathsf{E}$

Local Soundness and Completeness

Axiomatic Characterization (S4)

$\vdash \Box(A \supset B) \supset (\Box A \supset \Box B) \text{ true}$ $\vdash \Box A \supset A \text{ true}$ $\vdash \Box A \supset \Box \Box A \text{ true}$

Modal possibility \diamondsuit

Again, First Judgments, Then Propositions.

Possibility Judgment

• A poss

 $\approx A$ is possibly true if A is true at a certain world.

If $\Delta; \Gamma \vdash A \text{ true}$, then $\Delta; \Gamma \vdash A \text{ poss}$. If $\Delta; \Gamma \vdash A \text{ poss}$ and $\Delta; A \text{ true} \vdash C \text{ poss}$, then $\Delta; \Gamma \vdash C \text{ poss}$.

Modal possibility \diamondsuit

$$\frac{\Delta; \Gamma \vdash A \ poss}{\Delta; \Gamma \vdash \Diamond A \ true} \Diamond \mathsf{I}$$

$\frac{\Delta; \Gamma \vdash \Diamond A \ true \quad \Delta; A \ true \vdash C \ poss}{\Delta; \Gamma \vdash C \ poss} \Diamond \mathsf{E}$

Local Soundness and Completeness

$$\frac{\Delta; \Gamma \vdash A \text{ poss}}{\Delta; \Gamma \vdash \Diamond A \text{ true}} \Diamond | \qquad \substack{\mathcal{E} \\ \Delta; A \text{ true} \vdash C \text{ poss}}{\Delta; \Gamma \vdash C \text{ poss}} \Diamond \mathsf{E}
\Longrightarrow_{R} \qquad \Delta; \Gamma \vdash C \text{ poss}$$

$$\Delta; \Gamma \vdash \overset{\mathcal{D}}{\Diamond}A \ true \qquad \qquad \underbrace{\Delta; \Gamma \vdash \Diamond A \ true}_{\Delta; \Gamma \vdash A \ poss} \frac{\Delta; \Gamma \vdash A \ true}{\Delta; \Gamma \vdash \Diamond A \ true} \overset{\mathsf{Hyp}}{\Diamond \mathsf{E}*} \\ \Longrightarrow_{E} \qquad \qquad \underbrace{\Delta; \Gamma \vdash \Diamond A \ true}_{\Delta; \Gamma \vdash \Diamond A \ true} \diamond \mathsf{I}$$

Axiomatic Characterization

 $\vdash A \supset \Diamond A \ true$

 $\vdash \Diamond \Diamond A \supset \Diamond A \ true$

 $\vdash \Box(A \supset B) \supset (\Diamond A \supset \Diamond B) \ true$

Lax modality O

Yet again, First Judgments, Then Propositions.

Lax Judgment

• A lax

 $\approx A$ is true under a certain constraint.

If $\Gamma \vdash A$ true, then $\Gamma \vdash A$ lax.

If $\Gamma \vdash A \ lax$ and $\Gamma, A \ true \vdash C \ lax$, then $\Gamma \vdash C \ lax$.

Lax Modality O

$$\frac{\Gamma \vdash A \ lax}{\Gamma \vdash \bigcirc A \ true} \bigcirc \mathsf{I}$$

$\frac{\Gamma \vdash \bigcirc A \ true \quad \Gamma, A \ true \vdash C \ lax}{\Gamma \vdash C \ lax} \bigcirc \mathsf{E}$

Local Soundness and Completeness

$$\frac{\stackrel{\mathcal{D}}{\vdash A \ lax}}{\stackrel{\Gamma \vdash OA \ true}{\vdash C \ lax}} \stackrel{\mathcal{E}}{\cap \vdash C \ lax} \stackrel{\mathcal{D}}{\cap \vdash C \ lax} \stackrel{\mathcal{E}}{\cap \vdash C \ lax} \stackrel{\mathcal{D}}{\cap \vdash C \ lax} = R \qquad \Gamma \vdash \stackrel{\mathcal{E}'}{\cap L \ lax}$$

$$\Gamma \vdash \overset{\mathcal{D}}{\bigcirc A \ true} \qquad \Longrightarrow_{E} \qquad \frac{\Gamma \vdash \overset{\mathcal{D}}{\bigcirc A \ true} \quad \overline{\Gamma, A \ true} \vdash A \ true}{\Gamma \vdash \bigcirc A \ true} \overset{\mathsf{Hyp}}{\bigcirc \mathsf{E}*}$$

39

Axiomatic Characterization

 $\vdash A \supset \bigcirc A \ true$

 $\vdash \bigcirc \bigcirc A \supset \bigcirc A$ true

 $\vdash (A \supset B) \supset (\bigcirc A \supset \bigcirc B) true$

Outline

- Study of logic
- Judgmental analysis of propositional logic
- Judgmental analysis of modal logic
 - Modal necessity
 - Modal possibility \diamondsuit
 - Lax modality O
- Summary

Applications

• 🗆, 💠

- Type system for staged computation

- Type system for distributed computation
- 0
 - Type system for effectful computation
 - Monad in functional language Haskell

Internalizing Normal Proofs

Normal proofs

$$\begin{array}{c} \overline{A} \overline{\downarrow}^{u} \\ \vdots \\ \frac{B \uparrow}{A \supset B \uparrow} \supset \mathsf{I}^{u}_{\uparrow} & \frac{A \supset B \downarrow \quad A \uparrow}{B \downarrow} \supset \mathsf{E}_{\downarrow} & \frac{A \downarrow}{A \uparrow} \downarrow \uparrow \end{array} \right\} \mathsf{N}^{\uparrow\downarrow}$$

• Internalizing normal proofs using a modality

 $\frac{A \!\uparrow}{\bigtriangleup A \ true} \, \bigtriangleup \mathsf{I}$

Introduction and elimination rules

$$\frac{A\uparrow}{\triangle A \ true} \bigtriangleup \mathsf{I} \qquad \frac{\triangle A \ true}{B \ true} \xrightarrow{B \ true} \bigtriangleup \mathsf{E}^{v}$$

Sequent Calculus

Uses two judgments

 $\begin{array}{ccc} \underline{A \ atomic} & \underline{A \ atomic} & \underline{A \ atomic} & \underline{A \ atomic} & \underline{A \ init}' & \overline{\Delta, A; \Gamma \Longrightarrow A} \ Sub \\ \hline \underline{\Delta, A; \Gamma, \Delta A \longrightarrow C} & \Delta L & \underline{\Delta; \cdot \Longrightarrow A} \\ \underline{\Delta, A; \Gamma, \Delta A \longrightarrow C} & \Delta L & \underline{\Delta; \cdot \Longrightarrow A} \\ \underline{\Delta, A; \Gamma, \Delta A \longrightarrow C} & \Delta L' & \underline{\Delta; \Gamma \longrightarrow \Delta A} \\ \Delta R & \underline{\Delta, A; \Gamma, \Delta A \Longrightarrow C} \\ \underline{\Delta, A; \Gamma, \Delta A \Longrightarrow C} & \Delta L' & \underline{\Delta; \cdot \Longrightarrow A} \\ \underline{\Delta; \Gamma, \Delta A \Longrightarrow C} & \Delta L' & \underline{\Delta; \Gamma \Longrightarrow \Delta A} \\ \underline{\Delta; \Gamma, \Delta A \Longrightarrow C} & \Delta L' & \underline{\Delta; \Gamma \Longrightarrow \Delta A} \\ \underline{\Delta; \Gamma, A \supset B \longrightarrow A} & \underline{\Delta; \Gamma, A \supset B, B \longrightarrow C} \\ \underline{\Delta; \Gamma, A \supset B \longrightarrow C} \\ \Delta R' & \underline{\Delta; \Gamma, A \supset B \longrightarrow C} \\ \Delta R' & \underline{\Delta; \Gamma, A \supset B \longrightarrow C} \\ \underline{\Delta; \Gamma, A \supset B \longrightarrow C} \\ \Delta R' & \underline{\Delta; \Gamma, A \supset B \longrightarrow C} \\ \Delta R' & \underline{\Delta; \Gamma, A \supset B \longrightarrow C} \\ \Delta R' & \underline{\Delta; \Gamma, A \supset B \longrightarrow C} \\ \Delta R' & \underline{\Delta; \Gamma, A \supset B \longrightarrow C} \\ \Delta R' & \underline{\Delta; \Gamma, A \supset B \longrightarrow C} \\ \Delta R' & \underline{\Delta; \Gamma, A \supset B \longrightarrow C} \\ \Delta R' & \underline{\Delta; \Gamma, A \supset B \longrightarrow C} \\ \Delta R' & \underline{\Delta; \Gamma, A \supset B \longrightarrow C} \\ \Delta R' & \underline{\Delta; \Gamma, A \supset B \longrightarrow C} \\ \Delta R' & \underline{\Delta; \Gamma, A \supset B \longrightarrow C} \\ \Delta R' & \underline{\Delta; \Gamma, A \supset B \longrightarrow C} \\ \Delta R' & \underline{\Delta; \Gamma, A \supset B \longrightarrow C} \\ \Delta R' & \underline{\Delta; \Gamma, A \supset B \longrightarrow C} \\ \Delta R' & \underline{\Delta; \Gamma, A \supset B \longrightarrow C} \\ \Delta R' & \underline{\Delta; \Gamma, A \supset B \longrightarrow C} \\ \Delta R' & \underline{\Delta; \Gamma, A \supset B \longrightarrow C} \\ \Delta R' & \underline{\Delta; \Gamma, A \supset B \longrightarrow C} \\ \Delta R' & \underline{\Delta; \Gamma, A \supset B \longrightarrow C} \\ \Delta R' & \underline{\Delta; \Gamma, A \supset B \longrightarrow C} \\ \Delta R' & \underline{\Delta; \Gamma, A \supset B \longrightarrow C} \\ \Delta R' & \underline{\Delta; \Gamma, A \supset B \longrightarrow C} \\ \Delta R' & \underline{\Delta; \Gamma, A \supset B \longrightarrow C} \\ \Delta R' & \underline{\Delta; \Gamma, A \supset B \longrightarrow C} \\ \Delta R' & \underline{\Delta; \Gamma, A \supset B}$

Satisfies cut-elimination

Thank you.

gla@postech.ac.kr