Bideterministic automata

Hellis Tamm

Institute of Cybernetics Tallinn University of Technology, Estonia

Theory Days, Kääriku, January 30 – February 1, 2009

Finite automaton: definitions

An automaton $A = (Q, \Sigma, E, I, F)$ is a mathematical model for a finite state machine where Q is a set of states, Σ is an input alphabet, $E \subseteq Q \times \Sigma \times Q$ is a set of transitions, $I \subseteq Q$ is a set of initial states and $F \subseteq Q$ is a set of final states.

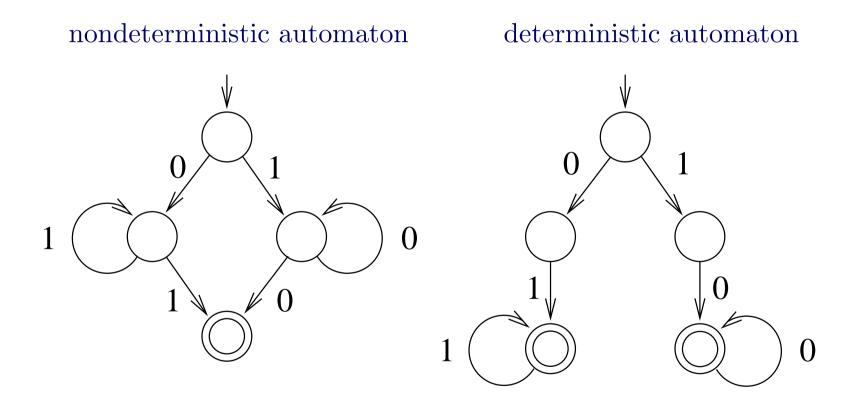
Given an input of symbols, it goes through a series of states according to its transition function.

A word $w = a_1 a_2 \dots a_n$ is accepted by A if there is a sequence of transitions $(q_0, a_1, q_1), (q_1, a_2, q_2), \dots, (q_{n-1}, a_n, q_n)$ such that $q_0 \in I$ and $q_n \in F$.

The set of all words accepted by A is the *language* of A, denoted by L(A).

Automata: determinism vs nondeterminism

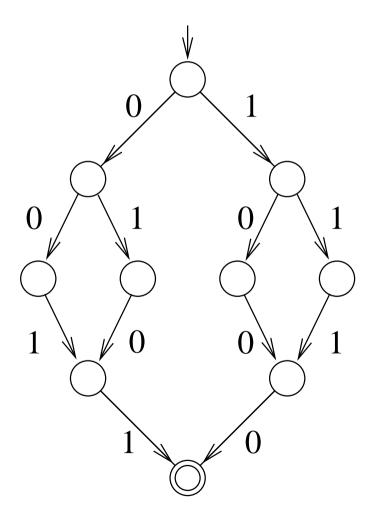
 $L(A) = \{01, 011, 0111, \ldots\} \cup \{10, 100, 1000, \ldots\}$



co-deterministic automaton

co-nondeterministic automaton

A bideterministic automaton is deterministic and co-deterministic.



State complexity

- The number of states of the minimal deterministic finite automaton (DFA) for a given language can be exponentially larger than the number of states in a minimal nondeterministic automaton (NFA).
- The minimal DFA is unique but there may be several minimal NFAs.
- Many cases where the maximal blow-up of size when converting an NFA to DFA does not occur.
- Some sufficient conditions have been identified which imply that the deterministic and nondeterministic state complexities are the same.

Transition complexity

- While the state-minimal DFA is also minimal with respect to the number of transitions, this is not necessarily the case with NFAs.
- Even allowing one more state in an NFA can produce a considerable reduction in the number of transitions.
- The number of transitions may be even a better measure for the size of an NFA than the number of states.
- Furthermore, allowing ϵ -transitions in an NFA (ϵ -NFAs) it is possible to have automata with even less transitions than NFAs.

Bideterministic automata: minimality results

- A bideterministic automaton is a minimal DFA (easy, by Brzozowski's DFA minimization algorithm: given an automaton A, minimal DFA is obtained by Det(Rev(Det(Rev(A)))))
- A bideterministic automaton is a unique state-minimal NFA (HT–Ukkonen 2003)
- A bideterministic automaton is a transition-minimal NFA (HT 2004)
- The necessary and sufficient conditions for a bideterministic automaton to be a unique transition-minimal NFA (HT 2007)
- More generally: a bideterministic automaton is a transition-minimal ϵ -NFA (HT 2007).

Universal automaton

A factorization of a regular language L is a maximal couple (with respect to the inclusion) of languages (U, V) such that $UV \subseteq L$.

The universal automaton of L is $U_L = (Q, \Sigma, E, I, F)$ where Q is the set of factorizations of L, $I = \{(U, V) \in Q \mid \epsilon \in U\},\$ $F = \{(U, V) \in Q \mid U \subseteq L\},\$ $E = \{((U, V), a, (U', V')) \in Q \times a \times Q \mid Ua \subseteq U'\}.$

Fact: universal automaton of the language L is a finite automaton that accepts L.

Automaton morphism and the universal automaton

Let $A = (Q, \Sigma, E, I, F)$ and $A' = (Q', \Sigma, E', I', F')$ be two NFAs. Then a mapping μ from Q into Q' is a *morphism* of automata if and only if $p \in I$ implies $p\mu \in I'$, $p \in F$ implies $p\mu \in F'$, and $(p, a, q) \in E$ implies $(p\mu, a, q\mu) \in E'$ for all $p, q \in Q$ and $a \in \Sigma$. Known properties:

- Let A be a trim automaton that accepts L. Then there exists an automaton morphism from A into U_L .
- In particular, the minimal DFA and all state-minimal NFAs accepting L are subautomata of U_L .
- At least one transition-minimal NFA is a subautomaton of U_L .

Bideterministic automata: universal and minimal

It can be shown that any bideterministic automaton is the universal automaton for the given language.

Therefore any state-minimal NFA of a bideterministic language is a subautomaton of the bideterministic automaton.

But no strict subautomaton of the minimal DFA can accept the language, therefore bideterministic automaton is the only state-minimal NFA for that language.

Similarly, a bideterministic automaton is a transition-minimal NFA (but not necessarily unique).

Uniqueness of transition minimality

A bideterministic automaton is not necessarily the only transition-minimal NFA for the corresponding language.

The necessary and sufficient conditions for the unique transition-minimality are given by the following theorem:

Theorem. A trim bideterministic automaton $A = (Q, \Sigma, E, \{q_0\}, \{q_f\})$ is a unique transition-minimal NFA if and only if the following three conditions hold:

(i) $q_0 \neq q_f$,

(ii)
$$indegree(q_0) > 0$$
 or $outdegree(q_0) = 1$,

(iii) $indegree(q_f) = 1$ or $outdegree(q_f) > 0$.

Automaton morphism for a bideterministic language

Let A be a bideterministic automaton and let A' be another automaton accepting the same language.

Since $A = U_{L(A)}$, there exists an automaton morphism μ from A' into A.

Proposition. μ is surjective.

Proposition. There is a transition (p, a, q) of A if and only if there is a transition (p', a, q') of A' such that $p'\mu = p$ and $q'\mu = q$.

Based on these propositions, it is easy to see that μ defines an automaton transformation from A' to A.

Unambiguous ϵ -NFA

S. John (2003, 2004) has developed a theory to reduce the number of transitions of ϵ -NFAs.

Let A be an ϵ -NFA (Q, Σ, E, I, F) where E is partitioned into two subrelations $E_{\Sigma} = \{(p, a, q) \mid (p, a, q) \in E, a \in \Sigma\}$ and $E_{\epsilon} = \{(p, \epsilon, q) \mid (p, \epsilon, q) \in E\}.$

The automaton A is *unambiguous* if and only if for each $w \in L(A)$ there is exactly one path that yields w (without considering ϵ -transitions).

Slices

Let $L \subseteq \Sigma^*$ be a regular language, $U, V \subseteq \Sigma^*$, $a \in \Sigma$.

We call (U, a, V) a *slice* of L if and only if $U \neq \emptyset$, $V \neq \emptyset$ and $UaV \subseteq L$.

Let S be the set of all slices of L.

A partial order on S is defined by: $(U_1, a, V_1) \leq (U_2, a, V_2)$ if and only if $U_1 \subseteq U_2$ and $V_1 \subseteq V_2$.

The set of maximal slices of L is defined by $S_{max} := \{(U, a, V) \in S \mid \text{ there is no } (U', a, V') \in S \text{ with } (U, a, V) < (U', a, V')\}.$

Transition-minimal unambiguous ϵ -NFA

Let $S' \subseteq S$ be a finite slicing of L. In order to read an automaton $A_{S'}$ out of S', each slice from S' is transformed into a transition of $A_{S'}$, and these transitions are connected via states and ϵ -transitions using a follow-relation \longrightarrow which is defined by: $(U_1, a, V_1) \longrightarrow (U_2, b, V_2)$ if and only if $U_1 a \subseteq U_2$ and $bV_2 \subseteq V_1$

Theorem (S. John). The three following statements are equivalent for languages $L \subseteq \Sigma^*$ if the slicing S_{max} of L induces an unambiguous ϵ -NFA $A_{S_{max}}$:

- 1) L is accepted by an ϵ -NFA
- 2) $L = L(A_{S'})$ for some finite slicing $S' \subseteq S$
- 3) S_{max} is finite

Furthermore, $|S_{max}| \leq |S'| \leq |E_{\Sigma}|$.

Corollary (S. John). An unambiguous ϵ -NFA $A_{S_{max}}$ has the minimum number of non- ϵ -transitions.

Transition slice

For each non- ϵ -transition t of an automaton A, we define the transition slice of t to be the slice $(U_t, l(t), V_t)$ of L(A) where

 $-U_t$ is the set of strings yielded by the paths from an initial state to the source state of t,

-l(t) is the label of t, and

 $-V_t$ is the set of strings yielded by the paths from the target state of t to an accepting state.

A bideterministic automaton is a transition-minimal ϵ -NFA

Lemma. For a bideterministic automaton A, let t_1 and t_2 be two different transitions of A, with the same label $a \in \Sigma$ and with the corresponding transition slices (U_{t_1}, a, V_{t_1}) and (U_{t_2}, a, V_{t_2}) . Then $U_{t_1} \cap U_{t_2} = \emptyset$ and $V_{t_1} \cap V_{t_2} = \emptyset$.

Proposition. Each transition slice of a bideterministic automaton A is maximal.

Theorem. A bideterministic automaton A has the minimum number of transitions among all ϵ -NFAs accepting L(A).

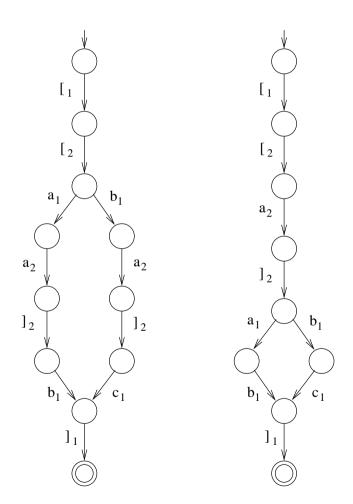
Multitape automaton model

Let us assume that a function $tape: Q \to \{1, ..., n\}$ associates every state of the automaton with a certain tape.

An *n*-tape automaton is given by a six-tuple $(Q, tape, \Sigma, E, I, F)$ where Q is a finite set of states with a partition into the sets $Q_1, ..., Q_n$ so that $Q_i = \{q \in Q \mid tape(q) = i\}$ for i = 1, ..., n, Σ is an input alphabet, $E \subseteq Q \times (\Sigma \cup \{[,]\}) \times Q$ is a set of transitions, $I \subseteq Q$ is a set of initial states and $F \subseteq Q$ is a set of final states.

Bideterministic multitape automata

 $L = \{(ab, a), (bc, a)\}$



Strongly bideterministic automata

Let $q \in Q$ and $i \in \{1, ..., n\}$. A transition is called a *future* transition for the state q and tape i if it is the first transition involving this tape on some path that starts from q.

We call a deterministic multitape automaton strongly deterministic if for all $q \in Q$, all $i \in \{1, ..., n\}$ and all $a \in \Sigma \cup \{[,]\}$ there is at most one future transition for the state q and tape i with the label a.

An automaton is *strongly bideterministic* if it is strongly deterministic and so is its reversal automaton.

Goal: to show that a strongly bideterministic automaton is both state- and transition-minimal.

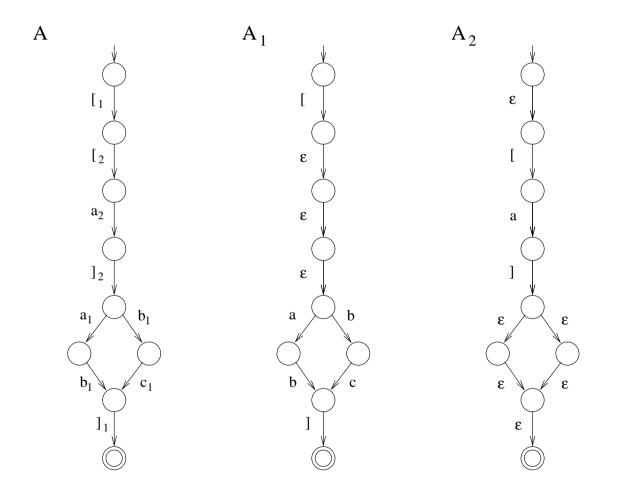
Strongly bideterministic automata

Let $A = (Q, tape, \Sigma, E, I, F)$ be an *n*-tape automaton.

Let us consider one-tape automata $A_1, A_2, ..., A_n$ such that each $A_i = (Q, \Sigma, E_i, I, F), i = 1, ..., n$, is obtained from A by replacing all transitions that do not involve tape i, by ϵ -transitions, and by discarding the state-tape associations. Then $E_i = E_{i_{\Sigma}} \cup E_{i_{\epsilon}}$ where $E_{i_{\Sigma}} = \{(p, a, q) \mid (p, a, q) \in E, p \in Q_i\}$ and $E_{i_{\epsilon}} = \{(p, \epsilon, q) \mid (p, a, q) \in E, p \in Q \setminus Q_i\}$. Clearly, each A_i is a one-tape ϵ -NFA accepting the language $L(A_i) = \{[w_i] \mid (w_1, ..., w_i, ..., w_n) \in L(A)\}$.

In the following, our goal is to show that if A is strongly bideterministic then each A_i has a minimum number of non- ϵ -transitions among all ϵ -NFAs for the language $L(A_i)$.

Bideterministic multitape automata



Strongly bideterministic automata

Let A be a strongly bideterministic n-tape automaton with $A_1, A_2, ..., A_n$ being the corresponding one-tape ϵ -NFAs. The following results hold for all $i \in \{1, ..., n\}$.

Lemma. Every A_i is unambiguous.

Lemma. Consider any A_i . Let t' and t'' be two different transitions of A_i , with the same label $l(t') = l(t'') = a \in \Sigma$ and with the corresponding transition slices $(U_{t'}, a, V_{t'})$ and $(U_{t''}, a, V_{t''})$. Then $U_{t'} \cap U_{t''} = \emptyset$ and $V_{t'} \cap V_{t''} = \emptyset$.

Lemma. For any A_i , every transition slice of A_i is maximal. **Proposition.** Every A_i has the minimum number of non- ϵ -transitions among all ϵ -NFAs accepting $L(A_i)$.

Strongly bideterministic multitape automata are transition-minimal

Proposition. A strongly bideterministic multitape automaton A has the minimum number of transitions.

Proof. Let us consider an *n*-tape automaton A and the corresponding one-tape ϵ -NFAs $A_1, A_2, ..., A_n$. Suppose that A is not transition-minimal. Let A' be a transition-minimal *n*-tape automaton accepting the same language with corresponding one-tape ϵ -NFAs $A'_1, A'_2, ..., A'_n$. Clearly, $L(A'_i) = L(A_i), i = 1, ..., n$. Obviously, there must be some $j \in \{1, ..., n\}$ such that A'_j has less non- ϵ -transitions than A_j . Thus, A_j cannot be non- ϵ -transition-minimal which is a contradiction.

Further issues

- There may exist several different strongly bideterministic multitape automata that accept a given language.
 However, it is clear that they all must have the same number of transitions since the corresponding A_i-s have the same number of non-ε-transitions.
- State minimality of strongly bideterministic multitape automata.
- Automaton transformations between different strongly bideterministic multitape automata.
- Automaton transformations that produce strongly bideterministic multitape automata.