Bideterministic automata

Hellis Tamm

Institute of Cybernetics
Tallinn University of Technology, Estonia

Theory Days, Kääriku, January 30 - February 1, 2009

Finite automaton: definitions

An automaton $A=(Q, \Sigma, E, I, F)$ is a mathematical model for a finite state machine where Q is a set of states, Σ is an input alphabet, $E \subseteq Q \times \Sigma \times Q$ is a set of transitions, $I \subseteq Q$ is a set of initial states and $F \subseteq Q$ is a set of final states.

Given an input of symbols, it goes through a series of states according to its transition function.
A word $w=a_{1} a_{2} \ldots a_{n}$ is accepted by A if there is a sequence of transitions $\left(q_{0}, a_{1}, q_{1}\right),\left(q_{1}, a_{2}, q_{2}\right), \ldots,\left(q_{n-1}, a_{n}, q_{n}\right)$ such that $q_{0} \in I$ and $q_{n} \in F$.

The set of all words accepted by A is the language of A, denoted by $L(A)$.

Automata: determinism vs nondeterminism

$L(A)=\{01,011,0111, \ldots\} \cup\{10,100,1000, \ldots\}$
nondeterministic automaton

co-deterministic automaton
deterministic automaton

co-nondeterministic automaton

Bideterministic automaton

A bideterministic automaton is deterministic and co-deterministic.

State complexity

- The number of states of the minimal deterministic finite automaton (DFA) for a given language can be exponentially larger than the number of states in a minimal nondeterministic automaton (NFA).
- The minimal DFA is unique but there may be several minimal NFAs.
- Many cases where the maximal blow-up of size when converting an NFA to DFA does not occur.
- Some sufficient conditions have been identified which imply that the deterministic and nondeterministic state complexities are the same.

Transition complexity

- While the state-minimal DFA is also minimal with respect to the number of transitions, this is not necessarily the case with NFAs.
- Even allowing one more state in an NFA can produce a considerable reduction in the number of transitions.
- The number of transitions may be even a better measure for the size of an NFA than the number of states.
- Furthermore, allowing ϵ-transitions in an NFA (ϵ-NFAs) it is possible to have automata with even less transitions than NFAs.

Bideterministic automata: minimality results

- A bideterministic automaton is a minimal DFA (easy, by Brzozowski's DFA minimization algorithm: given an automaton A, minimal DFA is obtained by $\operatorname{Det}(\operatorname{Rev}(\operatorname{Det}(\operatorname{Rev}(A)))))$
- A bideterministic automaton is a unique state-minimal NFA (HT-Ukkonen 2003)
- A bideterministic automaton is a transition-minimal NFA (HT 2004)
- The necessary and sufficient conditions for a bideterministic automaton to be a unique transition-minimal NFA (HT 2007)
- More generally: a bideterministic automaton is a transition-minimal ϵ-NFA (HT 2007).

Universal automaton

A factorization of a regular language L is a maximal couple (with respect to the inclusion) of languages (U, V) such that $U V \subseteq L$.

The universal automaton of L is $U_{L}=(Q, \Sigma, E, I, F)$ where Q is the set of factorizations of L,
$I=\{(U, V) \in Q \mid \epsilon \in U\}$,
$F=\{(U, V) \in Q \mid U \subseteq L\}$,
$E=\left\{\left((U, V), a,\left(U^{\prime}, V^{\prime}\right)\right) \in Q \times a \times Q \mid U a \subseteq U^{\prime}\right\}$.
Fact: universal automaton of the language L is a finite automaton that accepts L.

Automaton morphism and the universal automaton

Let $A=(Q, \Sigma, E, I, F)$ and $A^{\prime}=\left(Q^{\prime}, \Sigma, E^{\prime}, I^{\prime}, F^{\prime}\right)$ be two NFAs. Then a mapping μ from Q into Q^{\prime} is a morphism of automata if and only if $p \in I$ implies $p \mu \in I^{\prime}, p \in F$ implies $p \mu \in F^{\prime}$, and $(p, a, q) \in E$ implies $(p \mu, a, q \mu) \in E^{\prime}$ for all $p, q \in Q$ and $a \in \Sigma$.

Known properties:

- Let A be a trim automaton that accepts L. Then there exists an automaton morphism from A into U_{L}.
- In particular, the minimal DFA and all state-minimal NFAs accepting L are subautomata of U_{L}.
- At least one transition-minimal NFA is a subautomaton of U_{L}.

Bideterministic automata: universal and minimal

It can be shown that any bideterministic automaton is the universal automaton for the given language.

Therefore any state-minimal NFA of a bideterministic language is a subautomaton of the bideterministic automaton.

But no strict subautomaton of the minimal DFA can accept the language, therefore bideterministic automaton is the only state-minimal NFA for that language.

Similarly, a bideterministic automaton is a transition-minimal NFA (but not necessarily unique).

Uniqueness of transition minimality

A bideterministic automaton is not necessarily the only transition-minimal NFA for the corresponding language.

The necessary and sufficient conditions for the unique transition-minimality are given by the following theorem:

Theorem. A trim bideterministic automaton $A=\left(Q, \Sigma, E,\left\{q_{0}\right\},\left\{q_{f}\right\}\right)$ is a unique transition-minimal NFA if and only if the following three conditions hold:
(i) $q_{0} \neq q_{f}$,
(ii) $\operatorname{indegree}\left(q_{0}\right)>0$ or outdegree $\left(q_{0}\right)=1$,
(iii) $\operatorname{indegree}\left(q_{f}\right)=1$ or outdegree $\left(q_{f}\right)>0$.

Automaton morphism for a bideterministic language

Let A be a bideterministic automaton and let A^{\prime} be another automaton accepting the same language.

Since $A=U_{L(A)}$, there exists an automaton morphism μ from A^{\prime} into A.

Proposition. μ is surjective.
Proposition. There is a transition (p, a, q) of A if and only if there is a transition $\left(p^{\prime}, a, q^{\prime}\right)$ of A^{\prime} such that $p^{\prime} \mu=p$ and $q^{\prime} \mu=q$.

Based on these propositions, it is easy to see that μ defines an automaton transformation from A^{\prime} to A.

Unambiguous ϵ-NFA

S. John (2003, 2004) has developed a theory to reduce the number of transitions of ϵ-NFAs.

Let A be an ϵ-NFA (Q, Σ, E, I, F) where E is partitioned into two subrelations $E_{\Sigma}=\{(p, a, q) \mid(p, a, q) \in E, a \in \Sigma\}$ and $E_{\epsilon}=\{(p, \epsilon, q) \mid(p, \epsilon, q) \in E\}$.

The automaton A is unambiguous if and only if for each $w \in L(A)$ there is exactly one path that yields w (without considering ϵ-transitions).

Slices

Let $L \subseteq \Sigma^{*}$ be a regular language, $U, V \subseteq \Sigma^{*}, a \in \Sigma$.
We call (U, a, V) a slice of L if and only if $U \neq \emptyset, V \neq \emptyset$ and $U a V \subseteq L$.

Let S be the set of all slices of L.
A partial order on S is defined by: $\left(U_{1}, a, V_{1}\right) \leq\left(U_{2}, a, V_{2}\right)$ if and only if $U_{1} \subseteq U_{2}$ and $V_{1} \subseteq V_{2}$.

The set of maximal slices of L is defined by
$S_{\max }:=\left\{(U, a, V) \in S \mid\right.$ there is no $\left(U^{\prime}, a, V^{\prime}\right) \in S$ with $\left.(U, a, V)<\left(U^{\prime}, a, V^{\prime}\right)\right\}$.

Transition-minimal unambiguous ϵ-NFA

Let $S^{\prime} \subseteq S$ be a finite slicing of L. In order to read an automaton $A_{S^{\prime}}$ out of S^{\prime}, each slice from S^{\prime} is transformed into a transition of $A_{S^{\prime}}$, and these transitions are connected via states and ϵ-transitions using a follow-relation \longrightarrow which is defined by: $\left(U_{1}, a, V_{1}\right) \longrightarrow\left(U_{2}, b, V_{2}\right)$ if and only if $U_{1} a \subseteq U_{2}$ and $b V_{2} \subseteq V_{1}$

Theorem (S. John). The three following statements are
equivalent for languages $L \subseteq \Sigma^{*}$ if the slicing $S_{\max }$ of L induces an unambiguous ϵ-NFA $A_{S_{\max }}$:

1) L is accepted by an $\epsilon-N F A$
2) $L=L\left(A_{S^{\prime}}\right)$ for some finite slicing $S^{\prime} \subseteq S$
3) $S_{\text {max }}$ is finite

Furthermore, $\left|S_{\max }\right| \leq\left|S^{\prime}\right| \leq\left|E_{\Sigma}\right|$.
Corollary (S. John). An unambiguous ϵ-NFA $A_{S_{\max }}$ has the minimum number of non- ϵ-transitions.

Transition slice

For each non- ϵ-transition t of an automaton A, we define the transition slice of t to be the slice $\left(U_{t}, l(t), V_{t}\right)$ of $L(A)$ where

- U_{t} is the set of strings yielded by the paths from an initial state to the source state of t,
$-l(t)$ is the label of t, and
- V_{t} is the set of strings yielded by the paths from the target state of t to an accepting state.

A bideterministic automaton is a transition-minimal ϵ-NFA

Lemma. For a bideterministic automaton A, let t_{1} and t_{2} be two different transitions of A, with the same label $a \in \Sigma$ and with the corresponding transition slices $\left(U_{t_{1}}, a, V_{t_{1}}\right)$ and $\left(U_{t_{2}}, a, V_{t_{2}}\right)$. Then $U_{t_{1}} \cap U_{t_{2}}=\emptyset$ and $V_{t_{1}} \cap V_{t_{2}}=\emptyset$.

Proposition. Each transition slice of a bideterministic automaton A is maximal.

Theorem. A bideterministic automaton A has the minimum number of transitions among all ϵ-NFAs accepting $L(A)$.

Multitape automaton model

Let us assume that a function tape : $Q \rightarrow\{1, \ldots, n\}$ associates every state of the automaton with a certain tape.

An n-tape automaton is given by a six-tuple (Q, tape, $\Sigma, E, I, F)$ where Q is a finite set of states with a partition into the sets Q_{1}, \ldots, Q_{n} so that $Q_{i}=\{q \in Q \mid \operatorname{tape}(q)=i\}$ for $i=1, \ldots, n$, Σ is an input alphabet, $E \subseteq Q \times(\Sigma \cup\{[]\}) \times$,$Q is a set of$ transitions, $I \subseteq Q$ is a set of initial states and $F \subseteq Q$ is a set of final states.

Bideterministic multitape automata

$$
L=\{(a b, a),(b c, a)\}
$$

Strongly bideterministic automata

Let $q \in Q$ and $i \in\{1, \ldots, n\}$. A transition is called a future transition for the state q and tape i if it is the first transition involving this tape on some path that starts from q.

We call a deterministic multitape automaton strongly deterministic if for all $q \in Q$, all $i \in\{1, \ldots, n\}$ and all $a \in \Sigma \cup\{[]$,$\} there is at most$ one future transition for the state q and tape i with the label a.

An automaton is strongly bideterministic if it is strongly deterministic and so is its reversal automaton.

Goal: to show that a strongly bideterministic automaton is both state- and transition-minimal.

Strongly bideterministic automata

Let $A=(Q$, tape, $\Sigma, E, I, F)$ be an n-tape automaton.
Let us consider one-tape automata $A_{1}, A_{2}, \ldots, A_{n}$ such that each $A_{i}=\left(Q, \Sigma, E_{i}, I, F\right), i=1, \ldots, n$, is obtained from A by replacing all transitions that do not involve tape i, by ϵ-transitions, and by discarding the state-tape associations. Then $E_{i}=E_{i_{\Sigma}} \cup E_{i_{\epsilon}}$ where $E_{i_{\Sigma}}=\left\{(p, a, q) \mid(p, a, q) \in E, p \in Q_{i}\right\}$ and $E_{i_{\epsilon}}=\left\{(p, \epsilon, q) \mid(p, a, q) \in E, p \in Q \backslash Q_{i}\right\}$.
Clearly, each A_{i} is a one-tape ϵ-NFA accepting the language $L\left(A_{i}\right)=\left\{\left[w_{i}\right] \mid\left(w_{1}, \ldots, w_{i}, \ldots, w_{n}\right) \in L(A)\right\}$.

In the following, our goal is to show that if A is strongly bideterministic then each A_{i} has a minimum number of non- ϵ-transitions among all ϵ-NFAs for the language $L\left(A_{i}\right)$.

Bideterministic multitape automata

A

A_{1}

A_{2}

Strongly bideterministic automata

Let A be a strongly bideterministic n-tape automaton with $A_{1}, A_{2}, \ldots, A_{n}$ being the corresponding one-tape ϵ-NFAs.

The following results hold for all $i \in\{1, \ldots, n\}$.
Lemma. Every A_{i} is unambiguous.
Lemma. Consider any A_{i}. Let t^{\prime} and $t^{\prime \prime}$ be two different transitions of A_{i}, with the same label $l\left(t^{\prime}\right)=l\left(t^{\prime \prime}\right)=a \in \Sigma$ and with the corresponding transition slices $\left(U_{t^{\prime}}, a, V_{t^{\prime}}\right)$ and $\left(U_{t^{\prime \prime}}, a, V_{t^{\prime \prime}}\right)$. Then $U_{t^{\prime}} \cap U_{t^{\prime \prime}}=\emptyset$ and $V_{t^{\prime}} \cap V_{t^{\prime \prime}}=\emptyset$.

Lemma. For any A_{i}, every transition slice of A_{i} is maximal.
Proposition. Every A_{i} has the minimum number of non- ϵ-transitions among all ϵ-NFAs accepting $L\left(A_{i}\right)$.

Strongly bideterministic multitape automata are transition-minimal

Proposition. A strongly bideterministic multitape automaton A has the minimum number of transitions.

Proof. Let us consider an n-tape automaton A and the corresponding one-tape ϵ-NFAs $A_{1}, A_{2}, \ldots, A_{n}$. Suppose that A is not transition-minimal. Let A^{\prime} be a transition-minimal n-tape automaton accepting the same language with corresponding one-tape ϵ-NFAs $A_{1}^{\prime}, A_{2}^{\prime}, \ldots, A_{n}^{\prime}$. Clearly, $L\left(A_{i}^{\prime}\right)=L\left(A_{i}\right), i=1, \ldots, n$. Obviously, there must be some $j \in\{1, \ldots, n\}$ such that A_{j}^{\prime} has less non- ϵ-transitions than A_{j}. Thus, A_{j} cannot be non- ϵ-transition-minimal which is a contradiction.

Further issues

- There may exist several different strongly bideterministic multitape automata that accept a given language.

However, it is clear that they all must have the same number of transitions since the corresponding A_{i}-s have the same number of non- ϵ-transitions.

- State minimality of strongly bideterministic multitape automata.
- Automaton transformations between different strongly bideterministic multitape automata.
- Automaton transformations that produce strongly bideterministic multitape automata.

