
'

&

$

%

Impurity and modularity from monads and coproducts

Tarmo Uustalu

(based on joint work with Neil Ghani)

Teooriapäevad Kokel, 30.1.–1.2.2004

1

'

&

$

%

Motivation

• Monads are an excellent machinery to represent and reason about the

semantics of impure languages, i.e., languages with side-effects (exceptions,

state, continuations), systematically in a uniform fashion.

• For modular modelling and reasoning, systematic ways of combining monads

are therefore desirable.

• The methods based on distributivity laws and monad transformers are not

entirely satisfactory.

• Taking the coproduct of two monads (in the category of monads) is the perfect

solution in more than one sense, but this is hard to construct.

2

'

&

$

%

This paper

• A general construction of colimits of finitary monads / monads with rank on

an lfp category / accessible category has been given by Kelly (Bull. Austr.

Math. Soc. 1980).

• Lüth, Ghani (FroCoS 2002) gave three simpler constructions of the coproduct

of two finitary ideal monads, but these involve colimits of chains and

quotienting and are thus not directly implementable.

• We give a fixed point formula for calculating the coproduct of two ideal

monads (making no rank assumptions).

3

'

&

$

%

Outline

• Notions of computation and monads

• Modularity and coproducts of monads

• Ideal monads and how to calculate their coproducts

4

'

&

$

%

Monads

• A monad on a category C is an endofunctor T on C together with nat. transfs.

η : Id → T and m : T · T → T s.t.

T
η·T

//

T ·η

�� HHHHHHHHHH

HHHHHHHHHH T · T

m

��

T · T · T
m·T //

T ·m

��

T · T

m

��

T · T m
// T T · T m

// T

• Intuition: T is a notion of computation: For A a type, TA is the correspoding

type of computations, η is insertion of values into computations, m flattens

nested computations.

5

'

&

$

%

• A monad morphism from T = (T, η, m) to T ′ = (T ′, η′, m′) is a nat. transf.

f : T → T ′ s.t.

Id
η

// T

f

��

T · T
m //

f ·f

��

T

f

��

Id
η′

// T ′ T ′ · T ′

m′

// T ′

• Intuition: f converts computations according to notion T to computations

according to notion T ′ respecting values and flattening of nested computations.

6

'

&

$

%

Kleisli category of a monad

• A monad T = (T, η, m) on a category (C, id, ◦) determines a category

(CT , jd, •), called its Kleisli category:

– |CT | = |C|,

– CT (A, B) = C(A, TB),

– for A ∈ |CT |, jdA = ηA,

– for f ∈ CT (A, B), g ∈ CT (B, C), g • f = mC ◦ Tg ◦ f .

• Intuition: If T captures the notion of computation appropriate for some impure

extension of a pure language for which C is model, then CT is a model of the

extended language.

7

'

&

$

%

• Some examples:

– Exceptions: ExcE A = A + E.

– Output: OutpC A = A × List C = µX. A + C × X.

– Non-determinism: NDet A = PA.

– Probabilistic choice: PrCh A = P(A × R
+)/∼.

– Time: Time A = A × Nat = µX. A + X.

– Non-termination: NTerm A = νX. A + X.

– State: StateS A = S ⇒ A × S.

– Continuations: ContR A = (A ⇒ R) ⇒ R.

– Free monads (term algebras): F µ = µX. Id + F · X.

– Completely free monads (non-wellfounded term algebras):

F ν = νX. Id + F · X.

8

'

&

$

%

Distributive laws

• Given two monads (R, ηR, mR) and (S, ηS , mS), a distributive law of the first

over the second is a nat. transf. λ : R · S → S · R subject to four coherence

conditions.

• Given a distributive law, there is the compatible monad (S · R, η, m) with

η = ηS · ηR, m = (mS · mR) ◦ (S · λ · R).

• If the distributive law satisfies some additional conditions, then the compatible

monad is the coproduct.

9

'

&

$

%

Monad transformers

• A monad transformer is a pointed functor F on Monad(C).

• For many monads there are natural accompanying monad transformers, e.g.

– Exceptions monad transformer: (ExcTE R) A = R (A + E).

– State monad transformer: (StateTS R) A = S ⇒ R (A × S).

10

'

&

$

%

Coproducts of monads

• A coproduct of two monads on C is a coproduct of them as objects of

Monad(C).

I.e.: a coproduct of two monads R, S is a monad T together with monad

morphisms i : R → T , j : S → T s.t., for any monad T ′ and monad morphisms

f : R → T ′, g : S → T ′, there exists a unique monad morphism h : T → T ′

satisfying

R
i //

f
 @

@@
@@

@@
T

h

��

S
j

oo

g
��~~

~~
~~

~

T ′

If R, S have a coproduct, we denote it R ⊕ S.

It is certainly not the case that R ⊕ S = R + S: in general, there is no way to

get a nat. transf. m : (R + S) · (R + S) → R + S.

• Intuition: R ⊕ S is the least notion of computation than contains (in disjoint

fashion) both R and S.

11

'

&

$

%

• Example: Let R ⊕ ExcE = R · ExcE .

• Coproducts are one canonical construction delivering monad transformers:

given some monad S on C, the functor F : Monad(C) → Monad(C) given by

FR = R ⊕ S is a monad transformer.

12

'

&

$

%

Free monads

• The free monad of an endofunctor F on a category C is the universal arrow

from F to the forgetful functor U : Monad(C) → [C, C].

• Given an endofunctor F on a category C, the underlying functor of its free

monad is F µ = µX. Id + F · X. i.e. the least solution of

X ∼= Id + F · X

• For C = Set and F polynomial, this is the term algebra monad induced by F

as a signature.

13

'

&

$

%

Coproducts of free monads

• The coproduct of two free monads is easy to construct:

Fµ ⊕ Gµ = (F + G)µ = µX. Id + F · X + G · X

• Hyland, Plotkin, Power (IFIP TCS 2002) have also given a construction of the

coproduct of any monad with a free monad:

R ⊕ Fµ = R · (F · R)µ = R · (µX. Id + F · R · X) = µX. R · (Id + F · X)

14

'

&

$

%

Ideal monads

• A monad (T, η, m) is said to be ideal (Aczel, Adámek et al., CMCS 2001) if

there exist T0, τ : T0 → T , m0 : T0 · T → T0 s.t. [η, τ] : Id + T0 → T is iso and

T0 · T
τ·T

//

m0

��

T · T

m

��

T0 τ
// T

• Without loss of generality, we assume T = Id + T0, so η = inl, τ = inr.

• Intuitively: Every computation is either a value or a non-value and flattening of

a non-value computation of a computation must give a non-value computation.

• If f : T → T ′ is a monad morphism from (T, η, m) to (T ′, η′, m′) with an ideal

source, then f = [η′, f0] for some f0 : T0 → T ′.

15

'

&

$

%

Ideal monads: examples

• Exceptions: ExcE A = A + E.

• Output: OutpC A = A × List C ∼= A + A × NEList C.

• Non-deadlocking non-determinism: NDet≥1 A = P≥1A ∼= A + P≥2A.

• Non-deadlocking probabilistic choice:

PrCh≥1 A = P≥1(A × R
+)/∼ ∼= A + P≥2(A × R

+)/∼.

• Time: Time A = A × Nat ∼= A + A × Nat = A + Time A.

• Non-termination: NTerm A = νX. A + X ∼= A + NTerm A.

• Free monads: F µ = µX. Id + F · X ∼= Id + F · F µ.

• Free completely iterative monads: F ν = µX. Id + F · X ∼= Id + F · F ν .

16

'

&

$

%

Coproducts of ideal monads

• Our result: The coproduct of two ideal monads R = Id + R0 and S = Id + S0 is

T = Id + (T1 + T2)

where

(T1, T2) = µ(X, Y). (R0 · (Id + Y), S0 · (Id + X))

i.e., (T1, T2) is the least solution of the system

X ∼= R0 · (Id + Y)

Y ∼= S0 · (Id + X)

• Intuitively: T is given by (strictly) alternating R0 and S0 on top of Id in a

wellfounded way:

T ∼= Id + (R0 + S0) + (R0 · S0 + S0 · R0) + (R0 · S0 · R0 + S0 · R0 · S0) +

• This first guess is wrong:

T = T1 + T2 where (T1, T2) = µ(X1, X2). (R · (Id + Y), S · (Id + X).

17

'

&

$

%

• Constructions: The unit is η = inl : Id → Id + (T1 + T2).

• The multiplication is m = [T, inr ◦ (m1 + m2)] : T +(T1 ·T +T2 ·T) → T where

m1 : T1 · T → T1 and m2 : T2 · T → T2 are constructed by mutual iteration

R0 · (Id + T2) · T
in1·T //

R0·(T+m2)

��

T1 · T

m1

��

T2 · T

m2

��

S0 · (Id + T1) · T
in2·Too

S0·(T+m1)

��

R0 · (T + T2) p1

// T1 T2 S0 · (T + T1)p2

oo

18

'

&

$

%

and p1, p2 are the composites

R0 · (T + T2) // R0 · ((Id + T2) + T1)
R0·((Id+T2)+in

−1

1
)

// R0 · R · (Id + T2)
mR

0
·(Id+T2)

// R0 · (Id + T2)
in1

// T1

S0 · (T + T1) // S0 · ((Id + T1) + T2)
S0·((Id+T1)+in

−1

2
)

// S0 · S · (Id + T1)
mS

0
·(Id+T1)

// S0 · (Id + T1)
in2

// T2

19

'

&

$

%

• The injections are Id + (inl ◦ i1) : Id + R0 → T and Id + (inr ◦ i2) : Id + S0 → T

where i1, i2 are the composites

R0
R0·inl

// R0 · (Id + T2)
in1 // T1

and

S0
S0·inl

// S0 · (Id + T1)
in2 // T2

20

'

&

$

%

• The copair of two monad morphisms f = [η′, f0] : Id + R0 → T ′,

g = [η′, g0] : Id + S0 → T ′ is h = [η′, [h1, h2]] : Id + (T1 + T2) → T ′ where

h1 : T1 → T ′ and h2 : T2 → T ′ are constructed by mutual iteration

R0 · (Id + T2)
in1 //

R0·(Id+h2)

��

T1

h1

��

T2

h2

��

S0 · (Id + T1)
in2oo

S0·(Id+h1)

��

R0 · (Id + T ′)
q1

// T ′ T ′ S0 · (Id + T ′)
q2

oo

in which q1, q2 are the composites

R0 · (Id + T ′)
f0·[η′,T ′]

// T ′ · T ′
m′

// T ′

and

S0 · (Id + T)
g0·[η′,T ′]

// T ′ · T ′
m′

// T ′

21

'

&

$

%

Coproducts of ideal monads: examples

• Non-deadlocking non-determinism and probabilistic choice: finite alternations

of non-trivial non-determinism and non-trivial probabilistic choice on top of

values.

• Output and non-termination: finite alternations of non-zero time and

non-empty output on top of non-termination.

• F ν ⊕ Gν 6∼= (F + G)ν .

((F + G)ν allows for infinite alternations between F · F ν and G · Gν whereas

the coproduct only permits finite alternation.)

22

'

&

$

%

Conclusions

• Although the general construction of coproducts (colimits) of monads is highly

complex, coproducts (colimits) of monads can be constructed relatively simply

in special cases using fixed point techniques.

• This said, one should still be very careful when seeking help from intuition, it

is easy to arrive at wrong solutions.

23

