

Tarmo Uustalu

(based on joint work with Neil Ghani)

Teooriapäevad Kokel, 30.1.–1.2.2004

MOTIVATION

- Monads are an excellent machinery to represent and reason about the semantics of impure languages, i.e., languages with side-effects (exceptions, state, continuations), systematically in a uniform fashion.
- For modular modelling and reasoning, systematic ways of combining monads are therefore desirable.
- The methods based on distributivity laws and monad transformers are not entirely satisfactory.
- Taking the coproduct of two monads (in the category of monads) is the perfect solution in more than one sense, but this is hard to construct.

This paper

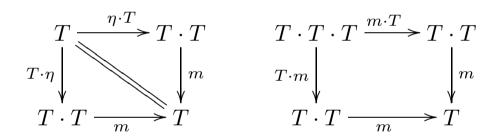
- A general construction of colimits of finitary monads / monads with rank on an lfp category / accessible category has been given by Kelly (Bull. Austr. Math. Soc. 1980).
- Lüth, Ghani (FroCoS 2002) gave three simpler constructions of the coproduct of two finitary *ideal* monads, but these involve colimits of chains and quotienting and are thus not directly implementable.
- We give a fixed point formula for calculating the coproduct of two *ideal* monads (making no rank assumptions).

OUTLINE

- Notions of computation and monads
- Modularity and coproducts of monads
- Ideal monads and how to calculate their coproducts

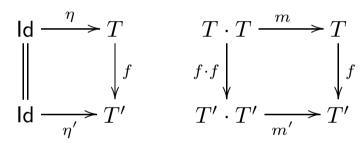
Monads

• A monad on a category \mathcal{C} is an endofunctor T on \mathcal{C} together with nat. transfs. $\eta: \mathsf{Id} \to T \text{ and } m: T \cdot T \to T \text{ s.t.}$



• Intuition: T is a notion of computation: For A a type, TA is the correspoding type of computations, η is insertion of values into computations, m flattens nested computations.

• A monad morphism from $T = (T, \eta, m)$ to $T' = (T', \eta', m')$ is a nat. transf. $f: T \to T'$ s.t.



• Intuition: f converts computations according to notion T to computations according to notion T' respecting values and flattening of nested computations.

Kleisli category of a monad

- A monad $T = (T, \eta, m)$ on a category (C, id, \circ) determines a category (C_T, jd, \bullet) , called its Kleisli category:
 - $|\mathcal{C}_T| = |\mathcal{C}|,$
 - $\mathcal{C}_T(A,B) = \mathcal{C}(A,TB),$
 - $\text{ for } A \in |\mathcal{C}_T|, \text{ jd}_A = \eta_A,$
 - for $f \in \mathcal{C}_T(A, B)$, $g \in \mathcal{C}_T(B, C)$, $g \bullet f = m_C \circ Tg \circ f$.
- Intuition: If T captures the notion of computation appropriate for some impure extension of a pure language for which C is model, then C_T is a model of the extended language.

• Some examples:

- Exceptions: $\operatorname{Exc}_E A = A + E$.
- Output: Outp_C $A = A \times \text{List } C = \mu X. \ A + C \times X.$
- Non-determinism: NDet $A = \mathcal{P}A$.
- Probabilistic choice: PrCh $A = \mathcal{P}(A \times \mathbb{R}^+)/\sim$.
- Time: Time $A = A \times \mathsf{Nat} = \mu X$. A + X.
- Non-termination: NTerm $A = \nu X$. A + X.
- State: State_S $A = S \Rightarrow A \times S$.
- Continuations: Cont_R $A = (A \Rightarrow R) \Rightarrow R$.
- Free monads (term algebras): $F^{\mu} = \mu X$. $\mathsf{Id} + F \cdot X$.
- Completely free monads (non-wellfounded term algebras): $F^{\nu} = \nu X$. $\operatorname{Id} + F \cdot X$.

DISTRIBUTIVE LAWS

- Given two monads (R, η^R, m^R) and (S, η^S, m^S) , a distributive law of the first over the second is a nat. transf. $\lambda: R\cdot S \to S\cdot R$ subject to four coherence conditions.
- Given a distributive law, there is the compatible monad $(S \cdot R, \eta, m)$ with $\eta = \eta_S \cdot \eta_R$, $m = (m^S \cdot m^R) \circ (S \cdot \lambda \cdot R)$.
- If the distributive law satisfies some additional conditions, then the compatible monad is the coproduct.

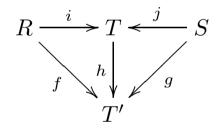
Monad transformers

- A monad transformer is a pointed functor F on $\mathbf{Monad}(\mathcal{C})$.
- For many monads there are natural accompanying monad transformers, e.g.
 - Exceptions monad transformer: (ExcT_E R) A = R (A + E).
 - State monad transformer: (StateT_S R) $A = S \Rightarrow R (A \times S)$.

Coproducts of monads

• A coproduct of two monads on C is a coproduct of them as objects of $\mathbf{Monad}(C)$.

I.e.: a coproduct of two monads R, S is a monad T together with monad morphisms $i: R \to T$, $j: S \to T$ s.t., for any monad T' and monad morphisms $f: R \to T'$, $g: S \to T'$, there exists a unique monad morphism $h: T \to T'$ satisfying



If R, S have a coproduct, we denote it $R \oplus S$.

It is certainly <u>not</u> the case that $R \oplus S = R + S$: in general, there is no way to get a nat. transf. $m: (R+S) \cdot (R+S) \to R+S$.

• Intuition: $R \oplus S$ is the least notion of computation than contains (in disjoint fashion) both R and S.

- Example: Let $R \oplus \mathsf{Exc}_E = R \cdot \mathsf{Exc}_E$.
- Coproducts are one canonical construction delivering monad transformers: given some monad S on \mathcal{C} , the functor $F: \mathbf{Monad}(\mathcal{C}) \to \mathbf{Monad}(\mathcal{C})$ given by $FR = R \oplus S$ is a monad transformer.

Free monads

- The free monad of an endofunctor F on a category \mathcal{C} is the universal arrow from F to the forgetful functor $U: \mathbf{Monad}(\mathcal{C}) \to [\mathcal{C}, \mathcal{C}]$.
- Given an endofunctor F on a category C, the underlying functor of its free monad is $F^{\mu} = \mu X$. $\operatorname{Id} + F \cdot X$. i.e. the least solution of

$$X \cong \operatorname{Id} + F \cdot X$$

• For $C = \mathbf{Set}$ and F polynomial, this is the term algebra monad induced by F as a signature.

Coproducts of free monads

• The coproduct of two free monads is easy to construct:

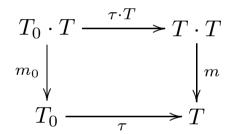
$$F^{\mu} \oplus G^{\mu} = (F+G)^{\mu} = \mu X. \operatorname{Id} + F \cdot X + G \cdot X$$

• Hyland, Plotkin, Power (IFIP TCS 2002) have also given a construction of the coproduct of any monad with a free monad:

$$R \oplus F^{\mu} = R \cdot (F \cdot R)^{\mu} = R \cdot (\mu X. \operatorname{Id} + F \cdot R \cdot X) = \mu X. R \cdot (\operatorname{Id} + F \cdot X)$$

IDEAL MONADS

• A monad (T, η, m) is said to be *ideal* (Aczel, Adámek et al., CMCS 2001) if there exist $T_0, \tau: T_0 \to T, m_0: T_0 \cdot T \to T_0$ s.t. $[\eta, \tau]: \mathsf{Id} + T_0 \to T$ is iso and



- Without loss of generality, we assume $T = \operatorname{Id} + T_0$, so $\eta = \operatorname{inl}$, $\tau = \operatorname{inr}$.
- Intuitively: Every computation is either a value or a non-value and flattening of a non-value computation of a computation must give a non-value computation.
- If $f: T \to T'$ is a monad morphism from (T, η, m) to (T', η', m') with an ideal source, then $f = [\eta', f_0]$ for some $f_0: T_0 \to T'$.

IDEAL MONADS: EXAMPLES

• Exceptions: $\operatorname{Exc}_E A = A + E$.

• Output: Outp $_C$ $A = A \times \text{List } C \cong A + A \times \text{NEList } C$.

• Non-deadlocking non-determinism: $\mathsf{NDet}_{>1}\ A = \mathcal{P}_{>1}A \cong A + \mathcal{P}_{>2}A$.

• Non-deadlocking probabilistic choice: $\operatorname{PrCh}_{\geq 1} A = \mathcal{P}_{\geq 1}(A \times \mathbb{R}^+)/\sim \cong A + \mathcal{P}_{\geq 2}(A \times \mathbb{R}^+)/\sim.$

• Time: Time $A = A \times \mathsf{Nat} \cong A + A \times \mathsf{Nat} = A + \mathsf{Time}\ A$.

• Non-termination: NTerm $A = \nu X$. $A + X \cong A + NTerm A$.

• Free monads: $F^{\mu} = \mu X$. $\operatorname{Id} + F \cdot X \cong \operatorname{Id} + F \cdot F^{\mu}$.

• Free completely iterative monads: $F^{\nu} = \mu X$. $\operatorname{Id} + F \cdot X \cong \operatorname{Id} + F \cdot F^{\nu}$.

Coproducts of Ideal Monads

• Our result: The coproduct of two ideal monads $R = Id + R_0$ and $S = Id + S_0$ is

$$T = \mathsf{Id} + (T_1 + T_2)$$

where

$$(T_1, T_2) = \mu(X, Y). (R_0 \cdot (\mathsf{Id} + Y), S_0 \cdot (\mathsf{Id} + X))$$

i.e., (T_1, T_2) is the least solution of the system

$$X \cong R_0 \cdot (\mathsf{Id} + Y)$$

$$Y \cong S_0 \cdot (\mathsf{Id} + X)$$

• Intuitively: T is given by (strictly) alternating R_0 and S_0 on top of Id in a wellfounded way:

$$T \cong \operatorname{Id} + (R_0 + S_0) + (R_0 \cdot S_0 + S_0 \cdot R_0) + (R_0 \cdot S_0 \cdot R_0 + S_0 \cdot R_0 \cdot S_0) + \dots$$

• This first guess is wrong:

$$T = T_1 + T_2$$
 where $(T_1, T_2) = \mu(X_1, X_2)$. $(R \cdot (\mathsf{Id} + Y), S \cdot (\mathsf{Id} + X)$.

- Constructions: The unit is $\eta = \mathsf{inl} : \mathsf{Id} \to \mathsf{Id} + (T_1 + T_2)$.
- The multiplication is $m = [T, \text{inr} \circ (m_1 + m_2)] : T + (T_1 \cdot T + T_2 \cdot T) \to T$ where $m_1 : T_1 \cdot T \to T_1$ and $m_2 : T_2 \cdot T \to T_2$ are constructed by mutual iteration

and p_1 , p_2 are the composites

$$R_0 \cdot ((\operatorname{Id} + T_2) + \operatorname{in}_1^{-1}) \qquad m_0^R \cdot (\operatorname{Id} + T_2) & \operatorname{in}_1 \\ R_0 \cdot (T + T_2) \longrightarrow R_0 \cdot ((\operatorname{Id} + T_2) + T_1) \longrightarrow R_0 \cdot R \cdot (\operatorname{Id} + T_2) \longrightarrow R_0 \cdot (\operatorname{Id} + T_2) \longrightarrow T_1$$

$$S_0 \cdot ((\operatorname{Id} + T_1) + \operatorname{in}_2^{-1}) \qquad m_0^S \cdot (\operatorname{Id} + T_1) & \operatorname{in}_2 \\ S_0 \cdot (T + T_1) \longrightarrow S_0 \cdot ((\operatorname{Id} + T_1) + T_2) \longrightarrow S_0 \cdot S \cdot (\operatorname{Id} + T_1) \longrightarrow S_0 \cdot (\operatorname{Id} + T_1) \longrightarrow T_2$$

• The injections are $\operatorname{\sf Id} + (\operatorname{\sf inl} \circ i_1) : \operatorname{\sf Id} + R_0 \to T$ and $\operatorname{\sf Id} + (\operatorname{\sf inr} \circ i_2) : \operatorname{\sf Id} + S_0 \to T$ where i_1, i_2 are the composites

$$R_0 \xrightarrow{R_0 \cdot \text{inl}} R_0 \cdot (\text{Id} + T_2) \xrightarrow{\text{in}_1} T_1$$

and

$$S_0 \xrightarrow{S_0 \cdot \text{inl}} S_0 \cdot (\text{Id} + T_1) \xrightarrow{\text{in}_2} T_2$$

• The copair of two monad morphisms $f = [\eta', f_0] : \operatorname{Id} + R_0 \to T',$ $g = [\eta', g_0] : \operatorname{Id} + S_0 \to T' \text{ is } h = [\eta', [h_1, h_2]] : \operatorname{Id} + (T_1 + T_2) \to T' \text{ where}$ $h_1 : T_1 \to T' \text{ and } h_2 : T_2 \to T' \text{ are constructed by mutual iteration}$

$$R_{0} \cdot (\operatorname{Id} + T_{2}) \xrightarrow{\operatorname{in}_{1}} T_{1} \qquad T_{2} \xleftarrow{\operatorname{in}_{2}} S_{0} \cdot (\operatorname{Id} + T_{1})$$

$$R_{0} \cdot (\operatorname{Id} + h_{2}) \downarrow \qquad \qquad \downarrow h_{1} \qquad h_{2} \downarrow \qquad \qquad \downarrow S_{0} \cdot (\operatorname{Id} + h_{1})$$

$$R_{0} \cdot (\operatorname{Id} + T') \xrightarrow{q_{1}} T' \qquad T' \xleftarrow{q_{2}} S_{0} \cdot (\operatorname{Id} + T')$$

in which q_1, q_2 are the composites

$$R_0 \cdot (\operatorname{Id} + T')^{f_0 \cdot [\eta', T']} \xrightarrow{T'} T' \cdot T' \xrightarrow{m'} T'$$

and

$$S_0 \cdot (\operatorname{Id} + T) \xrightarrow{g_0 \cdot [\eta', T']} T' \cdot T' \xrightarrow{m'} T'$$

COPRODUCTS OF IDEAL MONADS: EXAMPLES

- Non-deadlocking non-determinism and probabilistic choice: finite alternations of non-trivial non-determinism and non-trivial probabilistic choice on top of values.
- Output and non-termination: finite alternations of non-zero time and non-empty output on top of non-termination.
- $F^{\nu} \oplus G^{\nu} \not\cong (F+G)^{\nu}$. $((F+G)^{\nu} \text{ allows for infinite alternations between } F \cdot F^{\nu} \text{ and } G \cdot G^{\nu} \text{ whereas}$ the coproduct only permits finite alternation.)

Conclusions

- Although the general construction of coproducts (colimits) of monads is highly complex, coproducts (colimits) of monads can be constructed relatively simply in special cases using fixed point techniques.
- This said, one should still be very careful when seeking help from intuition, it is easy to arrive at wrong solutions.