
From Tests to Spec (and Back)

Juhan Ernits
Küberneetika Instituut

A report on work that other people

have done
but

where a lot still remains to be done.

Ühel ilusal talvisel päeval Kokõl
(05.02.2005)

The Setting

We assume, that we are interested in programs
that work as intended.

Observational estimate of the current state of
matters:

There are lots of programs out there.

Most of them do not have formal specifications but some
of them behave more or less as expected.

Some programs have test suites.

Fewer programs are attributed with annotations.

Most programs are actually checked whether they fulfil
their initial intention by end users.

Verification

Given a program and spec, build a model of the
program and use logic model checking for checking
the correspondence.

The checker either returns “OK” or “Error” together
with a trace to the error state

Program

Logic Model
Checking

[](P

�

<>S) OK

State 1:
State 2:
State 3:
State 4:
State 5:
...

Error!

Some Issues in Verification

Verification needs the desired properties to be
defined in some formal way. But the properties are
often

Unspecified;

Specified in prose (which is difficult to parse);

Specified ambiguously, e.g. “the program should work
correctly”.

There are other issues but they are not relevant
here.

Test Suites

More and more software builders pay attention to
assembling test suites for automatically testing their
products.

The difference between testing and verification:
Testing explores some scenarios and specifies expected
outcome;

Verification explores all scenarios regarding some
specific property.

What if we say that the test suite is representative of
the properties that we are interested in?

An approach by J. Yang and D. Evans

Program

Test Suite

Execution
Traces

T
esting

Inferred
Properties

Candidate
Property
Patterns

In
feren

ce

Temporal Properties

Let us consider just one class of properties, e.g.
temporal properties.

Temporal properties are about the order of events
in a system. E.g.

 A file should be opened before it is read from.

 When the subscriber picks up the phone, dial-tone is
always generated.

We assert that temporal properties are hard to write
 manually in formal ways, e.g. using temporal logic.

Temporal Logic (cont.)

We assert that temporal properties are hard to write
 in formal ways, e.g. using temporal logic.

You disagree? Try writing down a formula for

“P triggers S between Q (e.g., end of system
initialization) and R (start of system shutdown)”

Temporal Logic (cont.)

We assert that temporal properties are hard to write
 in formal ways, e.g. using temporal logic.

You disagree? Try writing down a formula for

“P triggers S between Q (e.g., end of system
initialization) and R (start of system shutdown)”

[]((Q & !R & <>R) -> (P -> (!R U (S & !R))) U R)

Property Patterns (Dwyer et al.)

Property Patterns

Occurrence

� � � � �

Absence
Universality Existence

Bounded Existence Precedence

Response Chain
Precedence

Chain
Response

This classification is a result of reading 500+ natural language
specifications of real programs. The patterns are like templates
(in temporal logic) where one can plug in specific P-s, Q-s, R-s
and S-s, i.e. specific events.

Response Pattern

Property Patterns

Occurrence

� � � � �

Absence
Universality Existence

Bounded Existence Precedence

Response Chain
Precedence

Chain
Response

A state/event P must always be followed by
a state/event Q within a scope

Or as a Quantified Regular Expression
[-P]* (P [-S]* S [-P]*)*

SPPSPS � SPSP

Refined Response Pattern (Yang
et al.)

MultiEffect
PSS

MultiCause
PPS

EffectFirst
SPS

Alternating
PSPS

OneCause
SPSS

OneEffect
SPPS

CauseFirst
PPSS

For each
combination of
two events

Decide if they
satisfy
CauseFirst,
OneCause, or
OneEffect

Find the strictest
patternResponse

SPPSPS

/\ /\ /\

/\

S
tr

ic
te

r

Find the Strictest Pattern

All Traces
CauseFirst + + +
OneCause + - -
OneEffect + + +

Trace 1: PSPS Trace 2: PPS

For any two events determine the strictest pattern:

CauseFirst /\ OneEffect -> MultiCause

J. Yang et al.

Implementation

 The traces are generated by running the test suites on
an instrumented program. The program is instrumented
at all method entry and exit points.

 The current implementation is a 900 line Perl program.

 This approach should have alternative implementations!

Program
Instrumented

Program

Instrum
entation

Test Suite

Execution
Traces

T
esting

Inferred
Properties

Candidate
Property
Patterns

In
feren

ce

Results and Perspective

By using this approach it is possible to
 compare the temporal behaviour of different
implementations of the same specification.

 compare different versions of some program to reveal
differences in temporal behaviour.

 use this in conjuction with verification to improve test
suites.

 automatically specify certain system call patterns of
operating systems???

Compare Different Versions of a
Program

Inferred
Properties 1

Different
Properties

D
ifferen

ce A
n

alyzer

Inferred
Properties 2

Shared
PropertiesProgram

Version 1

Program
Version 2

D
ynam

ic Inference

J. Yang

Example: OpenSSL

A widely used implementation of the Secure Socket
Layer protocol

Yang et al. looked at 6 different versions:
[0.9.6, 0.9.7, 0.9.7a-d]

The focus is on the handshake protocol.

Manually instrumented server

Modified client

Executed each version of a server with 1000
randomly generated clients.

J. Yang

SR_CLNT_HELLO
SW_SRVR_HELLO

SW_CERT
SW_KEY_EXCH
SW_CERT_REQ

SW_SRVR_DONE

SR_CERT
SR_KEY_EXCH
SR_CERT_VRFY

SR_FINISHED

SW_CHANGE
SW_FINISHED

BEFORE+ACCEPT

SW_FLUSH
OK

SW_FLUSH

Client Server

J. Yang

Inferred Alternating Patterns

�SW_SRVR_DONE→
SR_CERT

�����SW_CERT→
SW_KEY_EXCH

����SR_KEY_EXCH→
SR_CERT_VRFY

0.9.7d0.9.7c0.9.7b0.9.7a0.9.70.9.6

Documented
improvement

Fixed bug Race
condition

7 alternating patterns same for all versions

J.Yang

Other Approaches to Automatic
Spec Extraction

Value relationships between variables

Machine learning approach that discovers
specifications a program must satisfy when
interacting with an API

Extraction of thread behaviour out of program code

...

Conclusion

Automatically inferring temporal properties has
yielded practical results.

Even simple property patterns reveal interesting
properties.

A lot still remains to be done! Like
Looking at different property patterns;

Building a property difference analyser (for program
evolution);

Improvement of test suites in conjunction with
verification technology.

References

Jinlin Yang and David Evans, Dynamically inferring temporal properties.
Proceedings of the ACM-SIGPLAN-SIGSOFT workshop on Program analysis for
software tools and engineering. 2004.

Matthew B. Dwyer, George S. Avrunin, James C. Corbett, Patterns in property
specifications for finite-state verification. Proceedings of the 21st international
conference on Software engineering. 1999.

Jinlin Yang and David Evans, Automatically Inferring Temporal Properties for
Program Evolution. Software Reliability Engineering, 2004. ISSRE 2004.

Jinlin Yang's home page: http://www.cs.virginia.edu/~jy6q

Thank you!

