
Bit-state caching
or

Speeding up model checking by
modifying hash functions

Juhan Ernits
Koke, 03.02.2006*

* With readable fonts and references.

What do we want to do?

We want to check for reachability
on a structure representing a
constraint system.
 (in other words) We want to check
if the behaviour of the model is
included in the behaviours of the
specification

Right! but, really?

We want to detect if deadlocks are
possible in certain software;
We want to synthesize certain hardware
components (for example memory
arbiters);
We want to generate tests from models;
We want to solve logistics related
problems.

Academic Example

Dining philosophers

Can this system deadlock?

another Example

[Ernits, Memory arbiter synthesis and verification, 2005]

Explicit state model checking

We consider explicit state model
checking.

all control states and data states are
represented explicitly.

As opposed to symbolic model checking
where the states are represented by some
symbolic construct, for example BDD-s.

Ways of reducing memory
consumption

Partial order reduction
Lossless state compression

Collapse compression
Minimized automaton representation

Lossy state compression
bit-state hashing
hash compaction

Collapse compression

 The state explosion is due to small
changes in many places
 Store different parts of the state
space in separate descriptors and
represent the actual state as an index
to relevant state descriptors

Minimized automaton
representation

 Build a recognizer automaton for states.
All states that have been seen lead to an
accepting state.
 The recognizer automaton is
interrogated on each step of the model
checker.
 The recognizer automaton is modified
each time a new state is seen.

What is hash compaction

 A method where each state is
represented by a hash (for example 128
bits). This is stored in a regular hash
table.
 Used in Spin, Zing, Bogor, ...
 Can achieve very good coverage.

Bit-state hashing

 Let us look at how a hash table works.
 Instead of a state, store one bit.

Hash functions

 mod sucks! (they say)
 Look at Jenkins' hash funcion:

// Most hashes can be modelled
// like this:

 initialize(internal state)
 for (each text block)
 {
 combine(internal state, text block);
 mix(internal state);
 }
 return postprocess(internal state);

Hash functions 2

 Hash functions are well researched to
be as pseudorandom as possible.
 Can we do better?
 Can we encode some relevant simple
abstraction function into the hash
function?

Hash table size sweep

 Start with a really small hash table size
and modify the size of the table (the
base of the mod function).
 Works well for synthesis tasks

 task failed with exceeding 3 GB of mem in
the explicit case;
 worked with 100 MB of memory with bit
state hashing enabled,
 but

Hash table size sweep

 Percentage of queries yielding a trace
to the desired state (not “may be”).

Hardware vs software checking

 Hardware in general has a lot of control
states and relatively few data variables
 Software has loooots of data and weird
constructs like threads, dynamic creation
of objects, garbage collection ...
 One has to be really careful when one
wants to make bit-state caching work in a
more general case.

Ideas

By modifying the size of the hash table
we got an answer to the query in seconds
and by using a few kilobytes for the hash
table.
The cache memory of modern processors
is 1-2 MB. This should make such sweep
really fast.
Processors with multiple cores are
already available for laptops.

References

Dillinger, P.C., Manolios, P.: Bloom filters in probabilistic
verification. In Hu, A.J., Martin, A.K., eds.: FMCAD. Volume 3312
of Lecture Notes in Computer Science., Springer (2004) 367381
Ernits, J.: Memory arbiter synthesis and verification for a radar
memory interface card. Nordic Journal of Computing 12(2)
(2005) 6888
Holzmann, G.J.: An analysis of bitstate hashing. Form. Methods
Syst. Des. 13(3) (1998) 289307
Zhang, L., Malik, S.: Cache performance of sat solvers: a case
study for efficient 10. implementation of algorithms. In
Giunchiglia, E., Tacchella, A., eds.: SAT. Volume 2919 of Lecture
Notes in Computer Science., Springer (2003) 287298

