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Overview

Cellular automata (ca) are local presentations of global dynamics

They are powerful tools for qualitative analysis

They display several interesting theoretical features

We will set some of them in action
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History of cellular automata

von Neumann, 1950s:
mechanical model of self-reproduction

Moore and Myhill, 1962:
the Garden of Eden problem

Hedlund, 1969:
shift dynamical systems

Hardy, de Pazzis, Pomeau 1976:
lattice gas automata

Amoroso and Patt, 1972; Kari, 1990:
the invertibility problem

Mach̀ı and Mignosi, 1993:
cellular automata on Cayley graphs
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Life is a Game

Ideated by John Horton Conway (1960s) popularized by Martin Gardner.
The checkboard is an infinite square grid.
Each case (cell) of the checkboard is “surrounded” by those within a
chess’ king’s move, and can be “living” or “dead”.

1 A dead cell surrounded by exactly three living cells, becomes living.

2 A living cell surrounded by two or three living cells, survives.

3 A living cell surrounded by less than two living cells, dies of isolation.

4 A living cell surrounded by more than three living cells, dies of
overpopulation.
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Game of Life situations
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Cellular automata

Conway’s Game of Life is an example of cellular automaton.

Definition

A cellular automaton (ca) on a regular lattice L is a triple 〈S ,N , f 〉 where

1 S is a finite set of states

2 N = {ν1, . . . , νN } is a finite neighborhood index on L
3 f : SN → S is the local function

The local function induces a global function on SL

G (c)(z) = f (c(z + ν1), . . . , c(z + νN))

The evolution from configuration c is thus

ct+1
z = f

(
ctz+ν1 , . . . , c

t
z+νN

)
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von Neumann and Moore neighborhoods on the square grid
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Wolfram’s enumeration of 1D ca rules

Given a 1-dimensional, 2-state rule with neighborhood vN(1),

1 identify the sequence (x , y , z) ∈ {0, 1}vN(1) with the the binary
number xyz , and

2 associate to the rule f the number
∑7

j=0 2j f (j).

Silvio Capobianco () February 5, 2011 8 / 37



Applications of cellular automata

Population dynamics

Economics

Fluid dynamics

Simulations of geological phenomena

Symbolic dynamics

Approximation of differential equations

Screen savers

And many more...
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Implementations

ca are straightforward to implement on a computer.

Define the space.

Implement the local rule

Run an update.

More difficult is to provide a general framework for ca.

Hardware
I cam6 (Toffoli and Margolus; PC-XT expansion card)
I cam8 (Toffoli and Margolus; SPARCStation-driven device)

Software
I JCASim (Weimar; in Java)
I simp/step (Bach and Toffoli; in Python)
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simp/step

Developed by Edward (Ted) Bach as his PhD project under the
supervision of Tommaso Toffoli.

Currently in its 0.7 release.

Written as a Python module.

Employs the NumPy and PyGame modules.

Allows implementation of several kinds of lattices.

Silvio Capobianco () February 5, 2011 11 / 37



And now for something totally different...
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Reversible cellular automata

A reversible cellular automaton (briefly, rca) is a cellular automaton A
such that:

The global function F is bijective.

There exists a ca A ′ whose global function is F−1.

It is well-known that

if the global function is bijective
then the ca is a rca.
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Reversible ca are ubiquitous

Toffoli embedding theorem (1979)

Every d-dimensional ca can be simulated by a (d + 1)-dimensional rca.

Reason why

History can be stored by a second layer and the additional dimension.

The additional layer is shifted—reversible.

The original function on first layer is xor’ed with second—reversible.
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... however, reversibility is problematic

Theorem (Amoroso and Patt, 1972)

Reversibility of 1D ca is decidable.

Reason why: tool provided by de Bruijn graphs.

Theorem (Kari, 1990)

Reversibility of 2D ca is undecidable.

Reason why: obstacle from undecidability of tiling problem.
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ca from infinite to finite lattices
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Block automata

They are a model of “watertight compartments” computation.

Space is partitioned into equally-shaped blocks

Each block updates at the same time

Each block updates independently of the others

Block automata may be thought of as zero-range, coarse-grained ca.
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Block automata are ubiquitous!

Theorem (Kari, 1996)

Every reversible 1D and 2D ca can be rewritten as a composition of block
automata and partial shifts.

Theorem (Durand-Lôse, 2001)

Every reversible ca can be simulated by a composition of block automata
and partial shifts.
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The Margolus neighborhood

Key ideas:

Split plane into 2× 2 blocks.

Change center of splitting at each step.

Make symmetric, bijective rule.

Silvio Capobianco () February 5, 2011 19 / 37



Update with the Margolus neighborhood
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Update with the Margolus neighborhood
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Update with the Margolus neighborhood
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Update with the Margolus neighborhood
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Example: Fredkin’s billiard ball model

Implementation by Toffoli and Margolus, 1986

Square grid with Margolus neighborhood.

Walls are represented by paired lines of particles.

Balls are represented by pairs of particles on a diagonal with an empty
space between them.

Block rule:
I If one: proceed.
I If two from opposite directions: bounce 90o.
I Otherwise: nothing.

Silvio Capobianco () February 5, 2011 24 / 37



Lattice-gas automata: A two-steps discipline

Collision

Strictly pointwise process

Same number for inputs and outputs

Same types for inputs and outputs

Propagation

Each signal to one neighbour

No replication

No reuse
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Characterization of reversible lattice-gas automata

Theorem

Let A be a lattice-gas automaton with collision function f : SN → SN .
TFAE.

1 A is reversible.

2 f is a permutation.

Reason why

Propagation is reversible by construction.

Collision is a collection of processes on isolated points.

But any such collection is globally reversible iff it is a collection of
local reversible processes.
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Example: HPP

Square grid on the plane.

Up to four particles per node, in the four directions.

Collision rule:
I If from opposite directions: bounce 90o.
I Otherwise: proceed.
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Example: FHP

Triangular grid on the plane.

Up to six particles per node, in the six directions.

Collision rule:
I If two from opposite directions: bounce 60o in random direction.
I If three 120o apart: bounce 60o.
I Otherwise: proceed.
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Second-order dynamics

We call second-order a dynamics of the form

x t+1 = F (x t , x t−1) (1)

In “first-order” dynamics, the converse of x t+1 = F (x t) is
x t = G (x t+1) with G = F−1.

In second-order dynamics, the converse of (1) should have the form

x t−1 = G (x t , x t+1)

for some G .

What should the shape of G be?
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Characterization of second-order reversibility

The following are equivalent.

1 The following second-order system is reversible:

x t+1 = F (x t , x t−1)

2 The following second-order system is reversible:

(x t+1, y t+1) = (F (x t , y t), x t)

3 For every p ∈ X , the following map is a bijection:

Fp(x) = F (p, x)

Thus, a second-order dynamical system is reversible iff

the future is a permutation of the past
parameterized by the present.
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Second-order cellular automata

In a second-order ca the local function maps SN+1 into S .
The dynamics has the form

ct+1
x = f

(
ctx+N (1), . . . , c

t
x+N (N); c

t−1
x

)
(2)

We have the following trick, due to Fredkin:

Consider the first-order ca:

ct+1
x = f

(
ctx+N (1), . . . , c

t
x+N (N)

)
where the states are integers modulo m.

Then
ct+1 = f

(
ctx+N (1), . . . , c

t
x+N (N)

)
−ct−1

x

is a reversible second-order ca!
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Reversibility in second-order ca

Let A = 〈d , S ,N , f 〉 be a second-order ca. TFAE.

1 A is reversible.

2 f is a permutation of its last argument, parameterized by its first |N |

arguments.

Moreover, any second-order ca can be rewritten isomorphically as a
lattice-gas automaton. (Toffoli, C., and Mentrasti, 2004)
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Two-step second-order

Divide the grid into two sub-grids, even and odd, so that:

1 Even cells only have odd neighbors.

2 Odd cells only have even neighbors.

Separate the updates so that:

1 Even cells only update at even times.

2 Odd cells only update at odd times.
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Example: Ising model on the plane

Square grid, von Neumann neighborhood.

Nodes contain up/down dipoles.

Edges represent links.

A link is excited if orientation of dipoles is opposite.

A link is relaxed if orientation of dipoles is same.

Update rule:
I If as many excited as relaxed: flip node.
I Otherwise: nothing.
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On the Web

Cellular automata FAQ
www.cafaq.com

Jarkko Kari’s tutorial
users.utu.fi/jkari/ca/CAintro.pdf

Ted Bach’s simp/step
sourceforge.net/projects/simpstep/

www.ioc.ee/~silvio/simp.html

Guillaume Theyssier’s ACML
www.lama.univ-savoie.fr/~theyssier/acml/

Jörg R. Weimar’s JCASim
www.jweimar.de/jcasim/

Golly (Game of Life simulator)
golly.sourceforge.net/

Stephen Wolfram’s articles
www.stephenwolfram.com/publications/articles/ca/
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T. Toffoli, N. Margolus. Invertible cellular automata: A review.
Physica D 45 (1990) 229–253.

T. Toffoli, S. Capobianco, P. Mentrasti. How to turn a second-order
cellular automaton into a lattice gas: a new inversion scheme. Theor.
Comp. Sci. 325 (2004) 329–344.

T. Toffoli, S. Capobianco, P. Mentrasti. When—and how—can a
cellular automaton be rewritten as a lattice gas? Theor. Comp. Sci.
403 (2008) 71–88.

Silvio Capobianco () February 5, 2011 36 / 37



Thank you for attention!
Any questions?
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