
Algebras of Relative
Monads

James Chapman
Institute of Cybernetics, Tallinn

joint work with
Thorsten Altenkirch (University of Nottingham)

and
Tarmo Uustalu (Institute of Cybernetics, Tallinn)

Executive Summary
• Monads are the most successful programming pattern

arising in functional programming.

• There is a lot of research on different variations of
monads (arrows, comonads, idioms).

• Haskell doesn’t even give us the full power of monads!

• The extra expressivity of dependently typed functional
programming gives us an opportunity to consider
other variations that are invisible in functional
programming.

• Relative monads are a generalisation of monads.
Arrows and monads are instances.

(Our) Motivation
1. If you like functional programming and category

theory then you will find monads everywhere.

2. But there are some things which are almost like
monads but not quite. The satisfy the rules even but
the types are wrong!

3. Abstract the common pattern in these examples.

4. Invent relative monads!

5. Generalise monad theory and study examples in this
new light.

What’s a monad?
• A monad is just an algebraic structure like a

monoid, a group, a ring, etc.

some data:
a map T : |C| → |C| (in Haskell C = Set, |C| = Set)
for any X, a map return : X → T X
for any X and Y, a map bind : (X → T Y) → T X → T Y

subject to the following conditions:
bind return = id -- left unit
bind f . return = f -- right unit
bind f . bind g = bind (bind f . g) -- associativity

Doublenegation monad
False is the empty set

¬ X = X → False

T = ¬¬
return : X → ¬¬ X or X → (X → False) → False
bind : (X → ¬¬ Y) → (¬¬ X → ¬¬ Y)
 which is the same as
 (X → ¬ Y → False) → hyp. 1
 (¬ X → False) → hyp. 2
 ¬ Y → hyp. 3
 False) by hyp. 2 $ (hyp 1. $ hyp 3)
and the laws hold trivially (up to definitional equality)

What’s an algebra (for a
monad)

• A pair of (A,a) where

• A is a object of C

• For any X a map a : (X → A) → (TX → A)

• such that

• a f . return = f

• a (a f . g) = a f . bind g

Relationship to to the
category C

• The algebras are objects of a category called the
Eilenberg-Moore category for the monad

• The morphisms are algebra morphisms

• There is an adjunction between this category EM(T)
and the category C

• Monads can be split into adjunctions, this is one
canonical way.

• The other is due to Kleisli.

What is an algebra for
double negation?

• It should be a pair of a proposition A and for any X
an operation a : (X → A) → ¬¬ X → A

• What does this mean?

• a would be a operation that broadens the
implication to take classical evidence instead of
constructive evidence (note. for a fixed A).

• A should be a proposition which is true classically
and constructively. Right?

What’s a relative monad?
• A relative monad is like a monad but it

includes a

data:
a functor J : J → C
a map T : |J| → |C|
a map for any X, return : J X → T X
a map for any X and Y, bind : (J X → T Y) → T X → T Y

subject to the (same!) following conditions:
bind return = id -- left unit
bind f . return = f -- right unit
bind f . bind g = bind (bind f . g) -- associativity

Eg 1- Untyped lambda terms
data Lam : Nat → Set where
 var : Fin n → Lam n
 lam : Lam (suc n) → Lam n
 app : Lam n → Lam n → Lam n

T = Lam,
J = Fin,
return : Fin n → Lam n
return = var

bind : (Fin m → Lam n) → Lam m → Lam n
The monadic structure shows you how to implement

substitution (notoriously fiddly) and what properties to
verify

Eg 2 - Vector spaces
F : Nat → Set
F n = Fin n → R -- any semiring would do

where T = F and J = Fin and:

return : ∀{n} → Fin n → F n
return a = λ b → if a == b then 1 else 0

bind : ∀{m n} → (Fin m → F n) → F m → F n
bind f v = λ b → Σ m (λ a → v a * f a b)

Next... relative algebras

• Why should we care?

• Algebras for a monad are a standard
construction in category theory

• We’ve generalised monads. So, our
generalisation should work for their
algebras too.

• It would be very nice if our construction
gives some interesting algebras for our
motivating examples (it does!).

What’s an algebra of a
relative monad?

• An algebra is a pair (A,a) of

• an object A of C

• for any X a map a : (JX → A) → T X → A

• subject to the same laws as before:

• a . return = id

• a (a f . g) = a f . bind g

Relationship to to the
functor J

• The rel. algebras are objects of a category called the
rel. Eilenberg-Moore category for the rel. monad

• The morphisms are rel. algebra morphisms

• There is a rel. adjunction between this category
REM(T) and the functor J.

• Rel. monads can be split into rel. adjunctions, this is
one canonical way.

• The other is Rel. Kleisli.

Eg. 1 - ext. lambda models
• A triple (S,eval,ap) of

• S : Set

• for any n, a map eval : (Fin n → S) → Tm n → S

• a map ap : S → S → S

• subject to some laws:

• eval γ (var i) = γ i

• eval γ (app t u) = ap (eval γ t) (eval γ u)

• ap (eval γ (lam t)) s = eval (γ << s) t

• ((a : S) → ap f a = ap g a) → f = g

(S,eval) is an algebra!

Eg. 2 - a right module
over a semiring R

• a monoid (A, ε, ·) and

• an operation & : A → R → A

• subject to some laws

• ε & r ≅ ε

• (a · a') & r ≅ (a & r) · (a' & r)

• a & zero ≅ ε

• a & (r + r') ≅ (a & r) · (a & r')

• a & one ≅ a

• a & (r * r') ≅ (a & r) & r'

Output

• A very dense conference paper “Monads
need not be endofunctors” at FoSSaCS
2010, Paphos

• A journal paper “Relative monads
formalised” in the journal of formalized
reasoning (final version pending).

• A journal paper “Relative Monads” for a
special issue on FoSSaCS 2010 which is
excruciatingly late.

Future work

• Complete formalisation

• Investigate relationship between our work
and related ideas

• Find more examples

