Automatic Translation Error Analysis

or how to brute-force through exponential complexity algorithms by abusing beam search

Mark Fishel, TÜ ATI

Feb. 5, 2011, Theory Days at Nelijärve

Outline

- Approaches to MT evaluation
- Automatic analysis of translation errors
 - o alignment
 - \circ error detection
 - \circ error summarization
- Meta-evaluation
- First results
- Future work

Translation

"Была у Мэри маленькая овечка и большая собака."

Evaluation

Mostly done by comparison between the produced translation (hypothesis) and a correct one (reference)

	Manual	Automatic
Score	Adequacy/fluency, rank, HTER	WER, BLEU, NIST, METEOR, TER, SemPOS, LRscore, ad ∞
Analysis	(Vilar et al. 2006)	Our work

- Score -- good for comparison, but not informative
- Manual -- expensive

Translation errors by Vilar et al. (2006):

- Punctuation
- Missing words (in the reference)
 - Content word
 - Functional word
- Incorrect words (in the hypothesis)
 - Incorrect sense/form
 - \circ Extra word
 - \circ Style, idioms
- Unknown words (in the hypothesis)
 - Unknown stem/form
- Word order (in the hypothesis)
 - \circ Short/long range
 - $\circ \; \text{Word/phrase}$

Automatic error analysis

- Alignment between the hypothesis and the reference
- Error detection and classification
- Error summarization

• Result -- ~equivalent to Vilar et al.'s error classification

Alignment

Src: Mary'l oli väike lammas ja suur koer.

Almost trivial, except for ambiguous alignment pairs

- repeating words (esp. punctuation, articles, etc.)
- surface forms of one lemma
- synonyms

Alignment solution

- Align using lemmas/synonym sets
- Alignment modelled as a HMM
 - observed variables -- hypothesis words
 - hidden variables -- reference words
 - \circ emission probabilities allow matching words to align:

$$p(h_i|r_j) = (h_i = r_j)? \frac{1}{|\{h : h \in \text{hyp}, h = h_i\}|} : 0$$

 transmission probabilities penalize long-distance reordering:

$$p(r_j|r_{j-1}) \sim (r_j - r_{j-1})^{-2}$$

We want only 1-to-1 alignments

 makes search cost exponential
 do a beam search

Lexical error detection

Src: Mary'l oli väike lammas ja suur koer.

- unaligned ref words -- missing
- unaligned hyp words
 - present in src? untranslated
 - o else, extra word
- aligned, different surface form
 - o synonyms
 - \circ or wrong surface form

Order error detection

Order error detection

Can be used to

- calculate permutation distance
 - Hamming distance
 - \circ Kendall's τ distance
 - \circ Ulam's distance
 - Spearman's rank correlation coefficient
- Find misplaced words and phrases

Misplaced units

Breadth-first search for a minimum number of unit shifts

- vertices: permutations of the hypothesis ranks
- edge present if the two permutations differ by two adjacent symbols in the wrong order
- edge weight is 0 for block shift continuation, or 1 otherwise
- avoid exponential cost with beam search

Here: 1 word shift and 1 phrase shift

Error summarization

Can be performed on different levels

- keep list of errors for every translated sentence
 usable for examining errors sentence-by-sentence
- summarize total number of errors, per category
 - apply part-of-speech tagging to classify content/functional words
 - present error numbers in percentage of total words in ref/hyp
 - \circ usable for overall system weakness comparison
- linear combination of the ratio of different error types -score!

Summary

- Fast
- Inexpensive
- Language-independent, but can benefit from linguistic analysis

Meta-evaluation

- For scores -- correlation with human judgements
- For analysis -- precision/recall of error detection
- Both require manual labor
- Manual analysis requires a lot of labor

First results

- 2656 sentences, from <u>http://masintolge.ut.ee/</u> input, manually translated into English
- translated automatically with Google and 2 UT systems

	UT-Base	UT-Newer	Google
Missing	54.29%	51.79%	41.52%
Untranslated	10.08%	8.77%	2.40%
Extra	33.96%	38.77%	30.23%
Wrong form	2.40%	2.83%	3.05%
Misplaced	6.89%	7.09%	7.45%
Rho	0.905	0.904	0.921

Future work

- Improve alignment
- Structural order error detection, with syntactic analysis
- Perform meta-evaluation
- Scoring, tuning weights to fit dev set

Thank you!