Secure Gene Mining

Liina Kamm STACC, University of Tartu

Overview

- Purpose
- Secure multi-party computation
- Data
- Experiments
- Results

Purpose

- Combine data from different biobanks
- Data integration and analysis
- Sensitive data

Secure Multi-Party Computation

- Data entry
- Data sharing
- Data aggregation
- Published results

Example Scenarios

- Three different biobanks want to share data for analysis
- NIH wants to share data to analysts
- 23andMe project

Data Analysis

- Genome-wide association studies
- Cases and controls
- Hypothesis testing

Data Description

 Affymetrix Mapping 500K Array Set on the 270 samples typed by the International HAPMAP project

	NA06985	NA06991	NA06993	NA06994	•••
SNP_A-17 80270	BB	AB	AA	AA	•••
SNP_A-17 80272	AB	AB	AB	BB	•••
SNP_A-17 80285	BB	BB	BB	BB	•••

Data Structure (1)

• We have:

	DI	D2	D3
SNPI	BB	AB	AA
SNP2	AB	AB	Z

- We need:
 - Count of alleles A and
 B in the case group
 - Count of alleles A and
 B in the control group

Data Structure (2)

• We had:

	D	D2	D3
SNPI	BB	AB	AA
SNP2	AB	AB	ZZ

• We get:

	DI	D2	D3
SNPI_A	0		2
SNPI_B	2		0
SNP2_A	I		0
SNP2_B	I	I	0

Compulsory Formula Slide

Consider the following allele counts:

	Cases	Controls
Allele I	a	Ь
Allele 2	С	d

• We compute the standard χ^2 test statistic of independence based on these observed allele counts

$$T_1 = \frac{(ad - bc)^2(a + b + c + d)}{[(a+b)(c+d)(a+c)(b+d)]}$$

Data Privacy

- All the computations with gene data are secure multi-party computations
- Analyst provides the significance threshold
- Analyst receives a boolean value stating whether the SNP was significant or not

Tools

- Sharemind VM
- SecreC language
- Tokyo Cabinet DB engine
- Sharemind cluster
 - 48 GB RAM (less was used)
 - 12 cores (2 were used)
 - LAN network connection (current bottleneck)

Experiments

- Initial experiment:
 - 270 donors
 - 262 264 SNPs
- Additional experiments:
 - 540 donors
 - 810 donors
 - 1080 donors

Results

Implementation Experience

- Database issues
 - Database size
 - Querying columns vs. rows
- Optimising code
 - Manual vectorisation
- Running the experiments
 - Tuning the network layer configuration

