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Bioinformatics

* Applying computationally intensive
techniques to increase the
understanding of biological processes.

* Input: biological data

— manually curated or directly from
experiments

* Output: biological hypotheses
—one or more

— possibly scored and ranked



A study in bioinformatics resulting
with multiple hypotheses

* Collecting data

— reading literature
— browsing databases
— making experiments

* Hypotheses generation
— may be manual
 Hypotheses evaluation
— scoring
— ranking
— filtering



Hypothesis evaluation

* Each hypothesis must have a statistic

— a function for calculating a real-valued
score based on data

— higher score means better hypothesis
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Hypothesis evaluation

* Each hypothesis must have a statistic

— a function for calculating a real-valued
score based on data

— higher score means better hypothesis
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Hypothesis evaluation

Input:
—The data
— The hypothesis statistics

Scoring
Ranking
Filtering
Output:
— Filtered ranked scored hypotheses



P-value based
hypothesis evaluation

Input:

— A data generating model based on our current understanding
of the system

— The data
— The hypothesis statistics

Scoring

P-value calculation:

— how probable it is to get so high score according to the model
Ranking

Filtering

Output:
— Filtered ranked p-valued hypotheses



Sample data: Cases with features

s o0& Task:

! Find features
that are
functionally
related to the
red feature

Case

Hypotheses:
Brown
Blue

Feature



Sample data: Cases with features
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Sample data: Cases with features
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Sample data: Cases with features

Car is moving BG FG
Car is green
Engine is running

T Car looks clean
¢
l

Gas pedal is pressed
Car has eight seats
Car is yellow

Gear is engaged
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* A hypothesis - feature 7 is functionally
related to car moving

 We have 7 features,
therefore 7 hypotheses

* QUESTION:

— What statistics to use to score the
hypotheses?



Foreground count statistic
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Bias statistic
DF
B D! + D3

el e s

-0.50 0.53 0.67 0.33 0.75 1.00 0.71
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Hypergeometric p-value statistic

P () (o4 i)

h!LjIYPER(D) _ Z

(pr 1 pe)
k=DF D;+D?
| [eafe2(emaime s 16 17

-0.70 0.50 0.30 0.98 0.28 0.23 0.16
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Binomial p-value statistic

D;+D?

RBINOM () Z (D@-F;-FDZB> 0.550 505+ D8~k
k=DF g
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-0.66 0.50 0.34 0.91 0.31 0.25 0.23
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Comparison

M 5 3 E 5 £ 1 2

3 / 2 6 1 0 2
3 8 4 3 3 2 5
0.50 0.53 0.67 0.33 0.75 1.00 0.71
0.70 0.50 0.30 0.98 0.28 0.23 0.16
0.66 0.50 0.34 0.91 0.31 0.25 0.23
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Artificial data:
10000 cases, 10000 features
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Artificial data:
10000 cases, 10000 features
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Artificial data:
10000 cases, 10000 features
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Artificial data:
10000 cases, 10000 features
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Artificial data:
10000 cases, 10000 features
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Artificial data
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3 / 2 6 1 0 2
3 8 4 3 3 2 5
0.50 0.53 0.67 0.33 0.75 1.00 0.71
0.70 0.50 0.30 0.98 0.28 0.23 0.16
0.66 0.50 0.34 0.91 0.31 0.25 0.23
0.46 0.53 0.52 0.44 0.80 0.55 0.74
- - - - + - +
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ROC-curve:
Receiver Operating Characteristic
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True positive rate
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True positive rate
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True positive rate

Comparison
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Comparison
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Comparison with combinations

BIASHYPER
BIASBINOM
HYPER®'>
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Comparison with combinations
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Application in bioinformatics

Cluster 1 - up day 6

Billon et al. Comprehensive transcriptome analysis of mouse embryonic stem cell adipogenesis
unravels new processes of adipocyte development. Genome Biol (2010) vol. 11 (8) pp. R80
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Database Factor Conser- Targets in Enrichment
isentifier farmaly vabon cluster rawo
M01003 IKZF2 09 8 10.53
Mo0982 EGR none 7 10.39
MO00106 CuUXx1 1.0 7 8.03
MO00638 HNF4 08 22 4.05
moosf” )
MO10
“' BIAS HYPER
MO09:
MADO \ )
MO00058 HEN1 07 44 1.99

. Mo1028 REST 0.7 51 1.97
MO0444 VDR none 47 1.97
MO00244 NGFI-C 07 51 1.89
MO00687 aCP1 0.7 46 1.88
MO01100 LRF none 57 1.85
MAD105 NFxB1 none 53 1.81

Enrichment
Pvalue

4 51E-07
8.40E-06
5.26E-06
6.09E-08
5.66E-06
1.85E-06
4 55E-06
8.18E-06
6.27E-06
6.53E-06
1.34E-06
3.41E-06
2.03E-06
9.61E-06
1.40E-06
7.20E-06



Summary

We have presented a general framework for
working with hypotheses in bioinformatics

We have compared some statistics in the
context of finding functionally related
binary features

The combined statistics work better on our
artificial data

It is possible to do even better, if more is
known about the data generating model
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