Hypothesis generation in bioinformatics

Meelis Kull
BIIT-group
University of Tartu

Estonian CS Theory Days Nelijärve, Feb 6, 2011

Bioinformatics

- Applying computationally intensive techniques to increase the understanding of biological processes.
- Input: biological data
 - manually curated or directly from experiments
- Output: biological hypotheses
 - one or more
 - possibly scored and ranked

A study in bioinformatics resulting with multiple hypotheses

- Collecting data
 - reading literature
 - browsing databases
 - making experiments
- Hypotheses generation
 - may be manual
- Hypotheses evaluation
 - scoring
 - ranking
 - filtering

- · Each hypothesis must have a statistic
 - a function for calculating a real-valued score based on data
 - higher score means better hypothesis

- · Each hypothesis must have a statistic
 - a function for calculating a real-valued score based on data
 - higher score means better hypothesis

- · Each hypothesis must have a statistic
 - a function for calculating a real-valued score based on data
 - higher score means better hypothesis

ranking

- Each hypothesis must have a statistic
 - a function for calculating a real-valued score based on data
 - higher score means better hypothesis

ranking

filtering

- Input:
 - The data
 - The hypothesis statistics
- Scoring
- Ranking
- Filtering
- Output:
 - Filtered ranked scored hypotheses

P-value based hypothesis evaluation

- Input:
 - A data generating model based on our current understanding of the system
 - The data
 - The hypothesis statistics
- Scoring
- P-value calculation:
 - how probable it is to get so high score according to the model
- Ranking
- Filtering
- Output:
 - Filtered ranked p-valued hypotheses

Task:

Find features that are functionally related to the red feature

Hypotheses:

Brown Blue

Car is moving
Car is green
Engine is running
Car looks clean
Gas pedal is pressed
Car has eight seats
Car is yellow
Gear is engaged

BG	FG
3	3
7	8
2	4
6	3
1	3
0	2
2	5

- A hypothesis feature i is functionally related to car moving
- We have 7 features, therefore 7 hypotheses
- QUESTION:
 - What statistics to use to score the hypotheses?

Foreground count statistic

$$h_i^{\mathsf{FG}}(D) = D_i^{\mathsf{F}}$$

	i=1	i=2	i=3	i=4	i=5	i=6	i=7
D_i^{F}	3	8	4	3	3	2	5
D_i^{B}	3	7	2	6	1	0	2
$h_i^{FG}(D)$	3	8	4	3	3	2	5

Bias statistic

$$h_i^{\mathsf{BIAS}}(D) = \frac{D_i^{\mathsf{F}}}{D_i^{\mathsf{F}} + D_i^{\mathsf{B}}}$$

	i=1	i=2	i=3	i=4	i=5	i=6	i=7
D_i^{F}	3	8	4	3	3	2	5
D_i^{B}	3	7	2	6	1	0	2
$h_i^{BIAS}(D)$	0.50	0.53	0.67	0.33	0.75	1.00	0.71

Hypergeometric p-value statistic

$$h_i^{\mathsf{HYPER}}(D) = \sum_{k=D_i^\mathsf{F}}^{D_i^\mathsf{F} + D_i^\mathsf{B}} \frac{\binom{m}{k}\binom{m}{D_i^\mathsf{F} + D_i^\mathsf{B} - k}}{\binom{2m}{D_i^\mathsf{F} + D_i^\mathsf{B}}}$$

	i=1	i=2	i=3	i=4	i=5	i=6	i=7
D_i^{F}	3	8	4	3	3	2	5
D_i^{B}	3	7	2	6	1	0	2
$h_i^{HYPER}(D)$	0.70	0.50	0.30	0.98	0.28	0.23	0.16

Binomial p-value statistic

$$h_i^{\mathsf{BINOM}}(D) = \sum_{k=D_i^{\mathsf{F}}}^{D_i^{\mathsf{F}} + D_i^{\mathsf{B}}} \binom{D_i^{\mathsf{F}} + D_i^{\mathsf{B}}}{D_i^{\mathsf{F}}} 0.5^k 0.5^{D_i^{\mathsf{F}} + D_i^{\mathsf{B}} - k}$$

	i=1	i=2	i=3	i=4	i=5	i=6	i=7
D_i^{F}	3	8	4	3	3	2	5
D_i^{B}	3	7	2	6	1	0	2
$h_i^{BINOM}(D)$	0.66	0.50	0.34	0.91	0.31	0.25	0.23

	i=1	i=2	i=3	i=4	i=5	i=6	i=7
D_i^{F}	3	8	4	3	3	2	5
D_i^{B}	3	7	2	6	1	0	2
$h_i^{FG}(D)$	3	8	4	3	3	2	5
$h_i^{BIAS}(D)$	0.50	0.53	0.67	0.33	0.75	1.00	0.71
$h_i^{HYPER}(D)$	0.70	0.50	0.30	0.98	0.28	0.23	0.16
$h_i^{BINOM}(D)$	0.66	0.50	0.34	0.91	0.31	0.25	0.23

Artificial data

	i=1	i=2	i=3	i=4	i=5	i=6	i=7
D_i^{F}	3	8	4	3	3	2	5
D_i^{B}	3	7	2	6	1	0	2
$h_i^{\sf FG}(D)$	3	8	4	3	3	2	5
$h_i^{BIAS}(D)$	0.50	0.53	0.67	0.33	0.75	1.00	0.71
$h_i^{HYPER}(D)$	0.70	0.50	0.30	0.98	0.28	0.23	0.16
$h_i^{BINOM}(D)$	0.66	0.50	0.34	0.91	0.31	0.25	0.23
True bias	0.46	0.53	0.52	0.44	0.80	0.55	0.74
True bias ≥ 0.7	_	_	_	_	+	_	+

ROC-curve: Receiver Operating Characteristic

OPTIM?

Feb 6, 2011

Hypothesis generation in bioinformatics, CS Theory Days, Nelijärve

Comparison with combinations

Comparison with combinations

Application in bioinformatics

Billon et al. Comprehensive transcriptome analysis of mouse embryonic stem cell adipogenesis unravels new processes of adipocyte development. Genome Biol (2010) vol. 11 (8) pp. R80

Summary

- We have presented a general framework for working with hypotheses in bioinformatics
- We have compared some statistics in the context of finding functionally related binary features
- The combined statistics work better on our artificial data
- It is possible to do even better, if more is known about the data generating model

Thanks