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Bioinformatics
• Applying computationally intensive 

techniques to increase the 
understanding of biological processes.

• Input: biological data
–manually curated or directly from 

experiments
• Output: biological hypotheses
– one or more
– possibly scored and ranked
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A study in bioinformatics resulting 
with multiple hypotheses

• Collecting data
– reading literature
– browsing databases
– making experiments

• Hypotheses generation
– may be manual

• Hypotheses evaluation
– scoring
– ranking
– filtering
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Hypothesis evaluation
• Each hypothesis must have a statistic
– a function for calculating a real-valued 

score based on data
– higher score means better hypothesis
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Hypothesis evaluation
• Input:
– The data
– The hypothesis statistics

• Scoring
• Ranking
• Filtering
• Output:
– Filtered ranked scored hypotheses
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P-value based 
hypothesis evaluation

• Input:
– A data generating model based on our current understanding 

of the system
– The data
– The hypothesis statistics

• Scoring
• P-value calculation:

– how probable it is to get so high score according to the model
• Ranking
• Filtering
• Output:

– Filtered ranked p-valued hypotheses
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Sample data: Cases with features
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Sample data: Cases with features
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Sample data: Cases with features

Car is moving
Car is green
Engine is running
Car looks clean
Gas pedal is pressed
Car has eight seats
Car is yellow
Gear is engaged

BG FG
3 3
7 8
2 4
6 3
1 3
0 2
2 5
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• A hypothesis - feature    is functionally 
related to car moving

• We have 7 features, 
therefore 7 hypotheses

• QUESTION:
–What statistics to use to score the 

hypotheses?
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Foreground count statistic
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Bias statistic
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Hypergeometric p-value statistic

15

i=1 i=2 i=3 i=4 i=5 i=6 i=7

3 8 4 3 3 2 5

3 7 2 6 1 0 2

0.70 0.50 0.30 0.98 0.28 0.23 0.16

DF
i

DB
i

hHYPER

i (D)



hBINOM

i (D) =

DF

i+DB

i�

k=DF

i

�
DF

i +DB
i

DF
i

�
0.5k0.5D

F

i+DB

i −k

Feb 6, 2011 Hypothesis generation in bioinformatics, CS Theory Days, Nelijärve

Binomial p-value statistic
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Comparison
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Artificial data: 
10000 cases, 10000 features
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Artificial data

19



Feb 6, 2011 Hypothesis generation in bioinformatics, CS Theory Days, Nelijärve 20
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ROC-curve:
Receiver Operating Characteristic
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Comparison
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Comparison with combinations
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Comparison with combinations
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Application in bioinformatics
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Summary
• We have presented a general framework for 

working with hypotheses in bioinformatics
• We have compared some statistics in the 

context of finding functionally related 
binary features

• The combined statistics work better on our 
artificial data

• It is possible to do even better, if more is 
known about the data generating model
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