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Zero-Knowledge Arguments Zero-Knowledge Arguments

o Inputs: Prover (x,w)  Verifier (x) o Perfect Completeness: If Simulator (x)  Verifier (x)
o NP-language L and a relation R, (x,w) € Ry then Verifier outputs 1
?ictvgh;t’:x: X € Lff 3w such that = o Computational Soundness: If x & L e
° Co7mmon irﬁput x, Prover has private then for any PPT adversary Prover,
input w - the probability that Verifier outputs 1 -
@ Prover wants to convince Verifier that Message r 15 iz g ble Message r

o Perfect Zero-Knowledge: Exists a
simulator S that can perfectly
simulate the transcript between Prover
and Verifier without knowing w

x € L without revealing anything else

o Efficiency requirements:
non-interactivity, small
computation/communication?
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Non-Interactive Zero-Knowledge NIZK in Common Reference String Model

@ Usually, ZK arguments are multi-round Prover (x,w) Random Oracle H o CRS model — a weaker setup Prover (o;x,w) Verifier (7; x)
@ Inconvenient in applications: it would R assumption Message
be good to create the argument once, @ All parties are given a trusted CRS
and. th.en. let many different verifiers to H(x, M1) that is generated according to some
verify it independently nice probability distribution
o Well-known: no NIZK in plain model e @ The simulator generates CRS together
e Fiat-Shamir heuristic: substitute the with a trapdoor that is only used in
verifier's messages with the output of the proof

random oracle. Result is NIZK

e Good: often very efficient
e Bad: random oracles do not exist
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Our Results: Quick Overview Basic Idea of SAT Argument

@ NIZK argument in the CRS model for circuit satisfiability @ Assume the circuit has only NAND gates
’ CRS ‘ Comm ‘ P.comp ‘ V.comp ‘ @ Circuit size is n, thus 2n + 1 wires a;
[Groth 2010] @ Prover multicommits to 2n + 1 wires by one group element
O§\3C|2) 2‘;2 O(4|92)E+ @(|9§)M o(IC]) @ He proves the wires are consistent and that the last wire is
O(ICP**=) | e(ICP?) o(/<] P)E + (| C|**)M o(l<l) equal to 1, by using a few “parallel” operations
o This palereEr 5 o All wires are Boolean: a; = a; - a; for all |
O(|€/|2+6) 1/?;2 O(\ﬂLE VE + @(|§/\2)M 91(/1) o Output wires of same gate have same value: define suitable
o(|C| ) | ©(ICI2) | O(|C|*e)E +O(|C]P?)M | ©(|C|*?) permutation £ on all wires, show that a; = ag(;) for all i
@ Zap (2-message witness-indistinguishable public-coin o The NAND gates are respected
o ...

argument): verifier sends CRS, prover sends argument
o Communication: O(|C|'/?*¢) group elements

In total 7 permutation and product arguments

@ Also: weaker security assumption Efficiency and security inherited from basic arguments

o g-power (symmetric) DL instead of g-power CDH
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Basic Idea: Prod/Perm Arguments Knowledge Commitment Scheme

@ Select random x, a, 3, let A = (A1,...,Ap) o Let par = (p,G1,G2,G7,e€) < GBP(1%), and let g; be a
o com(c;3;r) == (gtﬂ(x),gaﬂ( )7gt5f1( )) oore generator of G;. Let x,a, 8 < Zp

f(x) =r+> aix™ o Fix subset A = (A1,...,\,) C [g] with 0 < \; < Ajj1
o log (e( Al f2(X )/e(g; () Zﬁ‘(x))) @ Prover commits to & = (a1,...,a,) € Zy, n < qin G,

The CRS is 0 = (par; (g7, g8 &7 )icto...q})
For t € {1,2} and random r < Z,,

= f(x)h(x) — B)fa(x) = Tiep, 09X + Xjen, viX’
e f3/fs are chosen so that if the prover is honest, then 6; =0
e A1 = A1(A) and Ay = Ax(A) are such that Ay N Ay =0
o Ais “progression-free” set of odd integers, A, = O(n**<) comt(c, 3 r) = (gtf(X)7gt f(x )’gtﬁf(X)) c G‘Z’

o (g¥,85") belongs to CRS o iff i € A, — |o| = O(n*T*)

~ — n i
@ Security assumption: if A(o) can output (X, X) such that o7 ) = 7 o 2

X, = X{, then A “knows” a representation @ By security assumption, Prover knows (&, r)
log X1 =3 ¥ix'
e /\2
e i~ g e S v Sublnenr NIZC Argmens e s g e St v Sl NIZC Argmens
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Hadamard Product Argument

Progression-Free Sets

e A € [n] is progression-free if it does not contain arithmetic @ Prover wants to convince Verifier that for given commitments
progression of length 3 A € G1, B € Gy, C € Gy, she knows how to open them as
o Thatis: for A, A\j, Ak €A, Ak — Ny = \j — \; iff i = j = k d, b, ¢, such that ¢; = a; - by for every j € [n]
@ Let r3(n) be the cardinality of the largest progression-free [ 20 E B 25 Il 2 |
subset of [7] LR EEL L EEELLLE.T.
e [Elkin 2010]: - - - T T T T T T T T T T T T
_ L/4 \1/4
r3(n) = Q M — Q(nlfg) @ Goal: to do verification in parallel
221/2|0g2 n
for any e > 0

@ [Sanders 2010]: r3(n) = O(n/ logt—°() n)

@@ 002 @@ 012 020 021 022 @@ 102 @@ 112 120 121 122 @@ 202 @@ 212 220 221 222
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New Arguments

Hadamard Product Argument: ldea Hadamard Product Argument: ldea
o Let X «+ e(A, B) Xo + e(C, HJ 185 ) h <+ e(g1,82) o NAp = {0} U{N} U{N + A}z
r1+ZJ 3 @ For some integers ;,

o A= ,thus logA=r +> 7, apx N
e For flxed A, let Az == {0} U {Ni} U {4+ Aj}igj log(X1/X2) =(r + Z aix™) - (ra + Z bix*)—
@ For some integers 7;, i i

log(X1/X2) =(n + Z axM) - (r+ > bixM)— (rs + Z cix ZXA’
r3+ZC; ZXA,I —Zab—cl 2\ +Z%

i€N
= i (aibi — ci)x* + Z Yix o If A is progression-free set of odd integers, then 2\; & Ay
iehs o Thus: ¢; = ajb; for all i € [n] iff log(X1/X2) can be

e If prover is honest then this is OX represented as ) ., YiX'
e The iff part follows from security assumptions
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Hadamard Product: CRS Generation Hadamard Product: Argument
o Let par = (p,G1,Ga,Gr, €) + GBP(1%) ® Recall o = (par; {{& Yozi<an, {g?Xf}iel\z}te{lg]»)
@ Set x,a < Zp, and let g; be a generator of G, for t € {1,2} o Let A= com!(0;3;n), B = com?(c:; b: r),
@ Define CRS as C = com(o; & r3).
i f f i i\ AN
— (par; (g0, & &7, &8 Nictoyun: (&5 88 )_gn) ® Prover sets m1 < [jcy, (gzx> » 72 4= [lien, (gzax>
B o Argument: (m1,m) € G3

~ @ POO - S - OOOOO0OO0O0 -0 -000~ Q= o All 7; can be computed by doing ©(n?) multiplications in Z,

; — 1+e
> D B, |o7, fg] = ) tor ey & >0 o Two O(n'*¢)-multi-exponentiations, ©(n?) multiplications in

Zp
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Permutation Argument

Hadamard Product: Verification

@ Include D + H}’Zl gzxkj in CRS e Prover has committed to 3, b and wants to convince Verifier
e Verifier checks that that for a public permutation p, 3,(j) = b;.
o e(A7 B)/G(C, D) = e(gl77rl)
o e(gl',m) = e(g1,m2)

@ 5 pairings

o Similar idea: construct a formal polynomial f(x), such that
Prover is honest iff for a fixed set A}, 39 : f(x) = Zje/\g djxt.

e A is constructed so that from the progression-freeness of A
and security assumptions it follows that the whole
permutation argument is secure

o Complexity: almost the same as for product argument
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Argument for Circuit Satisfiability Circuit Description

@ Prover and Verifier share a circuit C. Prover wants to

convince Verifier he knows a satisfying assignment o Circuit has n gates, every gate i
@ Binary circuit, only NAND gates, aAb = —(a A b) has inputs L; and R;, and output q
@ We describe the circuit by using its number of gates, and two g Uy [ its cifps oF fie elivele ‘f.
permutations that show that the circuit is self-consistent o There are 2n + 1 wires. Every wire, bao
except one we done by R,.1, is 7 e

equal to L; or R; for i € [n]

@ Every gate has at least one output
wire U;. There are n + 1 more

wires X; that correspond to inputs V+ wt @@
to the circuit, and multiple outputs {YYE
@ Denote

A= (L17 oooyg an Rl?' 009 Rn; Rn+1).
B = (Ulv"'7Un7X17"'7Xn+1)
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Circuit Consistency Circuit Consistency

@ Circuit consistency will be given by @ Circuit consistency will be given by
two permutations £ and T ”t two permutations £ and 7
@ Input consistency permutation s @ Throughput consistency
€:[2n+1] — [2n + 1] permutation
o For every (Aj,...,A;) that have %, T:[2n+1] — [2n+1]

o Every wire is both an input wire
(is equal to some A;) and an
output wirte (is equal to some
Bj)

o Define 7(i) =j

o Clearly circuit is inconsistent if
for some j, A,y # B;

to be equal, £ permutes

A,’l —>"'—>A,'t —)A,‘l

For other input nodes t, {(t) =t
Clearly, circuit is inconsistent if
for some j, A¢(j) # A;
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Full Argument: Idea Questions?

e Committo A, A" = (Ry,...,Rn, L1,..., Ln, Rat1),

A" =(Ri,...,Rp,0,...,0,Rys1, B and

B' = (Uh,...,Up,0,...,0)

Check all values are Boolean: Ac A=A

Check A and A’ are consistent (permutation argument)
Check A” and A” are consistent (product argument)
Check B and B’ are consistent (product argument)

Check that NANDs are observed and U, = 1:
Ao A= (11,..., 101,20 L1, -, Lonta) — B’

@ Check that ¢ is observed (permutation argument with A, A)

@ Check that 7 is observed (permutation argument with A, B)

Donel!
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