Progression-Free Sets and Sublinear
Pairing-Based Non-Interactive Zero-Knowledge
Arguments

Helger Lipmaa

Cybernetica AS

Tallinn University

Estonian Theory Days, Nelijärve 2001

Helger Lipma

Progression-Free Sets and Sublinear NIZK Arguments

Motivation
Our Results
Tools
New Arguments

Zero-Knowledge Non-Interactive

Zero-Knowledge Arguments

- Inputs:
 - NP-language L and a relation R_L such that $\forall x \colon x \in L$ iff $\exists w$ such that $(x, w) \in R_L$
 - Common input x, Prover has private input w
- Prover wants to convince Verifier that
 x ∈ L without revealing anything else
- Efficiency requirements: non-interactivity, small computation/communication?

Prover (x, w)	Verifier (x)	
	Message 1	
	.	
	Message <i>r</i>	

Motiv. Our Re

Outline I

- Motivation
 - Zero-Knowledge
 - Non-Interactive
- 2 Our Results
 - Quick Overview
 - Basic Idea
- Tools
 - Knowledge Commitment Scheme
 - Progression-Free Sets
- 4 New Arguments
 - Hadamard Product Argument
 - Permutation Argument
 - Circuit Satisfiability Argument

Helger Lipma

Progression-Free Sets and Sublinear NIZK Arguments

Motivation
Our Results
Tools
New Arguments

Zero-Knowledge Non-Interactive

Zero-Knowledge Arguments

- Perfect Completeness: If $(x, w) \in R_L$ then Verifier outputs 1
- Computational Soundness: If x ∉ L then for any PPT adversary Prover, the probability that Verifier outputs 1 is negligible
- Perfect Zero-Knowledge: Exists a simulator S that can perfectly simulate the transcript between Prover and Verifier without knowing w

Simulator (x) Verifier (x)Message 1 \longleftrightarrow Message r

Non-Interactive Zero-Knowledge

- Usually, ZK arguments are multi-round
- Inconvenient in applications: it would be good to create the argument once, and then let many different verifiers to verify it independently
- Well-known: no NIZK in plain model
- **Fiat-Shamir heuristic:** substitute the verifier's messages with the output of random oracle. Result is NIZK
 - Good: often very efficient
 - Bad: random oracles do not exist

Prover (x, w)	Random	Oracle	H

Message 1

 $\xrightarrow{H(x,M1)}$

Message 2

Helger Lipmaa

Progression-Free Sets and Sublinear NIZK Arguments

Motivation
Our Results
Tools
New Arguments

Quick Overview

Our Results: Quick Overview

• NIZK argument in the CRS model for circuit satisfiability

CRS	Comm	P.comp	V.comp	
[Groth 2010]				
$O(C ^2)$	42	$O(C ^2)E + \Theta(C ^2)M$	$\Theta(C)$	
$O(C ^{2/3+\varepsilon})$	$\Theta(C ^{2/3})$	$O(C ^{4/3})E + \Theta(C ^{4/3})M$	$\Theta(C)$	
This paper				
$O(C ^{1+\varepsilon})$	32	$O(C ^{1+\varepsilon})E + \Theta(C ^2)M$	$\Theta(1)$	
$O(C ^{1/2+\varepsilon})$	$\Theta(C ^{1/2})$	$O(C ^{1+\varepsilon})E + \Theta(C ^{3/2})M$	$\Theta(C ^{1/2})$	

- Zap (2-message witness-indistinguishable public-coin argument): verifier sends CRS, prover sends argument
 - Communication: $O(|C|^{1/2+\varepsilon})$ group elements
- Also: weaker security assumption
 - q-power (symmetric) DL instead of q-power CDH

NIZK in Common Reference String Model

- CRS model a weaker setup assumption
- All parties are given a trusted CRS that is generated according to some nice probability distribution
- The simulator generates CRS together with a trapdoor that is only used in the proof

Prover $(\sigma; x, w)$	Verifier $(\sigma; x)$
	Message

Helger Lipma

Progression-Free Sets and Sublinear NIZK Arguments

Motivation
Our Result
Tool
New Argument

Quick Overview Basic Idea

Basic Idea of SAT Argument

- Assume the circuit has only NAND gates
- Circuit size is n, thus 2n + 1 wires a_i
- Prover multicommits to 2n + 1 wires by one group element
- He proves the wires are consistent and that the last wire is equal to 1, by using a few "parallel" operations
 - All wires are Boolean: $a_i = a_i \cdot a_i$ for all i
 - Output wires of same gate have same value: define suitable permutation ξ on all wires, show that $a_i = a_{\xi(i)}$ for all i
 - The NAND gates are respected
 - . . .
- In total 7 permutation and product arguments
- Efficiency and security inherited from basic arguments

Our Results Tools

Basic Idea: Prod/Perm Arguments

- Select random x, α, β , let $\Lambda = (\lambda_1, \dots, \lambda_n)$
- $com^t(\sigma; \vec{a}; r) := (g_t^{f_1(x)}, g_t^{\alpha f_1(x)}, g_t^{\beta f_1(x)})$ for $f_1(x) = r + \sum a_i x^{\lambda_i}$.
- $\log \left(e(g_1^{f_1(x)}, g_2^{f_2(x)}) / e(g_1^{f_3(x)}, g_2^{f_4(x)}) \right)$ = $f_1(x) f_2(x) - f_3(x) f_4(x) = \sum_{i \in \Lambda_1} \delta_i x^i + \sum_{i \in \Lambda_2} \gamma_i x^i$
- f_3/f_4 are chosen so that if the prover is honest, then $\delta_i = 0$
- $\Lambda_1 = \Lambda_1(\Lambda)$ and $\Lambda_2 = \Lambda_2(\Lambda)$ are such that $\Lambda_1 \cap \Lambda_2 = \emptyset$ • Λ is "progression-free" set of odd integers, $\lambda_n = O(n^{1+\varepsilon})$
- ullet $(g_2^{{\sf x}^i},g_2^{lpha {\sf x}^i})$ belongs to CRS σ iff $i\in \Lambda_2$ $|\sigma|=O(n^{1+arepsilon})$
- Security assumption: if $A(\sigma)$ can output (X, \hat{X}) such that $X_2 = X_1^{\alpha}$, then A "knows" a representation $\log X_1 = \sum_{i \in \Lambda_2} \gamma_i x^i$

Helger Lipmaa

Progression-Free Sets and Sublinear NIZK Arguments

Motivation Our Results Tools New Arguments

Knowledge Commitment Scheme Progression-Free Sets

Progression-Free Sets

- $\Lambda \in [n]$ is progression-free if it does not contain arithmetic progression of length 3
- That is: for $\lambda_i, \lambda_i, \lambda_k \in \Lambda$, $\lambda_k \lambda_i = \lambda_i \lambda_i$ iff i = j = k
- Let $r_3(n)$ be the cardinality of the largest progression-free subset of [n]
- [Elkin 2010]:

$$r_3(n) = \Omega\left(\frac{n \cdot (\log_2^{1/4} n)^{1/4}}{2^2 \sqrt{2 \log_2 n}}\right) = \Omega(n^{1-\varepsilon})$$

for any $\varepsilon > 0$

- [Sanders 2010]: $r_3(n) = O(n/\log^{1-o(1)} n)$
- 000 001 002 010 011 012 020 021 022 100 101 102 110 111 112 120 121 122 200 201 202 210 211 212 220 221 222

- Let $par = (p, \mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T, e) \leftarrow GBP(1^{\kappa})$, and let g_j be a generator of \mathbb{G}_j . Let $x, \alpha, \beta \leftarrow \mathbb{Z}_p$
- Fix subset $\Lambda = (\lambda_1, \dots, \lambda_n) \subseteq [q]$ with $0 < \lambda_i < \lambda_{i+1}$
- Prover commits to $\vec{a}=(a_1,\ldots,a_n)\in\mathbb{Z}_p^n$, $n\leq q$ in \mathbb{G}_t
- The CRS is $\sigma = (par; (g_t^{x^i}, g_t^{\alpha x^i}, g_t^{\beta x^i})_{i \in \{0, \dots, q\}})$
- For $t \in \{1,2\}$ and random $r \leftarrow \mathbb{Z}_p$,

$$com^t(\sigma, \vec{a}; r) = (g_t^{f(x)}, g_t^{\alpha f(x)}, g_t^{\beta f(x)}) \in \mathbb{G}_t^3$$

for
$$f(x) = r + \sum_{i=1}^{n} a_i x^{\lambda_i}$$
.

• By security assumption, Prover knows (\vec{a}, r)

Helger Lipma

Progression-Free Sets and Sublinear NIZK Arguments

Motivation Our Results Tools Hadamard Product Argument Permutation Argument Circuit Satisfiability Argument

Hadamard Product Argument

- Prover wants to convince Verifier that for given commitments $A \in \mathbb{G}_1$, $B \in \mathbb{G}_2$, $C \in \mathbb{G}_1$, she knows how to open them as \vec{a} , \vec{b} , \vec{c} , such that $c_i = a_i \cdot b_i$ for every $j \in [n]$
 - b0
 b1
 b2
 b3
 b4
 b5
 b6
 b7
 b8
 b9
 b10
 b11
 b12
 b13
 b14
 b15

 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 <
- Goal: to do verification in parallel

Hadamard Product Argument: Idea

- Let $X_1 \leftarrow e(A, B)$, $X_2 \leftarrow e(C, \prod_{i=1}^n g_2^{x^{\lambda_i}})$, $h \leftarrow e(g_1, g_2)$
- $\bullet \ A = g_1^{r_1 + \sum_{j=1}^n a_j x^{\lambda_j}}, \text{ thus } \log A = r_1 + \sum_{j=1}^n a_j x^{\lambda_j}$
- For fixed Λ , let $\Lambda_2 := \{0\} \cup \{\lambda_i\} \cup \{\lambda_i + \lambda_j\}_{i \neq j}$
- For some integers γ_i ,

$$\log(X_1/X_2) = (r_1 + \sum_i a_i x^{\lambda_i}) \cdot (r_2 + \sum_i b_i x^{\lambda_i}) - (r_3 + \sum_i c_i x^{\lambda_i}) (\sum_i x^{\lambda_i})$$

$$= \sum_{i=1}^n (a_i b_i - c_i) x^{2\lambda_i} + \sum_{i \in \Lambda_2} \gamma_i x^i$$

• If prover is honest then this is 0:

Helger Lipma

Progression-Free Sets and Sublinear NIZK Arguments

Motivation Our Results Tools ew Arguments Hadamard Product Argument
Permutation Argument
Circuit Satisfiability Argument

Hadamard Product: CRS Generation

- Let $par = (p, \mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T, e) \leftarrow GBP(1^{\kappa})$
- Set $x, \alpha \leftarrow \mathbb{Z}_p$, and let g_t be a generator of \mathbb{G}_t for $t \in \{1, 2\}$
- Define CRS as

$$\sigma = (\textit{par}; (g_1^{\alpha x^i}, g_1^{\beta x^i}, g_1^{\gamma x^i}, g_2^{\beta x^i})_{i \in \{0\} \cup \Lambda}, (g_2^{x^i}, g_2^{\alpha x^i})_{i \in \Lambda_2})$$

ullet Due to Elkin, $|\sigma|, |\Lambda_2| = O(n^{1+arepsilon})$ for any arepsilon > 0

Hadamard Product Argument: Idea

- $\bullet \ \Lambda_2 := \{0\} \cup \{\lambda_i\} \cup \{\lambda_i + \lambda_j\}_{i \neq j}$
- For some integers γ_i ,

$$\log(X_1/X_2) = (r_1 + \sum_i a_i x^{\lambda_i}) \cdot (r_2 + \sum_i b_i x^{\lambda_i}) - (r_3 + \sum_i c_i x^{\lambda_i}) (\sum_i x^{\lambda_i})$$

$$= \sum_i (a_i b_i - c_i) x^{2\lambda_i} + \sum_{i \in \Lambda_2} \gamma_i x^i$$

- If Λ is progression-free set of odd integers, then $2\lambda_i \notin \Lambda_2$
- Thus: $c_i = a_i b_i$ for all $i \in [n]$ iff $\log(X_1/X_2)$ can be represented as $\sum_{i \in \Lambda_2} \gamma_i x^i$
 - The iff part follows from security assumptions

Helger Lipmaa

Progression-Free Sets and Sublinear NIZK Arguments

Motivation
Our Results
Tools
New Arguments

Hadamard Product Argument Permutation Argument Circuit Satisfiability Argument

Hadamard Product: Argument

- Recall $\sigma = \left(par; \{ \{ g_t^{x^i} \}_{0 \le i \le 2\lambda_n}, \{ g_t^{\alpha x^i} \}_{i \in \Lambda_2} \}_{t \in \{1,2\}} \right)$
- Let $A = com^1(\sigma; \vec{a}; r_1)$, $B = com^2(\sigma; \vec{b}; r_2)$, $C = com^1(\sigma; \vec{c}; r_3)$.
- Prover sets $\pi_1 \leftarrow \prod_{i \in \Lambda_2} \left(g_2^{x^i} \right)^{\gamma_i}$, $\pi_2 \leftarrow \prod_{i \in \Lambda_2} \left(g_2^{\alpha x^i} \right)^{\gamma_i}$
- Argument: $(\pi_1, \pi_2) \in \mathbb{G}_2^2$
- All γ_i can be computed by doing $\Theta(n^2)$ multiplications in \mathbb{Z}_p
- Two $O(n^{1+arepsilon})$ -multi-exponentiations, $\Theta(n^2)$ multiplications in \mathbb{Z}_p

- Include $D \leftarrow \prod_{j=1}^n g_2^{x^{\lambda_j}}$ in CRS
- Verifier checks that
 - $e(A, B)/e(C, D) = e(g_1, \pi_1)$
 - $e(g_1^{\alpha}, \pi_1) = e(g_1, \pi_2)$
- 5 pairings

Helger Lipma

Progression-Free Sets and Sublinear NIZK Arguments

Motivation
Our Results
Tools
ew Arguments

Hadamard Product Argument Permutation Argument Circuit Satisfiability Argument

Argument for Circuit Satisfiability

- Prover and Verifier share a circuit *C*. Prover wants to convince Verifier he knows a satisfying assignment
- Binary circuit, only NAND gates, $a\overline{\wedge}b = \neg(a \wedge b)$
- We describe the circuit by using its number of gates, and two permutations that show that the circuit is self-consistent

Permutation Argument

• Prover has committed to \vec{a}, \vec{b} and wants to convince Verifier that for a public permutation ϱ , $a_{\varrho(j)} = b_j$.

- Similar idea: construct a formal polynomial f(x), such that Prover is honest iff for a fixed set Λ'_2 , $\exists \vec{\delta} : f(x) = \sum_{i \in \Lambda'_2} \delta_i x^j$.
- Λ_2' is constructed so that from the progression-freeness of Λ and security assumptions it follows that the whole permutation argument is secure
- Complexity: almost the same as for product argument

Helger Lipmaa

Progression-Free Sets and Sublinear NIZK Arguments

Motivation
Our Results
Tools

Hadamard Product Argument Permutation Argument Circuit Satisfiability Argument

Circuit Description

- Circuit has n gates, every gate i has inputs L_i and R_i, and output
 U_i. U_n is the output of the circuit
- There are 2n + 1 wires. Every wire, except one we done by R_{n+1} , is equal to L_i or R_i for $i \in [n]$
- Every gate has at least one output wire U_i . There are n+1 more wires X_i that correspond to inputs to the circuit, and multiple outputs
- Denote

$$A = (L_1, ..., L_n, R_1, ..., R_n, R_{n+1}),$$

 $B = (U_1, ..., U_n, X_1, ..., X_{n+1})$

Circuit Consistency

- Circuit consistency will be given by two permutations ξ and τ
- Input consistency permutation
 - $\xi: [2n+1] \to [2n+1]$
 - For every $(A_{i_1}, \ldots, A_{i_t})$ that have to be equal, ξ permutes $A_{i_1} \rightarrow \cdots \rightarrow A_{i_t} \rightarrow A_{i_t}$
 - For other input nodes t, $\xi(t) = t$
 - Clearly, circuit is inconsistent if for some j, $A_{\xi(j)} \neq A_j$

Helger Lipmaa

Progression-Free Sets and Sublinear NIZK Arguments

Motivation
Our Results
Tools
New Arguments

Hadamard Product Argument Permutation Argument Circuit Satisfiability Argument

Full Argument: Idea

- Commit to A, $A' = (R_1, ..., R_n, L_1, ..., L_n, R_{n+1})$, $A'' = (R_1, ..., R_n, 0, ..., 0, R_{n+1}, B \text{ and } B' = (U_1, ..., U_n, 0, ..., 0)$
- Check all values are Boolean: $A \circ A = A$
- Check A and A' are consistent (permutation argument)
- Check A' and A'' are consistent (product argument)
- Check B and B' are consistent (product argument)
- Check that NANDs are observed and $U_n=1$: $A''\circ A=(1_1,\ldots,1_{n-1},2_n,1_{n+1},\ldots,1_{2n+1})-B'$
- Check that ξ is observed (permutation argument with A, A)
- Check that τ is observed (permutation argument with A, B)

Done!

Circuit Consistency

- Circuit consistency will be given by two permutations ξ and τ
- Throughput consistency permutation

$$au: [2n+1] \to [2n+1]$$

- Every wire is both an input wire (is equal to some A_i) and an output wirte (is equal to some B_j)
- Define $\tau(i) = j$
- Clearly circuit is inconsistent if for some j, $A_{\tau^{-1}(j)} \neq B_j$

lelger Lipmaa

Progression-Free Sets and Sublinear NIZK Arguments

Motivatio
Our Result
Too

Hadamard Product Argument Permutation Argument Circuit Satisfiability Argument

Questions?