
SecreC for Sharemind 3

Dan Bogdanov, Peeter Laud, Jaak Randmets
Cybernetica AS

February 2, 2013
This research was, in part, funded by the U.S. Government. The views and conclusions contained in this

document are those of the authors and should not be interpreted as representing the official policies, either
expressed or implied, of the U.S. Government. Distribution Statement A (Approved for Public Release,

Distribution Unlimited).

Sharemind 2
Sharemind is a secure multi-party computation
framework.
Sharemind 2 only supports additive 3-party secret
sharing scheme.

Miner 1

Miner 2

Miner 3

Confidential
data

medical records,
financial data,
transactions,

other data

 € $
 ATCG
 ip→ip

Input
shares

Result
shares

Results
 001
 10110
 11011

 101
 10100
 00111

 001
 01000
 11110

 001
 00100
 11010

 111
 01100
 10110

 011
 11010
 01011

statistical indicators,
visualizations,

reports

Secure
multi-party

computation

SecreC for Sharemind 2
Simple high-level imperative algorithm language.
Hides implementation details of the secret sharing
scheme.
Two visibility types: public and private.
Private values become public only through declassify.

void main () { // main function
private uint a, b, c; // private data
a = b + c; // private computation
public uint d; // public data
d = declassify (a); // private -> public
publish (d); // send to client

}

Sharemind 3
Various secure computation schemes.
New underlying virtual machine.
Complete rewrite of SecreC was in order.
Some features of new SecreC:
– more primitive data types
– arbitrary dimensional arrays
– simple module system
– a lot of syntactic niceties
– IR for data-flow analysis
– protection domain polymorphism
– etc.

Sharemind 3
Various secure computation schemes.
New underlying virtual machine.
Complete rewrite of SecreC was in order.
Some features of new SecreC:
– more primitive data types
– arbitrary dimensional arrays
– simple module system
– a lot of syntactic niceties
– IR for data-flow analysis
– protection domain polymorphism
– etc.

Protection domains

Definition (Protection domain)
A protection domain (PD) is a set of data that is protected
with the same resources and for which there is a
well-defined set of algorithms and protocols for computing
on that data while keeping the protection.

Definition (Protection domain kind)
A protection domain kind (PDK) is a set of data
representations, algorithms and protocols for storing and
computing on protected data.

Each PD belongs to a PDK, and each PDK can have
several PD-s.

Protection domains

Example (protection domain kinds)
A FHE system specified by its algorithms.
A MPC system specified by its protocols.
Public computation system.

Example (protection domains)
A FHE system running under a single key.
A single physical MPC instance.
A public machine.

Sharemind 2 supports a single protection domain
called “private” in additive 3-party protection domain
kind.

Protection domains in SecreC
Simplest solution:
– only public and private types
– during program deployment map private to some

protection domain
Some issues:
– impossible to use multiple PD-s concurrently
– some code is PDK specific
Better solution is to provide the ability to declare new
protection domains.

Feature : Protection domains

kind additive3pp; // declare PDK
domain pd_a3p additive3pp; // declare PD

void main () { // main function
pd_a3p uint a, b, c; // private data
a = b + c; // private computation
public uint d; // public data
d = declassify (a); // private -> public
publish (d); // send to client

}

declassify, and publish no longer primitives.
Module declares the PDK.

Feature : Modules

import stdlib; // import stdlib
import additive3pp; // import PDK
domain pd_a3p additive3pp; // declare PD

void main () { // main function
pd_a3p uint a, b, c; // private data
a = b + c; // private computation
public uint d; // public data
d = declassify (a); // private -> public
publish (d); // send to client

}

Standard library declares publish.
Module declares the PDK and declassify.

Feature : PD monomorphic functions (1/2)

kind additive3pp;
domain pd_a3p additive3pp;

pd_a3p uint sum (pd_a3p uint[[1]] x) {
pd_a3p uint s = 0;
for (uint i = 0; i < size (x); ++ i) {

s += x[i];
}

return s;
}

Feature : PD monomorphic functions (2/2)

kind xor3pp;
domain pd_x3p xor3pp;

pd_x3p uint sum (pd_x3p uint[[1]] x) {
pd_x3p uint s = 0;
for (uint i = 0; i < size (x); ++ i) {

s += x[i];
}

return s;
}

Not very useful (apart from public PD).

Feature : PD polymorphic functions

template <domain D>
D uint sum (D uint[[1]] x) {

D uint s = 0;
for (uint i = 0; i < size (x); ++ i) {

s += x[i];
}

return s;
}

Type variable D binds to any PD or public.
Implemented via code duplication.
C++ templates.

Feature : overloading (1/2)

template <domain D : additive3pp>
uint declassify (D uint x) {

// invoke system call that additive3pp
// is known to define

}

template <domain D : xor3pp>
uint declassify (D uint x) {

// invoke system call from xor3pp
}

uint declassify (uint x) { return x; }

Feature : overloading (2/2)

template <domain D1 : additive3pp,
domain D2 : additive3pp>

D1 uint reclassify (D2 uint x) {
// invoke a system call

}

template <domain D>
D uint reclassify (D uint x) { return x; }

Overload selection via ad-hoc manner.
For example: the number of instantiated PD
variables.
Operator overloading.

Feature : operator overloading

template <domain D : additive3pp>
D uint operator * (D uint x, D uint y) {

// invoke system call
}

Much of PDK functionality.

Expected use of polymorphism

Developer
Standard library provides low-priority
implementations.
Each PDK is declared as a module.
– declares the protection domain kind
– PD polymorphic operations for that PDK
– most operations through system calls

End user
Algorithm is PD polymorphic.
Main program fixes the PD.

Example : sorting (1/2)

module stdlib;

template <domain D>
D uint[[1]] sort (D uint[[1]] src) {

uint[[2]] sn = sortnet (size (src));
for (uint i = 0; i < shape (sn)[0]; ++ i) {

D uint x = src[sn[i,0]];
D uint y = src[sn[i,1]];
D uint b = (uint) (x < y);
src[sn[i,0]] = x*b + y*(1 - b);
src[sn[i,1]] = x*(1 - b) + y*b;

}

return src;
}

Example : sorting (2/2)

module additive3pp;

template <domain D : additive3pp>
D uint [[1]] sort (D uint[[1]] src) {

src = shuffle (src);

// Sort using:
// declassify (src[i] < src[j])

return src;
}

Can be done in O(n log n).

Example : multiple protection domains

template <domain D1, domain D2>
D1 uint hamming (D2 uint[[1]] x, D2 uint[[1]] y) {

D2 bool[[1]] neqs = (x != y);
D1 uint[[1]] vs = (uint) reclassify (neqs);
return sum (vs);

}

Different performance depending on selected PD-s.
If D1 = pd_a3p, and D2 = pd_a3p then 12 rounds.
If D1 = pd_a3p, and D2 = pd_x3p then 8-9 rounds.

Summary

Good
Simple solution.
Easy to understand.

Bad
Ad-hoc overload resolution is not intuitive.
Bad type errors just like in C++.
Template interaction with modules can be strange.
– specialization could help

Semantics
Formally defined type system.
Small-step operational trace semantics.
– labels are system calls
Monomorphic intermediate language.
Type-directed translation from polymorphic to
monomorphic language.
Weak bi-simulation between semantics of
monomorphic and polymorphic language.
Security of information flow.
Models the compiler with a monomorphic IR.
Abstract syntax, type system and semantics have
been invaluable documentation for implementing and
debugging the compiler.

Future work
Language improvements.
– pass-by-reference
– user defined data types
– many small improvements
Standard library.
We need users and more PD-s.
Something better than templates?

	Introduction
	Sharemind 3
	Protection domains
	PD-polymorphism
	Procedure overloading
	Operator overloading
	Expected use of polymorphism

	Future work
	Semantics
	Future work

