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Sharemind 2
Sharemind is a secure multi-party computation
framework.
Sharemind 2 only supports additive 3-party secret
sharing scheme.
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SecreC for Sharemind 2
Simple high-level imperative algorithm language.
Hides implementation details of the secret sharing
scheme.
Two visibility types: public and private.
Private values become public only through declassify.

void main () { // main function
private uint a, b, c; // private data
a = b + c; // private computation
public uint d; // public data
d = declassify (a); // private -> public
publish (d); // send to client

}



Sharemind 3
Various secure computation schemes.
New underlying virtual machine.
Complete rewrite of SecreC was in order.
Some features of new SecreC:
– more primitive data types
– arbitrary dimensional arrays
– simple module system
– a lot of syntactic niceties
– IR for data-flow analysis
– protection domain polymorphism
– etc.
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Protection domains

Definition (Protection domain)
A protection domain (PD) is a set of data that is protected
with the same resources and for which there is a
well-defined set of algorithms and protocols for computing
on that data while keeping the protection.

Definition (Protection domain kind)
A protection domain kind (PDK) is a set of data
representations, algorithms and protocols for storing and
computing on protected data.

Each PD belongs to a PDK, and each PDK can have
several PD-s.



Protection domains

Example (protection domain kinds)
A FHE system specified by its algorithms.
A MPC system specified by its protocols.
Public computation system.

Example (protection domains)
A FHE system running under a single key.
A single physical MPC instance.
A public machine.

Sharemind 2 supports a single protection domain
called “private” in additive 3-party protection domain
kind.



Protection domains in SecreC
Simplest solution:
– only public and private types
– during program deployment map private to some

protection domain
Some issues:
– impossible to use multiple PD-s concurrently
– some code is PDK specific
Better solution is to provide the ability to declare new
protection domains.



Feature : Protection domains

kind additive3pp; // declare PDK
domain pd_a3p additive3pp; // declare PD

void main () { // main function
pd_a3p uint a, b, c; // private data
a = b + c; // private computation
public uint d; // public data
d = declassify (a); // private -> public
publish (d); // send to client

}

declassify, and publish no longer primitives.
Module declares the PDK.



Feature : Modules

import stdlib; // import stdlib
import additive3pp; // import PDK
domain pd_a3p additive3pp; // declare PD

void main () { // main function
pd_a3p uint a, b, c; // private data
a = b + c; // private computation
public uint d; // public data
d = declassify (a); // private -> public
publish (d); // send to client

}

Standard library declares publish.
Module declares the PDK and declassify.



Feature : PD monomorphic functions (1/2)

kind additive3pp;
domain pd_a3p additive3pp;

pd_a3p uint sum (pd_a3p uint[[1]] x) {
pd_a3p uint s = 0;
for (uint i = 0; i < size (x); ++ i) {

s += x[i];
}

return s;
}



Feature : PD monomorphic functions (2/2)

kind xor3pp;
domain pd_x3p xor3pp;

pd_x3p uint sum (pd_x3p uint[[1]] x) {
pd_x3p uint s = 0;
for (uint i = 0; i < size (x); ++ i) {

s += x[i];
}

return s;
}

Not very useful (apart from public PD).



Feature : PD polymorphic functions

template <domain D>
D uint sum (D uint[[1]] x) {

D uint s = 0;
for (uint i = 0; i < size (x); ++ i) {

s += x[i];
}

return s;
}

Type variable D binds to any PD or public.
Implemented via code duplication.
C++ templates.



Feature : overloading (1/2)

template <domain D : additive3pp>
uint declassify (D uint x) {

// invoke system call that additive3pp
// is known to define

}

template <domain D : xor3pp>
uint declassify (D uint x) {

// invoke system call from xor3pp
}

uint declassify (uint x) { return x; }



Feature : overloading (2/2)

template <domain D1 : additive3pp,
domain D2 : additive3pp>

D1 uint reclassify (D2 uint x) {
// invoke a system call

}

template <domain D>
D uint reclassify (D uint x) { return x; }

Overload selection via ad-hoc manner.
For example: the number of instantiated PD
variables.
Operator overloading.



Feature : operator overloading

template <domain D : additive3pp>
D uint operator * (D uint x, D uint y) {

// invoke system call
}

Much of PDK functionality.



Expected use of polymorphism

Developer
Standard library provides low-priority
implementations.
Each PDK is declared as a module.
– declares the protection domain kind
– PD polymorphic operations for that PDK
– most operations through system calls

End user
Algorithm is PD polymorphic.
Main program fixes the PD.



Example : sorting (1/2)

module stdlib;

template <domain D>
D uint[[1]] sort (D uint[[1]] src) {

uint[[2]] sn = sortnet (size (src));
for (uint i = 0; i < shape (sn)[0]; ++ i) {

D uint x = src[sn[i,0]];
D uint y = src[sn[i,1]];
D uint b = (uint) (x < y);
src[sn[i,0]] = x*b + y*(1 - b);
src[sn[i,1]] = x*(1 - b) + y*b;

}

return src;
}



Example : sorting (2/2)

module additive3pp;

template <domain D : additive3pp>
D uint [[1]] sort (D uint[[1]] src) {

src = shuffle (src);

// Sort using:
// declassify (src[i] < src[j])

return src;
}

Can be done in O(n log n).



Example : multiple protection domains

template <domain D1, domain D2>
D1 uint hamming (D2 uint[[1]] x, D2 uint[[1]] y) {

D2 bool[[1]] neqs = (x != y);
D1 uint[[1]] vs = (uint) reclassify (neqs);
return sum (vs);

}

Different performance depending on selected PD-s.
If D1 = pd_a3p, and D2 = pd_a3p then 12 rounds.
If D1 = pd_a3p, and D2 = pd_x3p then 8-9 rounds.



Summary

Good
Simple solution.
Easy to understand.

Bad
Ad-hoc overload resolution is not intuitive.
Bad type errors just like in C++.
Template interaction with modules can be strange.
– specialization could help



Semantics
Formally defined type system.
Small-step operational trace semantics.
– labels are system calls
Monomorphic intermediate language.
Type-directed translation from polymorphic to
monomorphic language.
Weak bi-simulation between semantics of
monomorphic and polymorphic language.
Security of information flow.
Models the compiler with a monomorphic IR.
Abstract syntax, type system and semantics have
been invaluable documentation for implementing and
debugging the compiler.



Future work
Language improvements.
– pass-by-reference
– user defined data types
– many small improvements
Standard library.
We need users and more PD-s.
Something better than templates?
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