
Typing Tools for Typeless
Stack Languages

Jaanus Pöial

The Estonian Information Technology College

supported by Estonian Science Foundation grant no. 6713

Typeless stack language

The same stack is used to pass
parameters of different types
No type information is available at
runtime – just "cells"
Type information is hardly ever
used even at compile time – it is
only in programmers mind

Typing

Typing is not part of the language
but part of code conventions and
discipline – e.g. stack effect
descriptions in Forth
It is possible to introduce separate
type checking tools (program
analysis tools) on text level by
extracting formal typing information
from informal stack comments

Stack effects

Informal description

OPERATION STACK EFFECT DESCRIPTION
e.g. (a b -- a+b) add two topmost

elements
+

before after
a+ba

btop

Stack effect calculus – 1990-s

TT - operand types (char, flag, addr, ...)

TT* - type lists (last type on the top)
Ø - type clash symbol (stack error)
The set of stack effects:

SS = (TT* x TT*) U { Ø }
(a → b)

input parameters (types) output parameters (types)

Composition (multiplication)

For all s in SS: s·Ø = Ø·s = Ø
For all a, b, c, d, e, f in TT*:

(a → b) · (eb → d) = (ea → d)
(a → fc) · (c → d) = (a → fd)
Ø, otherwise

Ø is zero
1 = (→) is unity for this operation
SS is polycyclic monoid

Notation for rule based approach
t, u, … - types (just symbols)

t ≤ u – t is subtype of u (t is more exact) or
equal to u (subtype relation is transitive)

t ┴ u - t and u are incompatible types

ti - type symbols with “wildcard” index
(index is unique for “the same type”)

Notation (cont.)

a, b, c, d, … - type lists (top right) that
represent the stack state

s = (a → b) – stack effect
(a – stack state before the
operation, b – after)

Ø - type clash (zero effect)

Notation (cont.)

(a → b)·(c → d) - composition of stack effects
(a → b) and (c → d) defined by rules

x, y – sequences of stack effects

y, where uj := tk – substitution: all occurances of
uj in all type lists of sequence y are replased
by tk, where k is unique index over y

Rules

∅
⋅∅ x

∅
∅⋅x

() ()
()dcax

dcax
→⋅
→⋅→⋅() ()

()bdax
dbax

→⋅
→⋅→⋅

() ()
∅

⊥→⋅→⋅ utdcubtax where,

Rules (cont.)

() ()
() () kjki

ji

tuandttdcbax
utdcubtax

==→⋅→⋅
≤→⋅→⋅

::where,
where,

() ()
() () kjki

ji

uuandutdcbax
tudcubtax

==→⋅→⋅
≤→⋅→⋅

::where,
where,

"Must" vs. "may"-analysis

"What is the possible stack state in a given
program point? What might happen?"
Impracticable question (hard to calculate,
huge state space, unclear result), discussed in
authors 1991 EuroForth paper

“What guarantees that the stack state in a
given program point is ... ? What must
happen?” Allows to find errors, easy to
calculate using glb.
Example: two if-branches have different stack

effects

Greatest lower bound

Loop invariant

Handling branches and loops

"May"-style (no implementation)

Handling branches and loops

"Must"-style (abstraction)

Example (small subset)

Type system:

a-addr < c-addr < addr < x
flag < x
char < n < x

Example (cont.)

Words and specifications:

DUP (x[1] -- x[1] x[1])
DROP (x --)
SWAP (x[2] x[1] -- x[1] x[2])
ROT (x[3] x[2] x[1] -- x[2] x[1] x[3])
OVER (x[2] x[1] -- x[2] x[1] x[2])
PLUS (x[1] x[1] -- x[1]) “same type”
+ (x x -- x)
@ (a-addr -- x)
! (x a-addr --)
C@ (c-addr -- char)
C! (char c-addr --)
DP (-- a-addr)
0= (n -- flag)

Example (cont.)

Simple program:
SWAP SWAP

Conflict:
C@ !

More exact analysis:
0= + 0=
0= PLUS 0=

Information moving backwards:
OVER OVER + ROT ROT + C!
OVER OVER PLUS ROT ROT PLUS C!
OVER OVER PLUS ROT ROT PLUS
OVER OVER + ROT ROT PLUS C!
OVER OVER PLUS ROT ROT + C!

Examples with control structures

: test1
IF

ROT
ELSE

@
THEN ;

(a-addr[1] a-addr[1] a-addr[1] ---
a-addr[1] a-addr[1] a-addr[1])

Examples (cont.)

: test2
BEGIN

SWAP OVER
WHILE

NOT
REPEAT ;

: test3
OR FALSE SWAP ;

Results

Theoretical framework for stack
analysis
Implemented (in Java):

composition (for linear code)
greatest lower bound operation (for
branching)
nearest idempotent (for loop
invariants)

	Typing Tools for Typeless Stack Languages
	Typeless stack language
	Typing
	Stack effects
	Stack effect calculus – 1990-s
	Composition (multiplication)
	Notation for rule based approach
	Notation (cont.)
	Notation (cont.)
	Rules
	Rules (cont.)
	"Must" vs. "may"-analysis
	Greatest lower bound
	Loop invariant
	Handling branches and loops
	Handling branches and loops
	Example (small subset)
	Example (cont.)
	Example (cont.)
	Examples with control structures
	Examples (cont.)
	Results

