
TÜ Arvutiteaduse Instituut

Parallel Solution of PageRank Problem

eero.vainikko@ut.ee

Teooriapäevad
Rõuge, 26th January 2007

Parallel Solution of PageRank Problem

Overview of the talk

1. Introduction (Problem description, Markov Chain)

2. Mathematical formulation of the PageRank Problem

3. Power iterations method

4. Linear system approach for solving PageRank Problem

5. General parallel solution techniques

6. DOUG package

7. DOUG & PageRank problem

3 Introduction

1 Introduction

WWW is a huge collection of data distributed around the globe, in constant chane and
growth

pages indexed by Google

May-June 2000 1 billion
November-December 2000 1.3 billion

July - August 2002 2.5 billion
November - December 2002 4 billion

January - February 2004 4.28 billion
November - December 2004 8 billion

August 2005 8.2 billion

January 2007 (an estimate) ≈14 billion

Roughly, doubling every 16 months

• Need really good tools for navigating, searching, indexing the information

4 Introduction

How does Internet look

like?

Maps of the Internet
(http://www.opte.
org/maps/)

OK, these are just servers.
Imagine, how would the
WWW look like?

http://www.opte.org/maps/
http://www.opte.org/maps/

5 Introduction 1.1 Description

1.1 Description

Original proposal of the PageRank algorithm by L. Page, S. Brin, R. Motwani and T.
Winograd, 1998

• one of the reasons why Google is so effective

• a method for computing the relative rank of web pages

• based on web link structure

• has become a natural part of modern search engines

• Also, a useful tool applied in many other search technologies, for example

– Web spam detection [Z.Gyöngyi et al 2004]

– crawler configuration

– P2P trust networks [S.D.Kamvar et al 2003]

6 Introduction 1.2 Markov process

1.2 Markov process

Surfing the web, going from page to page by randomly choosing an outgoing link

• can lead to dead ends (dangling nodes)

• cycles

Sometimes choosing simply a random page from the Web.

Markov chain or Markov process

The limiting probability that an infinitely dedicated random surfer visits any
particular page is its PageRank

7 Mathematical formulation 2.1 Problem setup

2 Mathematical formulation of PageRank problem

2.1 Problem setup

W - set of web pages reachable in a chain following hyperlinks from a root page

G - corresponding n×n connectivity matrix:

gi j =

{
1 if ∃ hyperlink i← j
0 otherwise.

• G can be huge, is sparse, column j shows the links on jth page

• # nonzeros in G - the total number of hyperlinks in W

Let ri and c j be the row and column sums of G:

ri = ∑
j

gi j, c j = ∑
i

gi j.

8 Mathematical formulation 2.1 Problem setup

• ri - in-degree of the ith page

• c j - out-degree of the jth page.

Let p - the probability that the random walk follows a link.

• A typical value is p = 0.85

• 1− p is the probability that some arbitrary page is chosen

• δ = (1− p)/n - probability that a particular random page is chosen.

Let B be the n×n matrix with elements bi j:

bi j =

{
pgi j/c j +δ : c j 6= 0

1/n : c j = 0

Notice that:

9 Mathematical formulation 2.1 Problem setup

• B is not sparse

• most of the values = δ (the probability of jumping from one page to another
without following link)

• If n = 4 ·109 and p = 0.85, then δ = 3.75 ·10−11

• B - the transition probability matrix of the Markov chain

• 0 < bi j < 1

• ∑
n
i=1 bi j = 1, ∀i

Matrix theory: Perron-Frobenius theorem applies:
∃! (within a scaling factor) solution x 6= 0 of the equation

x = Bx.

If the scaling factor is chosen such that ∑i xi = 1 then x is is the state vector of the
Markov chain and is Google’s PageRank; 0 < xi < 1.

10 Mathematical formulation 2.2 Power method

2.2 Power method

Algorithm Power method

Input: Matrix B, initial vector x, threashold ε

Output: PageRank vector y
repeat

x← Bx
until ‖x−Bx‖< ε

y← x/‖x‖

In practice, matrix B (or G) is never formed.

11 Mathematical formulation 2.3 Transfer to a linear system solution

2.3 Transfer to a linear system solution

the first idea: the solution of the problem

x = Bx

being equivalent to
(I−B)x = 0

But, the non-sparsity of I−B !

Is there a better way?

12 Mathematical formulation 2.3 Transfer to a linear system solution

Yes: Note that

B = pGD+ ezT , (1)

where D - diagonal matrix

d j j =

{
1/c j : c j 6= 0

0 : c j = 0
, e =


1
1
...
1

 , z =

{
δ : c j 6= 0

1/n : c j = 0

• ezT - rank-one matrix - the random choices of Web pages that do not follow
links.

The equation
x = Bx

13 Mathematical formulation 2.3 Transfer to a linear system solution

is becoming thus due to (1):
x = (pGD+ ezT)x

x− pGDx = e zT x︸︷︷︸
γ

(I− pGD)︸ ︷︷ ︸ = γe ,

A

we get the system of linear equations to solve:

Ax = e (2)

(We temporarily take γ = 1.) After solution of (2), the resulting x can be scaled so that

∑i xi = 1 to obtain PageRank.

14 Mathematical formulation 2.3 Transfer to a linear system solution

Note that the matrix A = I− pGD is

• sparse

• nonsinguar, if p < 1

• nonsymmetric

• huge in size

15 Mathematical formulation 2.3 Transfer to a linear system solution

3 Solution methods for (2)

Solve the system of linear equations

Ax = b

where the matrix A is:

• sparse,

• large,

• may have highly varying coefficients (for example, |ai j| ∈ [10−6,106])

16 Mathematical formulation 3.1 Available methods

3.1 Available methods

Direct methods

UMFPACK, SuperLU, MUMPS

• Analysing step

• factorisation step

• solving step

Roughly 100-10-1 time factor. 2D - OK, 3D - ?.

Iterative methods

• Richardson’s type iterations (Gauss-Seidel, SSOR,...)

• Krylov subspace methods

17 Mathematical formulation 3.1 Available methods

Domain Decomposition (DD)

• non-overlapping methods

substructuring methods, additive average methods and others.

• overlapping methods

Additive Schwarz methods
d

O4

O2
O1

O3

H

h

H0

18 Mathematical formulation 3.1 Available methods

MultiGrid

Generalisation of DD to multiple levels, but:
moderate coarsening from finer to coarser levels

• Geometric multigrid

19 Mathematical formulation 3.1 Available methods

• Algebraic multigrid
- f-c colouring
- aggregation-based

20 DOUG 4.1 DOUG – fast “black box” solver

4 DOUG

4.1 DOUG – fast “black box” solver

Domain Decomposition on Unstructured Grids
DOUG (University of Bath, University of Tartu)

I.G.Graham, M.Haggers, R. Scheichl, L.Stals, E.Vainikko, K.Skaburskas, M.Tehver,
O.Batrašev, C.Pöcher, M.Niitsoo 1997 - 2007

DOUG developent site (http://dougdevel.org)
Parallel implementation based on:

• MPI

• UMFPACK

• (METIS)

• BLAS

http://dougdevel.org

21 DOUG 4.2 DOUG (vers. 2) overview

4.2 DOUG (vers. 2) overview

• Large linear system solver

• automatic parallelisation and load-balancing

• Block-structured matrices (systems of PDEs)

• 2D & 3D problems

• 2-level Additiivne Schwarz method

• 2-level partitioning of the domain

• Automatic Coarse Grid generation

• Adaptive refinement of the coarse grid

• Different input-types for linear systems

• GRID-enabled WWW-interface

22 DOUG 4.3 Overview of DOUG strategies

4.3 Overview of DOUG strategies

• Iterative solver based on Krylov subspace methods
PCG, MINRES, BICGSTAB, 2-layered FPGMRES with left or right precon-
ditioning.

• Non-blocking communication where at all possible

Ax-operation: y := Ax – :-)
Dot-product: (x,y) – :-(

• Preconditioner based on Domain Decomposition with 2-level solvers

Applying the preconditioner P: solve for z : Pz = r . :?
• Subproblems are solved with a direct, sparse multifrontal solver

(UMFPACK)

23 Aggregation 5.1 Aggregation-based DD methods

5 DOUG95 & aggregation

5.1 Aggregation-based DD methods

Have been analysed upto some extent:
- Analysis for multiplicative Schwarz [Vanek & Brezina, 1999]
- Analysis for additive Schwarz [Jenkins et al., 2001] and [Lasser & Tosselli, 2002].
- Sharper bounds [R. Scheichl, E. Vainikko, 2006

Aggregation:

Key issues:

• how to find good aggregates?

• Smoothing step(s) for restriction and interpolation operators

Four (often conflicting) aims:

24 Aggregation 5.1 Aggregation-based DD methods

• follow adequatly underlying physial properties of the domain

• try to retain optimal aggregate size

• keep the shape of aggregates regular

• reduce communication => develop aggregates with smooth boundaries

25 Aggregation 5.1 Aggregation-based DD methods

26 Aggregation 5.1 Aggregation-based DD methods

27 Aggregation 5.1 Aggregation-based DD methods

28 Aggregation 5.2 Algorithm (Shape-preserving aggregation)

5.2 Algorithm (Shape-preserving aggregation)

Input: Matrix A, aggregation radius r, strong connection

threashold α .
Output: Aggregate number for each node in the domain.

1. Scale A to unit diagonal matrix (all ones on diagonal)

2. Find the set S of matrix A strong connectons: S =
∪n

i=1Si, where

Si ≡ { j 6= i : |ai j| ≥ α max
k 6=i
|aik|,

unscale A; aggr_num:=0;

29 Aggregation 5.2 Algorithm (Shape-preserving aggregation)

3. aggr_num:=aggr_num+1;

Choose a seednode x from G or if G = /0, choose the first

nonaggregated node x;
level:=0

4. If (level<r)
Add recursively all strongly connected non-aggregated

neighbours to the aggregate aggr_num with level+1

and perform smoothing step on each level

elseif (level<2r)
Find layer(level+1)...layer(2r).

endif

5. On the longest layer(i), i=r + 1, ...,2r add node(s) with

shortest distance from x to the set G and goto step 3.

30 Aggregation 5.3 Parallel implementation

5.3 Parallel implementation

Interpolation (I = RT), restriction (R) operators + smoothing operator – sparse matrix
structure.

Coarse matrix A0 = RART , through sparse matrix multiplication (SMM) oper-
ations are key routines affecting the performance of initialisation stage.

• SMM produce sparse matrices

• SMM in our case easy to parallelise, as all data is available locally (due to
overlap)

31 DOUG@GRID 6.1 Motivation

6 DOUG@GRID

6.1 Motivation

PROBLEM:

• Dynamic nature of GRID versus:
– good parallel solvers need synchronisation steps :-(
– no fault tolerance in mainstream MPI implementations :-(

=> A) need for methods that do not need regular synchronisation

=> B) Need for fault-tolerant communication libraries

32 DOUG@GRID 6.2 Possible solutions:

6.2 Possible solutions:

A) Algorithms

• Asynchronous DD methods
- do not base on Krylov subspace methods (Richardson’s type iteration methods)
- slower convergence
- not very much studied mathematically (due to stochastic nature)

• Possible asynchronous Krylov subspace methods
- do such exist at all? (Flexible GMRES)
- some synchronisation still needed

B) Fault tolerance

• Important for long-running computations

33 DOUG@GRID 6.2 Possible solutions:

DOUG as a web-service

Using GRID as a development utility

• running DOUG health-checks during the development process

• Automatic profiling system

• Using pre/post-commit scripts of Subversion to achieve it

34 DOUG & PageRank 6.3 DOUG strategies for PageRank problem

6.3 DOUG strategies for PageRank problem

Using iterative solvers for the PageRank Linear System solution are reported to be
very problem dependant.

• Our main interest: how our aggregation-based DD Methods will work with
PageRank

An ongoing work

Strategies:

• Krylov subspace methods: PBiCGSTAB, PGMRES

• Asynchronous Domain Decomposition methods based on Gauss-Seidel meth-
ods

- work in progress

35 DOUG & PageRank 6.3 DOUG strategies for PageRank problem

Questions?

36 DOUG & PageRank 6.3 DOUG strategies for PageRank problem

Thank You!

	Introduction
	Description
	Markov process

	Mathematical formulation of PageRank problem
	Problem setup
	Power method
	Transfer to a linear system solution

	Solution methods for (2)
	Available methods

	DOUG
	DOUG -- fast ``black box'' solver
	DOUG (vers. 2) overview
	Overview of DOUG strategies

	DOUG95 & aggregation
	Aggregation-based DD methods
	Algorithm (Shape-preserving aggregation)
	Parallel implementation

	DOUG@GRID
	Motivation
	Possible solutions:
	DOUG strategies for PageRank problem

