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Parallel Solution of PageRank Problem

Overview of the talk

. Introduction (Problem description, Markov Chain)

. Mathematical formulation of the PageRank Problem

. Power iterations method

. Linear system approach for solving PageRank Problem
. General parallel solution techniques

. DOUG package

. DOUG & PageRank problem



3 Introduction

1 Introduction

WWW is a huge collection of data distributed around the globe, in constant chane and

growth
# pages indexed by Google
May-June 2000 1 billion
November-December 2000 | 1.3 billion
July - August 2002 2.5 billion

November - December 2002 | 4 billion
January - February 2004 4.28 billion

November - December 2004 | 8 billion
August 2005 8.2 billion

January 2007 (an estimate) | ~14 billion

Roughly, doubling every 16 months

e Need really good tools for navigating, searching, indexing the information
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How does Internet look
like?

com, org
jp, cn, tw, au br, kr, nl unknown

Maps of the Internet

(http://www.opte.
org/maps/)

OK, these are just servers.

Imagine, how would the
WWW look like?



http://www.opte.org/maps/
http://www.opte.org/maps/
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1.1 Description

Original proposal of the PageRank algorithm by L. Page, S. Brin, R. Motwani and T.
Winograd, 1998

e one of the reasons why Google is so effective

a method for computing the relative rank of web pages

based on web link structure

has become a natural part of modern search engines

Also, a useful tool applied in many other search technologies, for example

— Web spam detection [Z.Gyongyi et al 2004 ]
— crawler configuration

— P2P trust networks [S.D.Kamvar et al 2003]
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1.2 Markov process

Surfing the web, going from page to page by randomly choosing an outgoing link

e can lead to dead ends (dangling nodes)

e cycles

Sometimes choosing simply a random page from the Web.
Markov chain or Markov process

The limiting probability that an infinitely dedicated random surfer visits any
particular page is its PageRank
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2 Mathematical formulation of PageRank problem

2.1 Problem setup
W - set of web pages reachable in a chain following hyperlinks from a root page

G - corresponding n X n connectivity matrix:

~_J 1 if dhyperlink i — j
8ij = 0 otherwise.

e G can be huge, is sparse, column j shows the links on jth page
e #nonzeros in G - the total number of hyperlinks in W

Let r; and c; be the row and column sums of G:

ri= ) 8ijs €j =) 8ij-
J l
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e r; - in-degree of the ith page
e c; - out-degree of the jth page.
Let p - the probability that the random walk follows a link.

e A typical value is p = 0.85
e | — pis the probability that some arbitrary page is chosen

e 6 = (1— p)/n - probability that a particular random page is chosen.

Let B be the n X n matrix with elements b;;:

. pgij/ci+6  ¢j#0
Y I/n @ ¢;=0

Notice that:
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B is not sparse

most of the values = § (the probability of jumping from one page to another
without following link)

Ifn=4-10° and p = 0.85, then § =3.75-107"!

B - the transition probability matrix of the Markov chain

0<bij<1

Matrix theory: Perron-Frobenius theorem applies:

3! (within a scaling factor) solution x # 0 of the equation

X = Bx.

If the scaling factor is chosen such that ) ;x; = 1 then x is is the state vector of the
Markov chain and is Google’s PageRank; 0 < x; < 1.
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2.2 Power method

Algorithm Power method
Input: Matrix B, initial vector x, threashold &
Output: PageRank vector y
repeat
X < Bx
until |x—Bx|| <e
y = x/ |«

In practice, matrix B (or G) is never formed.
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2.3 Transfer to a linear system solution

the first idea: the solution of the problem

x = Bx

being equivalent to
(I-B)x=0

But, the non-sparsity of I — B !

Is there a better way?
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Yes: Note that

B=pGD+ez!,
where D - diagonal matrix
1
1/c;i @ ¢;#0 1 )
djj= fep =70 |, z=
0 : Cj= 0 : l/l’l
1

ey

Cj#o
Cj:()

e ¢z! - rank-one matrix - the random choices of Web pages that do not follow

links.

The equation

x=Bx
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is becoming thus due to (I)):
x = (pGD+ez")x

x—pGDx= e Z'x

Y
(I - pGD) =Ye,
——
A
we get the system of linear equations to solve:
Ax=ce 2)

(We temporarily take y = 1.) After solution of (2), the resulting x can be scaled so that
Y;xi = 1 to obtain PageRank.
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Note that the matrix A =1 — pGD is

e sparse
e nonsinguar, if p <1
e nonsymmetric

e huge in size
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3 Solution methods for (2)

Solve the system of linear equations

Ax=Db

where the matrix A is:

e sparse,

e large,

e may have highly varying coefficients (for example, |a;;| € [1076,109])
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3.1 Available methods

Direct methods
UMFPACK, SuperLU, MUMPS
e Analysing step
e factorisation step

e solving step

Roughly 100-10-1 time factor. 2D - OK, 3D - ?.

Iterative methods

e Richardson’s type iterations (Gauss-Seidel, SSOR,...)

e Krylov subspace methods
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3.1 Available methods

Domain Decomposition (DD)

e non-overlapping methods

substructuring methods, additive average methods and others.

e overlapping methods

Additive Schwarz methg)ds
A

02

HO
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MultiGrid

3.1 Available methods

Generalisation of DD to multiple levels, but:
moderate coarsening from finer to coarser levels

e Geometric multigrid
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e Algebraic multigrid
- f-c colouring
- aggregation-based
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4 DOUG

4.1 DOUG - fast “black box”’ solver

Domain Decomposition on Unstructured Grids

DOUG  (University of Bath, University of Tartu)
[.G.Graham, M.Haggers, R. Scheichl, L.Stals, E.Vainikko, K.Skaburskas, M.Tehver,
O.Batrasev, C.Pocher, M.Niitsoo 1997 - 2007

DOUG developent site (http://dougdevel.orq)

Parallel implementation based on:

e MPI

UMFPACK

(METIS)

e BLAS


http://dougdevel.org
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4.2 DOUG (vers. 2) overview

4.2

DOUG (vers. 2) overview

Large linear system solver

automatic parallelisation and load-balancing
Block-structured matrices (systems of PDEs)
2D & 3D problems

2-level Additiivne Schwarz method

2-level partitioning of the domain

Automatic Coarse Grid generation

Adaptive refinement of the coarse grid
Different input-types for linear systems

GRID-enabled WW W-interface
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4.3 Overview of DOUG strategies

e Iterative solver based on Krylov subspace methods
PCG, MINRES, BICGSTAB, 2-layered FPGMRES with left or right precon-
ditioning.

e Non-blocking communication where at all possible

Ax-operation: y := AX — « -)

Dot-product: (X,y) — :-(

e Preconditioner based on Domain Decomposition with 2-level solvers

«)

Applying the preconditioner P: solve forz: PZ=r. « o

e Subproblems are solved with a direct, sparse multifrontal solver
(UMFPACK)
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S DOUGYS & aggregation

5.1 Aggregation-based DD methods

Have been analysed upto some extent:

- Analysis for multiplicative Schwarz [Vanek & Brezina, 1999]

- Analysis for additive Schwarz [Jenkins et al., 2001] and [Lasser & Tosselli, 2002].
- Sharper bounds [R. Scheichl, E. Vainikko, 2006

Aggregation:
Key issues:
e how to find good aggregates?

e Smoothing step(s) for restriction and interpolation operators

Four (often conflicting) aims:
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e follow adequatly underlying physial properties of the domain
e try to retain optimal aggregate size
e keep the shape of aggregates regular

e reduce communication => develop aggregates with smooth boundaries
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5.2 Algorithm (Shape-preserving aggregation)

Input: Matrix A, aggregation radius r, strong connection
threashold c.

Output: Aggregate number for each node in the domain.

1. ScaleAto unit diagonal matrix (all ones on diagonal
2. Find the set § of matrix A strong connectons: § =
U ,Si, where
Si={j#i:]aij| > aomaxfal,
ki

unscale A; aggr_num:=0;
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3. aggr_num:=aggr_num+l;

Choose a seednode x from G or 1if G =0, choose the first
nonaggregated node x;

level:=0

4., TIf (level<r)

Add recursively all strongly connected non-aggrege

neighbours to the aggregate aggr_numwith level+l
and perform smoothing step on each level
elseif (level<2r)
Find layer (level+1l) ...layer (2r) .
endif
5. On the longest layer (i), i=r+1,...,2r add node(s) with

shortest distance fromxto the set Gand goto step 3.
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5.3 Parallel implementation

Interpolation (I = RT), restriction (R) operators + smoothing operator — sparse matrix
structure.
Coarse matrix Ag = RAR” , through sparse matrix multiplication (SMM) oper-

ations are key routines affecting the performance of initialisation stage.

e SMM produce sparse matrices

e SMM in our case easy to parallelise, as all data is available locally (due to

overlap)
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6.1 Motivation

6 DOUG@GRID

6.1 Motivation

PROBLEM:

e Dynamic nature of GRID versus:
— good parallel solvers need synchronisation steps :-(

— no fault tolerance in mainstream MPI implementations :-(

=> A) need for methods that do not need regular synchronisation

=> B) Need for fault-tolerant communication libraries
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6.2 Possible solutions:

A) Algorithms

e Asynchronous DD methods
- do not base on Krylov subspace methods (Richardson’s type iteration methods)
- slower convergence

- not very much studied mathematically (due to stochastic nature)

e Possible asynchronous Krylov subspace methods
- do such exist at all? (Flexible GMRES)

- some synchronisation still needed

B) Fault tolerance

e Important for long-running computations
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DOUG as a web-service

Using GRID as a development utility
e running DOUG health-checks during the development process
e Automatic profiling system

e Using pre/post-commit scripts of Subversion to achieve it
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6.3 DOUG strategies for PageRank problem

Using iterative solvers for the PageRank Linear System solution are reported to be
very problem dependant.

e Our main interest: how our aggregation-based DD Methods will work with
PageRank

An ongoing work

Strategies:

e Krylov subspace methods: PBICGSTAB, PGMRES

e Asynchronous Domain Decomposition methods based on Gauss-Seidel meth-
ods

- work in progress
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Questions?
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Thank You!
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