
Completely genereic
as-path-sensitive-as-necessary

multithreaded API analysis

Vesal Vojdani

Department of Computer Science
University of Tartu

January 26, 2006



Introduction to the Goblint
The goblint is a static analyzer for posix threaded C.

It was scheduled to be released with Windows Vista. . .
but has been delayed.

Focused on detecting multiple access data races.
Precise race detection requires detailed analysis of program
flow

Resolving pointers and ambiguous function calls.
Distinguishing relevant paths within a function.

We have detailed static traces of program.

We want to let you use it.



Generic API analysis
In the sense of “Checking system rules using system-specific
programmer-written compiler extensions.” (Engler et al, 2000)

Access to global variables require locking mutexes.
Disabled interrupts must be re-enabled.
Varialbes should be sanitized before use.
∀h : fopen(h) . . . fwrite(..,h) . . . fclose(h)

Expose the program trace to the user to define temporal
properties.

Do it in a generic way: there should be no change to the base
analysis when checking for a new property.



Specification language
Not temporal logic. . .
A bunch of DSLs hosted by O’Caml.

Domain language hosted by the module system.
Transfer functions hosted by the core language.
Analysis transformers hosted by the module system.
Analysis patterns hosted by SNOCOs.

Goal: user can implement all the promised analyses in a few
lines of code.

The first two are fairly standard, so we’ll look at transformers.

Patterns are not implemented.



Analysis transformers
They are essential to being “completely generic”.

Implemented by functors.
The context sensitive composition functor

Given a base analysis (constant propagation and points-to
analysis)
And a user analysis (e.g. mutex analysis)
Produces a context sensitive user analysis (e.g. Goblint’s data
race analysis)

The path sensitive composition functor.
Context sensitive like above.
Adds path sensitivity (topic of next slide).
This one is our favourite.



Path sensitivity

man gcc on “-Wunitialized”
These warnings are made optional because GCC is not smart
enough to see all the reasons why the code might be correct
despite appearing to have an error...

Here is another common case:

int save_y;
if (change_y) save_y = y, y = new_y;
...
if (change_y) y = save_y;

This has no bug because ”save y” is used only if it is set.



What is the problem?

Example
int save_y;
if (change_y) save_y = y, y = new_y;
...
if (change_y) y = save_y;

There are 4 potential execution paths.

Only 2 are logically possible.

We need to distinguish execution paths, but they can be
inifinte!



As path sensitive as necessary

Example
int save_y;
if (change_y) save_y = y, y = new_y;
...
if (change_y) y = save_y;

We only track the relevant paths.

Paths are relevant when the set of uninitialized variables are
different.

Path sensitivity depends on the user-analysis, so how do we
make it generic?



Defining the domain
Let Db denote the domain of our base analysis and Du the
user’s domain.

The needlessly path sensitive approach: Db → Du.

The as-path-sensitive-as-necessary domain: Du → Db.

We implement this as a power domain P(Db × Du), where
the least upper bound merges the first components for
identical states of the second.

Example
For the previous example we have after the first branch (assuming
y is already initialized):

{([change y 7→ 0], {y}), ([change y 7→ {0}], {savey, y})}



Defining the transfer functions
We need to combine

tf b : Db → Db

tf u : Du → Du

Into a function tf : P(Db × Du) → P(Db × Du)

It’s trivial, use the obvious function that fits the types.

Except many analyses depend on and also need to influence
the result of the base analysis, so actually we have
tf u : Db × Db × Du → Db × Du

Composition is still very easy:
tf = map(λ(b,u). tf u(b, tf b(b),u)).



Branches: how does it work?
Conditional constant propagation

“Constant Propagation with Conditional Branches.” (Wegman
& Zadeck, 1991)
Synergy between constant propagation and dead-code
elimination.

When we reach the last statment, the wrong path is
eliminated as dead code!

Example
int save_y;
if (change_y) save_y = y, y = new_y;
...
if (change_y) y = save_y;

{([change y 7→ 0], {y}), ([change y 7→ {0}], {savey, y})}



Multithreaded analysis
Not interesting! The real challenge is doing this
inteprocedurally.
Multithreaded analysis would only add some technical
complexities

The formulas would look more complicated.
Essentially we collect side-effects, and these have to be
merged.

How to deal with function calls?
What is our treatment of functions.
How do we do interprocedural path-sensitivity.



Functional approach to interprocedural analysis
Let F be the set of all procedures in the programn and N

denote nodes in the CFG.

The set of variables V = (F ∪N)× D in the system of
constraints are:

Calls: 〈f,d〉, where f ∈ F is a procedure and d ∈ D is
the state in which the function was called. The
return state of the function is associated with
these variables.

Nodes: 〈n,d〉, where n ∈ N is a node in the control flow
graph of a function f. The second component d

denotes the state in which the function f was
called.

The system is infinite, and is solved by demand-driven solvers.

Example on next slide. . .



Transfer functions for calls
Whenever a function is called, the analyzer uses the following
transfer functions to deal with it:

entry computes the function to be called and its entry state.

combine integrates the return value of the call with the local
state when the function returns.

special Deals with library functions (it can be seen as part of
combine).

Example
int f(int y) { return y + 1; }
int main() { x = f(5); }

When analyzing the call to f, the analyzer asks for the variable
(f, [y 7→ 5]) and the resulting state will be [retvar 7→ 6], and the
combine function will assign it to the variable x.



Interprocedural path-sensitivity
The job of the base analysis is to resolve function calls, and
user analysis only overrides the treatment of library functions.
Composing these functions simply means:

The new entry function only adds the user state to the base
entry state.
The new combine must consider user provided definitions of
library functions.

We haven’t worked out all the details on paper, but it should
be easy, although there are small complications

Most problems are due to unexpected behaviours of library
functions.
When the mutex analysis handles a lock function, it should
return two states depending on whether the locking succeeds.
This is incompatible with our current types of the analysis
specifications.



Conclusion
The analysis transformers lets you transform a very simple
specification (40-80 loc) to very sophisticated analysis.

The next step is to get down to about 10 lines and depend
less on O’Caml and specific knowledge of the formalism.

Since many conditions are very simple
(∀x : A(x) before B(x)), the Goblint Analysis Patterns might
be good enough.

Related work!

Thank you!
Thank you for your attention.
Questions and comments are always welcome!


