Formal Methods
in Software Engineering

An Introduction to Model-Based Analyis and Testing

Vesal Vojdani
Fall 2015

1 Introduction
Software quality and FM

e Goal: Increased confidence in software!

e We explain our intentions to The Machine.

e The Machine helps us check if they’re satisfied.
e According to RTCA DO-333:

formal method = formal model + formal analysis

What is a formal model?
A model is formal if it has. ..

e Well-defined syntax.
e Unambiguous (mathematical) semantics.

e The Machine must truly grok it.

Formal Analysis
1. Deductive Methods
2. Model Checking

3. Abstract & Symbolic Execution



In General: Satisfiability

MEp
e M: a model of the system

e ©: a specification of what is expected of M

1.1 Deductive Methods
Deductive Methods

e Describe the system as set of logical formulas I.

The specification is another formula .

Verify by finding a proof of
ke

Thus, any M =T, will also satisfy .

Deductive methods typically require some guidance from the expert (you).

Example: Avoid division by Zero

(y#1)

(y—1#0)
.=y

(v —12£0)
ri=x—1

(x #0)
z:=y/x

Any model (initial state) where y # 1 is safe.

1.2 Model-Checking
Model Checking

e M is given in a dedicated modelling language, based on say transition
systems.

e The specification is a formula ¢ in temporal logic.
e Verify by checking if we have
Mg

by exhaustive exploration of the model.



Why create a model?

The model can be fairly simple, but ...

execution may be complex (concurrency!)

Visualize and explore the model manually.

Automatically check for typical safety and liveness properties.

Models can also be used for test-generation.

Model-Based Testing

1.3

Automatic test generation requires an oracle.

The model can be used to automatically generate unit tests with the re-
quired assertions.

We have model-based coverage criteria.

Testing is the only way to test the entire system (including hardware,
network, environment).

Here, we are interested in validating the test suite.

Versus a finite model, testing can be complete!

Abstraction

If the model is too complicated

Some models cannot be analyzed directly.
(Source code itself is a formal model!)

How can we make the model smaller?

We can explore the model up to a finite bound.
We can explore the model symbolically.

We can evaluate the model abstractly.



Bounds versus Abstraction

e What is the problem with bounded models?
e In contrasts, abstraction over-approximates:

e Instead of M, we consider M’; such that
MEp = MEgp
e Abstract interpretation is a lattice-based theory of approximation.
1.4 This Course

Course Outline

e Run-time checking of assertions/contracts.

— We begin with simple assertions for debugging.
— Looking at pre- and post-conditions (contracts).

— We'll see how these improve run-time checking.

Static contract verification.

— Proving that the program satisfies the contract in different systems.

— Kalmer will give a brief tutorial on completing proofs manually a

proof-assistant.

Automated verification techniques.

— Automated theorem provers.

— Abstraction-based analyzers.

— Configuring these tools require some deeper knowledge of how they

actually work.

Creating models of systems.

— I want to spend proper time on the SPIN model checker.
— We should also look into Alloy.

Test Generation

— Model-based testing.

— Symbolic execution & concolic testing.



Course Organization

e We want to learn to use these tools properly.

e I will do very much a reverse classroom approach.

e You will be given assignments.

We solve and discuss them at class.

e You must attend roughly once per week to show your work!

e Grading will be based on coursework. (70p)

You will present a project in an oral exam. (30p)

2 Hoare Logic

Hoare Triplets

16) 5 (@)

e A Hoare triple is satisfied under partial correctness:

— for each state satisfying ¢,
— if execution reaches the end of .5,

— the resulting state satisfies 1.

e (Total correctness: partial + termination)

Simple Language: Expressions

en=2x variable z € V
| ¢ constant ¢ € Z
| e1+ex|...  arithmetics
b = true | false booleans
| by Aby|... logical operators
| e1 <es|... comparisons



Simple Language: Statements

S u=51;5

Ti=e

if b then Sp else Sy
while b do S

skip

|
|
|
|
| {5}

FOL (quantification over variables)

e Our language for reasoning:

¢u=Db boolean expression
| &1 A o conjunction
| &1V oo disjunction
| &1 — oo implication
| Jy:o existential quantification
| Vy:o universal quantification

e We do not actually evaluate ¢ at runtime.

e Can only evaluate b (no quantifiers).

Composition

(@) Siln) — (nhS2 ()
(o) S1;S2 ()

Assignment

(le/x]) x:=e(¥)
e Is this backwards?

e Consider examples for x := 2 and = := x + 1.



Conditional Statements

(pADb)SL(Y) (oA —b) Sa ()
(@) if b then Sy else Sy ()

While Statements

1675 S (6)
(o) whilebdo S (¢ A —b)

Implication

e These end up as verification conditions.

e Automated theorem provers have to dismiss them.

Hello World!

int abs(int i) {
if (0 <= i)
r := i,
else
r := -i;

e Prove: always returns a non-negative value.
e (Where exactly would an overflow invalidate this proof?)
Step by step

1. We first have the conditional:
(0<i)r=i(0<r) (i<O)r:=—i(0<r)

(true) ifO <ithenr:=ielser:=—i (0<7r)
2. The true-branch follows from the assignment axiom.
3. The false-branch relies on a simple implication:

i<0=0<—i (0<—i)r:=—i(0<r)
(i<O0)r:=—i(0<r)




Proof trees

0<iprimifo<s) LS00 (0< —i)r:=—i(0<r)
- T - (i<O)r:=—i(0<7r)
(true) if0 < ithenr:=ielser:= —i (0 <r)

e The sequential application of inference rules are often represented as proof
trees.

e These trees can grow large. ..

e Instead: annotate the program code!Tree structure is implicit.

Tableaux Proofs

(1)
S ;

(d2)

(]Onfl D

(n)

Tableaux: Composition

(6D Si(n) (D Sz ()
(&) S15 82 ()




Tableaux: Conditional

(6Ab) S (&) (6A—b) S ()

(@) if bthen Sy else Sy ()
(D

if b then {
16 5)
S

} else {
(¢ A =b)
So

()

Tableaux: Implication

The example as tableaux proof



(true)
if (0 <4) then {
(true A0 < 1)
,

| dogrl)

}else {
(true Ai < 0
(0 < —i)
(0<r)
}
(0<r)

2.1 Weakest Pre-Conditions
Weakest Pre-Conditions

e We have so far only rules for valid Hoare triples.

e Not all triples are equally useful

(false) S ()

e How do we infer these triples?

e We will now move towards a more syntaz-driven method to infer weakest
pre-conditions.

Definition

e We say ¢ is weaker than ¢’ if
o =0
e For ¢ = WP [S] ¢, we have

(o) S () is valid
if (¢') S (v) then ¢’ = ¢

e ¢ holds after S iff ¢ holds before. (when the logic can describe program states
uniquely)

10



Assignment

e Consider sequential composition:

Zi=1;
Zi=z+Y;
U=z

e It suffices with definitions:

WP [z :=¢] v = 1le/x]

A tableaux proof from WPs

(z+y=42)
Zi=2x;

(z+y=42)
zi=z+y;

Conditional

e Hoare logic:

(pAD)SL (V) (dA—D)S2 ()
(o) if bthen Sy else Sy ()

e A more syntax-driven rule:

(P1) S () (P2) Sa ()
(¢') if bthen Sy else Sy ()

where &' = (b — ¢1) A (b — ¢2)

11



Proof Tableaux for Conditional 2.0
(06— WP[Si] ¢) A (=b— WP[S2] ¥))
if b then {
(WP [S1] ©)

S
} else {
(WP [Ss] %)
So
}
4)

The Example Again
( true)
(0<i—=0<iHA(E<0—=0<—0))
if (0 <) then{

(0 <)
} else {'_ |
10 < i)
}
(0<r)

2.2 Loop Invariants
While Loops

e Recall the proof rule

(¢ AD) S ()
(o) whilebdo S (¢ A —b)

e Given a 1) as post-condition. ..
e How can we apply this rule?

e What is the WP of a while loop?

12



Termination?

e Weakest Liberal Preconditions
wp [S]v = wp [S] true A wip [S] ¢

e We did not care about this distinction
— Termination is an outdated concept. ;)

— Only loops have different definitions.

WLP for while loops
o WP [while b do S ?
e Unrolling the loop:

Fy = while b do skip
F;, =if bthen S ; F;_; else skip

e WLP for “exiting the loop after at most ¢ iterations in a state satisfying
¢77 .
LO = ’(/) A —b
Li=(-b—=>Yv)ANb—=>WP[S] L;—1)

e We then define

WLP [whilebdo S| v =3i e N: L;
e Not very practical. . .

Unrolling Example

WLP [while 2 < 3do a := z + 1] (z = 3)
Fy = while xz < 3 do skip
Fy=ifz<3thenz:=x+1;

(while z < 3 do skip) else skip
Fo=ifz<3thenz:=x+1;

(ifx <3thenz:=xz+1;

(while z < 3 do skip) else skip) else skip
Fy= ...

13



Lo=x=3
Li=(3<z)— (z=3)A
((x <3) >WLP [z :=z+1] (x =3))
=@ <3)AN((z<3) = (x=2))

Lo=(x <3)A((zr <3) > WLP[z:=x+1] Ly)
=@ <3N ((x <3) = (1<x<2)
=1<z<3

L()E3<.l 3

Llf X 3

L2_1_T 3

L3=0<2<3

L;=3—i1<x<334eN:L; =ux <

Precondition of a While Loop
To push ¢ up through while b do .S:

1. Guess a potential invariant ¢.
2. Make sure ¢ A =b = .
Compute ¢’ = WLP [S] ¢.
Check that ¢ A D = ¢'.

oo W

Then, ¢ is a pre-condition for .

(pAD)S (o)
(&) whilebdo S (¢ A —b)

14



Proof Tableaux for Loops

(o)
while b do {
16A0)
(WLP ST ¢)
S
(o)
}
(¢ A=b)
()

For the Example with ¢ =x <3
(x <3)
while z < 3 do {
((z<3)A(z<3))
(z+1<3)
ri=z+1
(z<3)

2.2.1 Exercise: Factorial
Exercise!

int fact(int x) {

y = 1

z = 0;

while (z !'= x) {
z =z + 1;
y =y * z;

}

return y;

Guessing the invariant

15



e Doing a trace:

iteration |z y 2z | B

0 6 1 0] true
1 6 1 1| true
2 6 2 2| true
3 6 6 3| true
4 6 24 4| true
5 6 120 5| true
6 6 720 6 | false
i il g

e Formulate hypothesis: y = z!

Proof obligations
Want to establish ¢ =y = z!.

1.
2.
3.

Our invariant ¢ =y = z!

Check that ¢ A =(z # ) = .

Compute WLP of loop body:

o=y (z+1)=(2+1)!

Check if pA 2z £ 2 = ¢.

Continue WLP computation with ¢.

Writing the Tableaux Proof

16



(y =21

while z # x do {
((y=zD)A(z#2))
(y-(z+1)=(=+1!)
z:=z+1;
(y-z=2!)
yi=y-z
(y="=1)

}

((y=zh)A(z=2))

(z=1y!)

Another Example
Consider now the following program.

z:=0;
while z # x do {
z:=z+4+1;

ri=xz—1

(z=y)

How do we infer an invariant for this program? Well, what is invariant here?
Since the loop essentially “takes one from z and gives it to z”, their sum z + z
must remain invariant. Initially, z +x = y 4+ y, so we use z +x = 2 - y as our

17



invariant. We then complete the proof:

(true)
(2-y=2-y))
r:=2-y;

(42 =2-9))
while z # x do {

(Grz=2-y)A(z#2))

(G+D+@-1)=2-y)

z:=z+1;
(z+(x—-1)=2-y)
ri=x—1
(z+x=2-y)
}
((z+z=2-9) Az =)
(z=y)

Proof Rule for Total Correctness

(PADAOSV =V)) S (oA 0V <Vp))
(6 A(0<V)) whilebdo S (¢ A —b)

e Requires a variant V.
e Must be bounded 0 < V.
e Body must decrease it: V' < old(V).

Simple loop variant: z — x
x:=0;
(<2 A0 2—2))

while z < z do {
(x<2)AN(z<2)N(0<z—2=TV)))
((z4+1<2)AN(0<z—(xz+1)<W))

r:i=x+1

((<2)A(0<z—x<V)))

}

((x<2)A(z<))

18



2.3 Challenge: MinSum

Challenge: Minimal-Sum Section
e Given an integer array a[0],a[l],...,a[n — 1].
e A section of a is a continuous slice
afi...jl=alil,ali +1],...,alj — 1]

where 0 < i < j < n.

Section sum: S; ; = afi| +---+alj — 1].

e A minimal-sum section is a section ali...j] s.t. for any other ali’..

we have S; ; < Sy jr.

What to do?
e Compute the sum of the minimal-sum sections in linear time.
e Prove that the code is correct!

e For example. ..

— [~1,3,15, 6,4, —5] is —7 for [~6,4, —5).
- [-2,-1,3,-3] is =3 for [-2,—1] or [-3].

The Program (in Java)

int minsum(int al]) {

k = 1;
t = al[0];
s = al[0];

while (k < n) {
t = min(t + alk], alkl);
s = min(s,t);
k =k + 1;

}

return s;

Post-conditions
e The value s is smaller than the sum of any section.

1/)1:VZ,‘]0§Z<]§7’L*>S§SZ’J

e There is a section whose sum is s

¢2=E|i,j:0§i<j§’ﬂ/\$=si7j

19

',



Trying to prove 4
e Suitable Invariant:
P1=Vi,j:0<i<j<n—=>5<8;;
Ii(s,k)=V1,j:0<i<j<k—s<5;
e Additional Invariant
Lt k)=Vi:0<i<k—=t<S5
For the second invariant
e The assignment in the loop:
t := min(t + alk], a[k]);
k:=k+1;
e Show that the invariant for ¢ is maintained:

Lt E)ANk<n =
Iy(min(t + alk], alk]), k + 1)
What do we have to prove?
We are given this:
Vi:0<i<k—=t< Sk
kE<n
We have to show this:
Vi:0<i<k—min(t+ alk], alk]) < S;rt+1
You can split into two cases:
1. ¢ =k is trivial (Sk k41 = alk]).
2. 0<i<k.
The key step
We have to show this then:
Vi:0<i<k— min(t+ alk], alk]) < S;rt1
For any such ¢, we can compute:
min(t + alk], alk]) < t 4+ alk]
< Sk + alk]
=5 k41

(Dafny needs help only with the final equality, see the distributive lemma from
the Dafny tutorial.)

20



The Complete Lemma
e In the end, we have to prove that
Il(s, k‘) A IQ(t, k‘) Nk <n
=
I (min(s, (min(t + alk], alk])), k + 1) A
Iy(min(t + alk], a[k]), k + 1)
e Then we had the other post-condition (1)5)
e Do as much of the exercise as we can. ..

e In terms of Dafny code, very little remains! Disclaimer: This may not correlate

with man hours.

3 VC generation

Purpose of this lecture
e Get an idea of how verification condition generation works.
e We consider the simplest possible implementation.
e This is based on early work on ESC/Java.
e We see some important concepts:

— collecting semantics
— constraint systems

— abstraction

Quick: What is the Loop Invariant?
y:=5;x:=0;
¢
while z # 5 do {
(oANx#5)
(olx+1/x])
ri=x+1

19)

—
- Ot

21



Generating VCs

e Non-trivial loop-invariants must be supplied, but everything else auto-
matic.

e Assume program is annotated with

— Pre- & Post-conditions.

— For every while-loop, a supposed loop-invariant.
e How do we check automatically that the implementation satisfies the con-
tract?
Verification Conditions
e Consider the triplets:
(o) C (v)
(z=2)r=x—y(z+y=2a")
e The verification conditions would be
o — WP[C] ¢
(e=a') = ((x—y) +y =2
Asking an SMT Solver
e We then ask an SMT solver if the VC is true.
(x=a) = (x—y)+y =2
e We want the VC to hold for all parameters.
e Check if the negated formula is satisfiable!

e Think: searching for a falsifying assignment(failing test case).

3.1 Control Flow Graphs

Translation into Flow Graphs
Control Flow Graph G = (N, E,s,r)

e N are program points, and s, € N are start/return nodes.

e £ = N x C x N are transition, where C is the set of basic statements
(commands).




Basic Edges

C ::= skip skip
| z:=e¢ assign
| o7 assume
| o! assert

e Recall that ¢ may contain quantifiers.

e This translation is for VCG, not execution!

Translating If-Statements

if b then S else Sy

!

Sh So

7

Translating While-Statements

while b do S

L

O

3.2 State and Satisfiability

Semantics

23



e We want to generate VC.

Why not just show the algorithm?

Why stop now when we’re having so much fun?

Well, the constructs are now much less intuitive!

It is time to assign meanings to our programs.

Program State
e A state o assigns values to variables:

oV =7

e Example:
oo={x— 0,y — 0}

o1 ={x 5y~ 0}
o9 = {z = 5,y 6}

Giving meaning to expressions
e For a state o, we may evaluate expressions:

[e]o ez
e And assign a truth-value to a formula:

[¢]o B
e For o ={ax— 5,y 6},

[ +y]o =11
[x <y]o = true

24

After all, I haven’t bothered with semantics so far.



3.3 Collecting Semantics
Collecting Semantics
e For every point p € N, we want to know
o The set of states reaching p: 3.

e If we assume that X3 = 3y = {00}

oov=0 (VveV)

{oo} {o1} {o2}

Starting State

e We need this semantics to validate our WP computation.

e Therefore, the best choice is ¥, = V — Z, so that only tautologies hold
at s.

e We include all logical variables from assume statements in V.

Quiz: The Error State
e For any ¥, what are the results of the edges?

false? false!

0 {1}

e However, L should pass through other edges (like exceptions / maybe
monad)

[¢] L = false llz—el=1

e We amend the assume rule. ..

25



Transfer functions

[skip] X =X
[t:=¢] X ={o[xr [e]o] | o€ X}

[p?]E ={c |o €, [¢]o = true}
u{Ll|LeXx}

[0l ={o |0 €, [¢]o = true}
U{Ll]|oex [¢]o=false}

Example

r<07? 0<zg?

Equation & Constraint Systems
e Recall G = (N, E,s,r).
e First we set the starting state:
Y ={os} (or X3 =V = 7Z)
And for each point ¢ € N:
2 = HIC1Z | (0. C,q) € E}
e As a constraint system:

Es 2 {os}
Eq 2 IIO]] Ep for (pycvq) S

26



Constraint System Example
o Let z, ={ox|oeX,} (and Lif o =1).

e We start with z¢g =z, = Z.

xOQZ
x1 2{z |z €z, 2 <0} '

I‘QQ{Z‘ZEI‘Q,OSZ} ”:<O‘VCN<;,;7

x3 2{—z|z €}

x3 2 {z+1]2 €z} O\/®

:L‘4:_){Z‘Z€IL'3,Z?é0} T = —x rzi=x+1
.’l;i:)!&(

O~

U{L|z€axs z2=0}

3.4 VC Generation
And Now WP...

WP [skip] » =1

WP [z := e]] ¢ = [e/x]
WP =¢—1
WP o] ¥ =AY

Quiz: Error State Again
e Recall our false assume/assert edges:

false? false!

0 {1}
e Now what is the WP for these?

WP [false 7] v WP [falsel] v

true false

27



Equation system for WP

e We now start from the end noder € N.
e Post-conditions are explicitly asserted, so. ..

o We start with v, = true and for p € N:
b= NWPI v, | (,c.q) € E}

e Alternatively, as a constraint system:

Y, = true
L'p — WP H(f]] U“Jq for (p» C, q) eE

Again this example:

rz<07? 0<z?

r:=x+1

x#0!
Now recall this example...
y=5;
z:=0;
while z # 5 do
ri=x+1;
r=y!

28



We could compute this...

=57 x=1y!
; X 57 @ Yy @_}

ri=x+1 x#57

WP computation was stuck in this loop

r=y!

r=x-+1 x#57

Havoc!
e Concrete semantics:

[havocz]| L ={o[z— 2| |0 € X, z € Z}

e WP for havoc:

WP [havoc z] ¢ = ¢[a’ /x] 2 is fresh!

e We need ¢ to hold for all values of z. Usually, we have assumes after
havoc, so a typical example is

WP [havocz] ((y =) — (. =2)) = (y=2)

29



A simple assumption

e We should havoc all variables that are assigned to in the loop body.
e For simplicity, we assume this is only x.

e (You may think of = as a vector.)

Normal While Loop

Abstraction using invariant ¢

Why can we do this?
e The construction guarantees that if

1 &%
we have
5 C %y

where X/ are the sets computed for the original while loop.

e Note: it follows very closely the proof rules of Hoare logic.

30



Now we really can compute a VC

| PN
Al
N
¥
W'
=57 z=y!
x#57 false?

What happened?
e Well, there was no invariant to check.
e That’s good because the invariant was trivial.
e The homework requires making this construction with an invariant.
e There’s just one more thing. ..

Procedure Calls

e Given a function P with parameter p and result r and contract

(6) P ()

e We produce the following translation for a call © = P(e).

pi=ce
0!
Wv?
Ti=r

31



4 Data Flow Analysis

Data Flow Analysis

e We now consider how to check assertions using data flow analysis.

Before we do that, we must to understand the basics of classical data flow
analysis frameworks.

We need to reason about soundness.

Statements about programs are ordered. . .

Partial Orders

Definition
A set D together with a relation C is a partial order if for all a,b,c € D,

alCa reflexivity
aCbAbCa — a=1b anti-symmetry
aCbObADCec = alec transitivity

Examples
1. D = 2{@bct with the relation “C”
2. Z with the relation “=”
3. Z with the relation “<”
4. Z, =Z U {1} with the ordering:

tly < (z=1)V(z=y)

Facts about the program

e Our domain elements represent propositions about the program.
e Let p =« denote “x holds whenever execution reaches program point p”.

e We order these propositions such that
z Cy whenever (p=z) = (pEy)

e Consider examples:

— The set of possibly live variables.

— The set of definitely initialized variables.

32



Combining information
e Assume there are two paths to reach p (true-branch and false-branch).

e If we have = along one path and y along the other, how can we combine
this information?
Uy

e We want something that is true of both paths, and

e as precise as possible.

Least Upper Bounds
e d € D is called an upper bound for X C D if

zCd forallz € X

e d is called a least upper bound if

1. d is an upper bound and
2. d C y for every upper bound y of X.

Do least upper bounds always exist?

/\
/\/\

XX
AN

Complete Lattice

Definition 1. A complete lattice D is a partial ordering where every subset
X C D has a least upper bound | | X € D.

Every complete lattice has
e a least element L =| |0} € Dj

o a greatest element T = | |D € D.

33



Which are complete lattices?
1. D =2{abe}
2. D =Z with “=".
3. D=7 with “<”.
4. D=17Z,.
5. Z] =ZU{L, T}

Solving constraint systems

e Recall the concrete semantics:

Sq 2 [l Sy for (p,c,q) € E

e In general:
Z; g fi(xl, e ,xn)

e We rewrite multiple constraints:

eddi A ANxDdp < z 3| [{da,...

So how to do it?

e In order to solve:
x; 3 fi(za,...,zp)

e We need f; to be monotonic.

e A mapping f is monotonic if

aCb = f(a)C f(b)

Monotonicity
e A mapping f is monotonic if

aCb = f(a) E f(b)

e Which of the following is not monotonic?

incr =x+1 decx=x—-1
topx =T botx = 1
ide ==z inve = —x

34

7dk}



Vector function

e We want to solve:
x; 3 fi(x1,...,xp)

e Construct vector function F': D" — D™
F(z1,. . @) = Y1y Yn)
where y; = fi(z1,...,2,)

e If f; are monotonic, so is F.

Kleene iteration
e Successively iterate from L:

1, F(L), F?(1),

e Stop if we reach some X = F™(L) with

F(X)=X
e Will this terminate?
o Is this the least solution?
Simple Example
e For D = 2{a:b.c}
zy J{a}Uxs
x2 JxzN{a,b}
x3 J a1 U{c}
e The Iteration
(o[ 1t [ 2 | 3 [4]
z1 || 0| {a} | {a,c} | {a,c} | V
|0 0 0 {a} | v
3 || 0| {c} | {a,c} | {a,c} | V

Why Kleene iteration works
1. L,F(L1),F?(L),...is an ascending chain
LEFL)EF(L)C--
2. If F*(L) = F¥*1(1), it is the least solution.

3. If all ascending chains in D are finite, Kleene iteration terminates.

35



Discussion
e What if D does contain infinite ascending chains?

e In particular, our concrete semantics was defined as the set of states with
ceV —N.

e How do we know there aren’t better solutions to the constraint system?
x = f(x) x 3 f(z)

Answer to the first question

Theorem (Knaster-Tarski)
Assume D is a complete lattice. Then every monotonic function f: D — D has
a least fixpoint dg € D where

do=[1P P={deD|d3 f(d)}

1. Show that dy € P.
2. Show that dj is a fixpoint.

3. Show that dj is the least fixpoint.

Answer to the second question

e Could there be better solutions to the constraint system than the least
fixpoint?

e According to the theorem:
do=[{deD|d3 f(d)}

e Thus, dy is a lower bound for all solutions to the constraint system d J
f(d).
Chaotic iteration
1. Set all z; to L and W ={1,...,n}.
2. Take some i € W out of W. (if W = (), exit).
Compute n = fi(x1,...,2,).
If ; J n, goto 2.

Set z; := z; Un and reset W := {1,...,n}.

S oo w

Goto 2.

36



Data flow versus paths

e We want to verify that “whenever execution reaches program point p, a
certain assertion holds.”

e We need to check every path leading to p.

e Then: Why are we solving data flow constraint systems??

Path Semantics
e We define a path 7 inductively:
=c empty path
7=n'e wheree€ E
e If 7 is a path from p to ¢, we write m: p — q.
e We define the path semantics:
[e] S =S
[7(p,c, 9] S = [c] ([~] 5)
Merge Over All Paths
e For a complete lattice D, we solved
s D ds
zg [z (pc;q) €E
e But we are really interested in:

yp = | J{[7lds | 72 s = p}

Example: Merge Over All Paths

!

skip skip




‘When do solutions coincide?
e For our collecting semantics, they do.
e All functions [c] are distributive.
e In reality, we compute an abstract semantics.
zs Jds
zg A [)fz, (pcq) €E

e Transfer functions [¢]*: D — D are monotonic.

Soundness of LFP Solutions

Theorem (Kam, Ullman, 1975)
Let x; satisfy the following constraint system:

Ts Jds
.’Eq ; [[C]]ﬁxp (p7 Cy q) € E

where [c]* are monotonic. Then, for every p € N, we have

ZTp I_l{[[ﬂ]]uds | 7: s — p}

Intraprocedural Coincidence

Theorem (Kildall, 1972)
Let z; satisfy the following constraint system:

zs Jds
Iq g [[CIIﬁ xp (p7 ¢, Q) € E

where [c]* are distributive. Then, for every p € N, we have

zp =| [{[x]*ds | 7: 5 — p}

4.1 Assertion Checking
Assertion Checking

e Track values of variables.
e Combine with WP computation.

e Infer invariants for loops.

38



Value Domains

e Characterize the possible values of variables whenever we reach program
point p.

e A non-relational value domain:

D=V —>D,

e We consider two simple value domains:

1. Kildall’s constant propagation domain.

2. The Interval Domain.

Non-relational Domains
e For a complete lattice D and finite set V,
e the set of functions D — V with the point-wise ordering
HE fa <= YweV: fi(v) E fa(v)
is also a complete lattice.

e For example: D =V — 2%

Abstract Evaluation
e Just like for concrete state 0 € V — Z:
[z] o =z
[x] o =oux

[e1 + ex]o = [er] o + [e2] o

e Now, we need abstract operators such that for d €e D =V — D,, we
evaluate:

[2]¢d =2
[z]*d =dux
What the domain must supply
1. Lattice operations.

2. Lifting of constants:
VzeZ:zte D,

3. Abstract operations:
V21,29 €D, 1 21 41 z9 €D,

(not just for +; also unary, comparisons, logical, etc.)

39



Kildall’s Domain

1. Lattice is the flat lattice.

2. Constants are already elements of D, :
A=z
3. Operators are essentially lifted:

1 fa=lorb=_1
a+tp=X4T fa=Torb=T

a+b otherwise
(More precise, e.g., for multiplication?)
Interval Domain
1. Lattice is Z x Z with (l1,u1) C (lo, ug) if

(I2

IN

l1> 74\ <U1 < ’LL2>

2. Constants are singleton intervals:

2 = (2, 2)

3. Operators are generally defined as:
(I, up) % (Ig, up) = (I, u) where
= min{a*b | a < {lhul}, be {ZQ,UQ}}
u=max{axb|a e {l1,ur}, b€ {lz,uz}}
The Analysis
e We define abstract transfer functions.
e The simple ones:
[skip]*d =4
[z :=e]*d = d[z — [e]*d]
e Much like the concrete semantics:

[skip] S =S
[x:=¢]S={o[z [e]o] |oceS}

40



The Bottom Value
e The bottom element is the mapping

dv=1 M eV)

As soon as Jv with dv = L, we would set all variables to L.

This bottom value denotes non-reachability.

All transfer functions let L pass through (strict).

Conceptually, we do not need L in the value domain at all:

(V-2"), instead of V7]

Boolean values

e Booleans are also handled by the value domain. (e.g., when analysing C,
there is no other option.)

e We simply need representatives for true and false:

true® € D, falseﬁ e,
e and abstract versions of the boolean operators.

Assume edges
e The concrete semantics:
[e?]S={o|c €Sy, [e]o=true}
U{L|LesSy}

e We will handle errors separately.

e Abstract value sets:

e o #
[e7]d = 1 if [[e]]ﬁd. C false
dnd; otherwise

e This d; depends on the domain, but must satisfy:

d; 3 |_|minima|,e|ems {d | truef C [e]* d}

41



Example 1: Dead Code

y=9!

Example 2: Restricting Values

Correctness
e We have a monotonic concretization function ~.
e For the value domains v: D, — 2%.

1] ifa=_1
Yy2=<7Z fa=T

{z} otherwise

42



e For the variable assignments:
)0 ifv:dv=_1
Ta= {p|Vv:pve~vy(dv)} otherwise
Correctness condition

e All our transfer functions need to satisfy:
[l (vd) S~ ([]F @)
e Then, then the least solutions also satisfy:
Sp Sy
e Because if we have f(yz) C v(f*z) and d = f#d, then
fyd) En(ffd)=~d
Assert edges

e Their effect on values is like assume:

[eS={c|oeS,, [e]o#0}
U{L]|oesS, [e]oc=0}

e So how to check assertions? (next slide)
e Let z, be the value analysis:
xo I do
zy 3 [z, for (p,c,q) € E
Assertion Checking
e We can just check for each assertion edge (p,e!, q)
¥ C [e]* =,
If the above does not hold, the the assertion definitely fails.

e If we want to be sound:
[e]f, C 1°

If this holds, the assertion is verified.

43



Example 3: Distributivity

skip skip

Can we do better?

We combine with WP computation.

Recall the constraint system:

¢p = WP [] ¢, for (p,c,q) € E

What is the ordering of the domain?

How do we combine?

e We can set up such a system for each assertion. ..

Discussion
e [t is safe if we can only approximate implication.

e What is important for soundness?

Our domain can be sets of conjucts.

At program point p, we can safely dismiss a conjunct ¢ if

[[Qbﬂﬁxp C 1
e If the solution for the system has ¢g = true, we are happy.
Conclusion
e This works for the simple example.

e WP computation would not terminate for a loop.

e Also, what is the concretization of this combined analysis?

44



What about loops?

ri=x+1 r<5H?
For the Kildall domain:
.¢Q
5"
. ? _
) M=) WL LN ) W
ri=x+1 r<5?

For the interval domain

r=x+1 r<57?

45



Not really...

e This was not really static analysis.

e Termination not guaranteed.

e All ascending chains must stabilize.

e Enforce this by a widening operator V.

e Then, Kleene iteration will reach a (not necessarily least) fixpoint.
Widening

V:D x D — D is a widening operator if

1. Vo,y e D: (z CEavy) A (y C 2Vy)

2. for every chain zg Ty C o E - -+

Yo = Xo
Y1 = YoV
Y2 = Y1V
is not strictly increasing.
Iteration with widening
e Our non-terminating iteration:
To = 1

Tiv1 = f(zi)
e [teration with widening:

Yo =L

)Y if f(yz) Cy;
Yi+1 = .
yiV f(y;) otherwise

Widening for Intervals

o [l1,u1]V][la, uz] = [I,u] where
- 1 ifl; <ly
" ]| -0 otherwise
u =

{Ul if u2 S (5%

oo otherwise

46



e This is not commutative

— First argument: previous iteration.

— Second argument: new value!

e Idea: give up if bounds are increasing.

Example with widening

ot

r=x+1 r<57?

Why did we fail?
e We are above the least solution.

e In particular, conditional constraints are over-approximated:

xo [[13 < 5?]]u$1
[0,00] I [ < 57]%[0, 00
[0,00] 2 [0, 4]

e Idea: why not just iterate a few times more?

Refining the solution
e Let x denote a solution to our constraint system:
x 3 f(x)
e If f is monotonic, then further iterations are all safe!
@ flz) 3 fPa) T

e We can stop after 5 minutes if we don’t hit a fixpoint.

47



Post-fixpoint iteration

r=x+1 x <57

Success finally?

e Well, we were lucky and hit a fix-point.
e Termination for post-fixpoint iteration can be guaranteed.

e We require a narrowing operator A.

Narrowing
A: D x D — D is a narrowing operator if

1.Vz,yeD:(yCz) = (yCzAyC x)

2. for every chain zg Jxy Jxo J -+,

Yo = To
Y1 = Yoz
Y2 = Y1812
is not strictly decreasing.
Narrowing iteration
e Let x¢ be a solution, i.e.,
xo 3 f(0)

e Post-fixpoint iteration with narrowing

Yo = To
Yirr = YN f (i)

48



Narrowing for Intervals

o [l1,u1]V][la, us] = [I, u] where
] — l2 if ll = —00
N {1 otherwise
ug if ug = 00
u =
u; otherwise

e Idea: Only restore lost bounds.

Replay with Widening/Narrowing

r=x+1 r<57?

Conclusion

e This example does not require narrowings to enforce termination.

e Can you think of a simple modification to this example where narrowing
would be essential?

49



	Introduction
	Deductive Methods
	Model-Checking
	Abstraction
	This Course

	Hoare Logic
	Weakest Pre-Conditions
	Loop Invariants
	Exercise: Factorial

	Challenge: MinSum

	VC generation
	Control Flow Graphs
	State and Satisfiability
	Collecting Semantics
	VC Generation

	Data Flow Analysis
	Assertion Checking


