
Formal Methods

in Software Engineering

An Introduction to Model-Based Analyis and Testing

Vesal Vojdani

Fall 2015

1 Introduction

Software quality and FM

• Goal: Increased confidence in software!

• We explain our intentions to The Machine.

• The Machine helps us check if they’re satisfied.

• According to RTCA DO-333:

formal method = formal model + formal analysis

What is a formal model?
A model is formal if it has. . .

• Well-defined syntax.

• Unambiguous (mathematical) semantics.

• The Machine must truly grok it.

Formal Analysis

1. Deductive Methods

2. Model Checking

3. Abstract & Symbolic Execution

1

In General: Satisfiability

M � ϕ

• M: a model of the system

• ϕ: a specification of what is expected of M

1.1 Deductive Methods

Deductive Methods

• Describe the system as set of logical formulas Γ.

• The specification is another formula ϕ.

• Verify by finding a proof of
Γ ` ϕ

• Thus, any M |= Γ, will also satisfy ϕ.

• Deductive methods typically require some guidance from the expert (you).

Example: Avoid division by Zero
L y 6= 1 M
L y − 1 6= 0 M

x := y

Lx− 1 6= 0 M
x := x− 1

Lx 6= 0 M
z := y/x

Any model (initial state) where y 6= 1 is safe.

1.2 Model-Checking

Model Checking

• M is given in a dedicated modelling language, based on say transition
systems.

• The specification is a formula ϕ in temporal logic.

• Verify by checking if we have

M |= ϕ

by exhaustive exploration of the model.

2

Why create a model?

• The model can be fairly simple, but . . .

• execution may be complex (concurrency!)

• Visualize and explore the model manually.

• Automatically check for typical safety and liveness properties.

• Models can also be used for test-generation.

Model-Based Testing

• Automatic test generation requires an oracle.

• The model can be used to automatically generate unit tests with the re-
quired assertions.

• We have model-based coverage criteria.

• Testing is the only way to test the entire system (including hardware,
network, environment).

• Here, we are interested in validating the test suite.

• Versus a finite model, testing can be complete!

1.3 Abstraction

If the model is too complicated

• Some models cannot be analyzed directly.

• (Source code itself is a formal model!)

• How can we make the model smaller?

• We can explore the model up to a finite bound.

• We can explore the model symbolically.

• We can evaluate the model abstractly.

3

Bounds versus Abstraction

• What is the problem with bounded models?

• In contrasts, abstraction over-approximates:

• Instead of M, we consider M′, such that

M′ � ϕ =⇒ M � ϕ

• Abstract interpretation is a lattice-based theory of approximation.

1.4 This Course

Course Outline

• Run-time checking of assertions/contracts.

– We begin with simple assertions for debugging.

– Looking at pre- and post-conditions (contracts).

– We’ll see how these improve run-time checking.

• Static contract verification.

– Proving that the program satisfies the contract in different systems.

– Kalmer will give a brief tutorial on completing proofs manually a
proof-assistant.

• Automated verification techniques.

– Automated theorem provers.

– Abstraction-based analyzers.

– Configuring these tools require some deeper knowledge of how they
actually work.

• Creating models of systems.

– I want to spend proper time on the SPIN model checker.

– We should also look into Alloy.

• Test Generation

– Model-based testing.

– Symbolic execution & concolic testing.

4

Course Organization

• We want to learn to use these tools properly.

• I will do very much a reverse classroom approach.

• You will be given assignments.

• We solve and discuss them at class.

• You must attend roughly once per week to show your work!

• Grading will be based on coursework. (70p)

• You will present a project in an oral exam. (30p)

2 Hoare Logic

Hoare Triplets

Lφ M S Lψ M

• A Hoare triple is satisfied under partial correctness:

– for each state satisfying φ,

– if execution reaches the end of S,

– the resulting state satisfies ψ.

• (Total correctness: partial + termination)

Simple Language: Expressions

e ::= x variable x ∈ V
| c constant c ∈ Z
| e1 + e2 | . . . arithmetics

b ::= true | false booleans

| b1 ∧ b2 | . . . logical operators

| e1 ≤ e2 | . . . comparisons

5

Simple Language: Statements

S ::= S1 ; S2

| x := e

| if b then S1 else S2

| while b do S

| skip

| {S}

FOL (quantification over variables)

• Our language for reasoning:

φ ::= b boolean expression

| φ1 ∧ φ2 conjunction

| φ1 ∨ φ2 disjunction

| φ1 → φ2 implication

| ∃y : φ existential quantification

| ∀y : φ universal quantification

• We do not actually evaluate φ at runtime.

• Can only evaluate b (no quantifiers).

Composition

Lφ M S1 L η M L η M S2 Lψ M
Lφ M S1 ; S2 Lψ M

Assignment

Lψ[e/x] M x := e Lψ M

• Is this backwards?

• Consider examples for x := 2 and x := x+ 1.

6

Conditional Statements

Lφ ∧ b M S1 Lψ M Lφ ∧ ¬b M S2 Lψ M
Lφ M if b then S1 else S2 Lψ M

While Statements

Lφ ∧ b M S Lφ M
Lφ M while b do S Lφ ∧ ¬b M

Implication

φ′ ⇒ φ Lφ M S Lψ M ψ ⇒ ψ′

Lφ′ M S Lψ′ M

• These end up as verification conditions.

• Automated theorem provers have to dismiss them.

Hello World!

int abs(int i) {

if (0 <= i)

r := i;

else

r := -i;

}

• Prove: always returns a non-negative value.

• (Where exactly would an overflow invalidate this proof?)

Step by step

1. We first have the conditional:

L 0 ≤ i M r := i L 0 ≤ r M L i < 0 M r := −i L 0 ≤ r M
L true M if 0 ≤ i then r := i else r := −i L 0 ≤ r M

2. The true-branch follows from the assignment axiom.

3. The false-branch relies on a simple implication:

i < 0⇒ 0 ≤ −i L 0 ≤ −i M r := −i L 0 ≤ r M
L i < 0 M r := −i L 0 ≤ r M

7

Proof trees

L 0 ≤ i M r := i L 0 ≤ r M
i < 0⇒ 0 ≤ −i L 0 ≤ −i M r := −i L 0 ≤ r M

L i < 0 M r := −i L 0 ≤ r M
L true M if 0 ≤ i then r := i else r := −i L 0 ≤ r M

• The sequential application of inference rules are often represented as proof
trees.

• These trees can grow large. . .

• Instead: annotate the program code!Tree structure is implicit.

Tableaux Proofs

Lφ0 M
S1 ;

Lφ1 M
S2 ;

Lφ2 M
...

Lφn−1 M
Sn

Lφn M

Tableaux: Composition

Lφ M S1 L η M L η M S2 Lψ M
Lφ M S1 ; S2 Lψ M

Lφ M
S1 ;

L η M
S2

Lψ M

8

Tableaux: Conditional

Lφ ∧ b M S1 Lψ M Lφ ∧ ¬b M S2 Lψ M
Lφ M if b then S1 else S2 Lψ M

Lφ M
if b then {

Lφ ∧ b M
S1

} else {
Lφ ∧ ¬b M

S2

}
Lψ M

Tableaux: Implication

φ′ ⇒ φ Lφ M S Lψ M ψ ⇒ ψ′

Lφ′ M S Lψ′ M

Lφ′ M
Lφ M

S

Lψ M
Lψ′ M

The example as tableaux proof

9

L true M
if (0 ≤ i) then {

L true ∧ 0 ≤ i M
r := i

L 0 ≤ r M
} else {

L true ∧ i < 0 M
L 0 ≤ −i M

r := −i
L 0 ≤ r M

}
L 0 ≤ r M

2.1 Weakest Pre-Conditions

Weakest Pre-Conditions

• We have so far only rules for valid Hoare triples.

• Not all triples are equally useful

L false M S Lψ M

• How do we infer these triples?

• We will now move towards a more syntax-driven method to infer weakest
pre-conditions.

Definition

• We say φ is weaker than φ′ if

φ′ ⇒ φ

• For φ = WP JSK ψ, we have

Lφ M S Lψ M is valid

if Lφ′ M S Lψ M then φ′ ⇒ φ

• ψ holds after S iff φ holds before. (when the logic can describe program states

uniquely)

10

Assignment

• Consider sequential composition:

z := x;

z := z + y;

u := z

• It suffices with definitions:

WP Jx := eK ψ = ψ[e/x]

WP JS1 ; S2K ψ = WP JS1K (WP JS2K ψ)

A tableaux proof from WPs

Lx+ y = 42 M
z := x ;

L z + y = 42 M
z := z + y ;

L z = 42 M
u := z

Lu = 42 M

Conditional

• Hoare logic:

Lφ ∧ b M S1 Lψ M Lφ ∧ ¬b M S2 Lψ M
Lφ M if b then S1 else S2 Lψ M

• A more syntax-driven rule:

Lφ1 M S1 Lψ M Lφ2 M S2 Lψ M
Lφ′ M if b then S1 else S2 Lψ M

where φ′ = (b→ φ1) ∧ (¬b→ φ2)

11

Proof Tableaux for Conditional 2.0

L (b→WP JS1K ψ) ∧ (¬b→WP JS2K ψ) M
if b then {

LWP JS1K ψ M
S1

} else {
LWP JS2K ψ M

S2

}
Lψ M

The Example Again

L true M
L (0 ≤ i→ 0 ≤ i) ∧ (i < 0→ 0 ≤ −i) M

if (0 ≤ i) then {
L 0 ≤ i M

r := i

} else {
L 0 ≤ −i M

r := −i
}

L 0 ≤ r M

2.2 Loop Invariants

While Loops

• Recall the proof rule

Lφ ∧ b M S Lφ M
Lφ M while b do S Lφ ∧ ¬b M

• Given a ψ as post-condition. . .

• How can we apply this rule?

• What is the WP of a while loop?

12

Termination?

• Weakest Liberal Preconditions

wp JSKψ ≡ wp JSK true ∧ wlp JSKψ

• We did not care about this distinction

– Termination is an outdated concept. ;)

– Only loops have different definitions.

WLP for while loops

• WP Jwhile b do SK ψ?

• Unrolling the loop:

F0 = while b do skip

Fi = if b then S ; Fi−1 else skip

• WLP for “exiting the loop after at most i iterations in a state satisfying
ψ”:

L0 ≡ ψ ∧ ¬b
Li ≡ (¬b→ ψ) ∧ (b→WP JSK Li−1)

• We then define

WLP Jwhile b do SK ψ = ∃i ∈ N : Li

• Not very practical. . .

Unrolling Example

WLP Jwhile x < 3 do x := x+ 1K (x = 3)

F0 = while x < 3 do skip

F1 = if x < 3 then x := x+ 1 ;

(while x < 3 do skip) else skip

F2 = if x < 3 then x := x+ 1 ;

(if x < 3 then x := x+ 1 ;

(while x < 3 do skip) else skip) else skip

F3 = . . .

13

L0 ≡ x = 3

L1 ≡ ((3 ≤ x)→ (x = 3)∧
((x < 3)→WLP Jx := x+ 1K (x = 3))

≡ (x ≤ 3) ∧ ((x < 3)→ (x = 2))

≡ 2 ≤ x ≤ 3

L2 ≡ (x ≤ 3) ∧ ((x < 3)→WLP Jx := x+ 1K L1)

≡ (x ≤ 3) ∧ ((x < 3)→ (1 ≤ x ≤ 2))

≡ 1 ≤ x ≤ 3

L0 ≡ 3 ≤ x ≤ 3

L1 ≡ 2 ≤ x ≤ 3

L2 ≡ 1 ≤ x ≤ 3

L3 ≡ 0 ≤ x ≤ 3

· · ·
Li ≡ 3− i ≤ x ≤ 3∃i ∈ N : Li ≡ x ≤ 3

Precondition of a While Loop
To push ψ up through while b do S:

1. Guess a potential invariant φ.

2. Make sure φ ∧ ¬b =⇒ ψ.

3. Compute φ′ = WLP JSK φ.

4. Check that φ ∧ b =⇒ φ′.

5. Then, φ is a pre-condition for ψ.

Lφ ∧ b M S Lφ M
Lφ M while b do S Lφ ∧ ¬b M

14

Proof Tableaux for Loops

Lφ M
while b do {

Lφ ∧ b M
LWLP JSK φ M

S

Lφ M
}

Lφ ∧ ¬b M
Lψ M

For the Example with φ ≡ x ≤ 3

Lx ≤ 3 M
while x < 3 do {

L (x ≤ 3) ∧ (x < 3) M
Lx+ 1 ≤ 3 M

x := x+ 1

Lx ≤ 3 M
}

L (x ≤ 3) ∧ (3 ≤ x) M
Lx = 3 M

2.2.1 Exercise: Factorial

Exercise!

int fact(int x) {

y = 1;

z = 0;

while (z != x) {

z = z + 1;

y = y * z;

}

return y;

}

Guessing the invariant

15

• Doing a trace:
iteration x y z B

0 6 1 0 true
1 6 1 1 true
2 6 2 2 true
3 6 6 3 true
4 6 24 4 true
5 6 120 5 true
6 6 720 6 false
i i! i

• Formulate hypothesis: y = z!

Proof obligations
Want to establish ψ ≡ y = x!.

1. Our invariant φ ≡ y = z!

2. Check that φ ∧ ¬(z 6= x) =⇒ ψ.

3. Compute WLP of loop body:

φ′ ≡ y · (z + 1) = (z + 1)!

4. Check if φ ∧ z 6= x =⇒ φ′.

5. Continue WLP computation with φ.

Writing the Tableaux Proof

16

L true M
L 1 = 0! M

y := 1 ;

Lx = 0! M
z := 0 ;

L y = z! M
while z 6= x do {

L (y = z!) ∧ (z 6= x) M
L y · (z + 1) = (z + 1)! M

z := z + 1 ;

L y · z = z! M
y := y · z

L y = z! M
}

L (y = z!) ∧ (z = x) M
Lx = y! M

Another Example
Consider now the following program.

L true M
x := 2 · y ;

z := 0 ;

while z 6= x do {
z := z + 1 ;

x := x− 1

}
L z = y M

How do we infer an invariant for this program? Well, what is invariant here?
Since the loop essentially “takes one from z and gives it to x”, their sum z + x
must remain invariant. Initially, z + x = y + y, so we use z + x = 2 · y as our

17

invariant. We then complete the proof:

L true M
L (2 · y = 2 · y) M

x := 2 · y ;

L (x = 2 · y) M
z := 0 ;

L (z + x = 2 · y) M
while z 6= x do {

L (z + x = 2 · y) ∧ (z 6= x) M
L (z + 1) + (x− 1) = 2 · y M

z := z + 1 ;

L z + (x− 1) = 2 · y M
x := x− 1

L z + x = 2 · y M
}

L (z + x = 2 · y) ∧ (z = x) M
L z = y M

Proof Rule for Total Correctness

Lφ ∧ b ∧ (0 ≤ V = V0) M S Lφ ∧ (0 ≤ V < V0) M
Lφ ∧ (0 ≤ V) M while b do S Lφ ∧ ¬b M

• Requires a variant V .

• Must be bounded 0 ≤ V .

• Body must decrease it: V < old(V).

Simple loop variant: z − x

x := 0 ;

L (x ≤ z) ∧ (0 ≤ z − x) M
while x < z do {

L (x ≤ z) ∧ (x < z) ∧ (0 ≤ z − x = V0) M
L (x+ 1 ≤ z) ∧ (0 ≤ z − (x+ 1) < V0) M

x := x+ 1

L (x ≤ z) ∧ (0 ≤ z − x < V0) M
}

L (x ≤ z) ∧ (z ≤ x) M

18

2.3 Challenge: MinSum

Challenge: Minimal-Sum Section

• Given an integer array a[0], a[1], . . . , a[n− 1].

• A section of a is a continuous slice

a[i . . . j] = a[i], a[i+ 1], . . . , a[j − 1]

where 0 ≤ i < j ≤ n.

• Section sum: Si,j = a[i] + · · ·+ a[j − 1].

• A minimal-sum section is a section a[i . . . j] s.t. for any other a[i′ . . . j′],
we have Si,j ≤ Si′,j′ .

What to do?

• Compute the sum of the minimal-sum sections in linear time.

• Prove that the code is correct!

• For example. . .

– [−1, 3, 15,−6, 4,−5] is −7 for [−6, 4,−5].

– [−2,−1, 3,−3] is −3 for [−2,−1] or [−3].

The Program (in Java)

int minsum(int a[]) {

k = 1;

t = a[0];

s = a[0];

while (k < n) {

t = min(t + a[k], a[k]);

s = min(s,t);

k = k + 1;

}

return s;

}

Post-conditions

• The value s is smaller than the sum of any section.

ψ1 = ∀i, j : 0 ≤ i < j ≤ n→ s ≤ Si,j

• There is a section whose sum is s

ψ2 = ∃i, j : 0 ≤ i < j ≤ n ∧ s = Si,j

19

Trying to prove ψ1

• Suitable Invariant:

ψ1 = ∀i, j : 0 ≤ i < j ≤ n→ s ≤ Si,j

I1(s, k) = ∀i, j : 0 ≤ i < j ≤ k → s ≤ Si,j

• Additional Invariant

I2(t, k) = ∀i : 0 ≤ i < k → t ≤ Si,k

For the second invariant

• The assignment in the loop:

t := min(t+ a[k], a[k]);

k := k + 1;

• Show that the invariant for t is maintained:

I2(t, k) ∧ k < n =⇒
I2(min(t+ a[k], a[k]), k + 1)

What do we have to prove?
We are given this:

∀i : 0 ≤ i < k → t ≤ Si,k

k < n

We have to show this:

∀i : 0 ≤ i ≤ k → min(t+ a[k], a[k]) ≤ Si,k+1

You can split into two cases:

1. i = k is trivial (Sk,k+1 = a[k]).

2. 0 ≤ i < k.

The key step
We have to show this then:

∀i : 0 ≤ i < k → min(t+ a[k], a[k]) ≤ Si,k+1

For any such i, we can compute:

min(t+ a[k], a[k]) ≤ t+ a[k]

≤ Si,k + a[k]

= Si,k+1

(Dafny needs help only with the final equality, see the distributive lemma from
the Dafny tutorial.)

20

The Complete Lemma

• In the end, we have to prove that

I1(s, k) ∧ I2(t, k) ∧ k < n

=⇒
I1(min(s, (min(t+ a[k], a[k])), k + 1) ∧

I2(min(t+ a[k], a[k]), k + 1)

• Then we had the other post-condition (ψ2)

• Do as much of the exercise as we can. . .

• In terms of Dafny code, very little remains! Disclaimer: This may not correlate

with man hours.

3 VC generation

Purpose of this lecture

• Get an idea of how verification condition generation works.

• We consider the simplest possible implementation.

• This is based on early work on ESC/Java.

• We see some important concepts:

– collecting semantics

– constraint systems

– abstraction

Quick: What is the Loop Invariant?

y := 5 ; x := 0 ;

Lφ M
while x 6= 5 do {

Lφ ∧ x 6= 5 M
Lφ [x+ 1/x] M

x := x+ 1

Lφ M
}

Lφ ∧ x = 5 M
Lx = y M

21

Generating VCs

• Non-trivial loop-invariants must be supplied, but everything else auto-
matic.

• Assume program is annotated with

– Pre- & Post-conditions.

– For every while-loop, a supposed loop-invariant.

• How do we check automatically that the implementation satisfies the con-
tract?

Verification Conditions

• Consider the triplets:

Lφ M C Lψ M
Lx = x′ M x := x− y Lx+ y = x′ M

• The verification conditions would be

φ→WP JCK ψ
(x = x′)→ ((x− y) + y = x′)

Asking an SMT Solver

• We then ask an SMT solver if the VC is true.

(x = x′)→ ((x− y) + y = x′)

• We want the VC to hold for all parameters.

• Check if the negated formula is satisfiable!

• Think: searching for a falsifying assignment(failing test case).

3.1 Control Flow Graphs

Translation into Flow Graphs

Control Flow Graph G = (N,E, s, r)

• N are program points, and s, r ∈ N are start/return nodes.

• E = N × C × N are transition, where C is the set of basic statements
(commands).

0 1 2

x :=
5

y :=
x+ 1

22

Basic Edges

C ::= skip skip

| x := e assign

| φ ? assume

| φ ! assert

• Recall that φ may contain quantifiers.

• This translation is for VCG, not execution!

Translating If-Statements

if b then S1 else S2

0

1 2

3

b ? ¬b ?

S1 S2

Translating While-Statements

while b do S

0

1

2

b ?

¬b ?

S

3.2 State and Satisfiability

Semantics

23

• We want to generate VC.

• Why not just show the algorithm?

• After all, I haven’t bothered with semantics so far.

• Why stop now when we’re having so much fun?

• Well, the constructs are now much less intuitive!

• It is time to assign meanings to our programs.

Program State

• A state σ assigns values to variables:

σ : V → Z

• Example:

σ0 = {x 7→ 0, y 7→ 0}
σ1 = {x 7→ 5, y 7→ 0}
σ2 = {x 7→ 5, y 7→ 6}

0 1 2

x :=
5

y :=
x+

1

Giving meaning to expressions

• For a state σ, we may evaluate expressions:

JeKσ ∈ Z

• And assign a truth-value to a formula:

JφKσ ∈ B

• For σ = {x 7→ 5, y 7→ 6},

Jx+ yKσ = 11

Jx ≤ yKσ = true

24

3.3 Collecting Semantics

Collecting Semantics

• For every point p ∈ N , we want to know

• The set of states reaching p: Σp.

• If we assume that Σs = Σ0 = {σ0}.

σ0 v = 0 (∀v ∈ V)

0 1 2

x :=
5

y :=
x+

1

{σ0} {σ1} {σ2}

Starting State

• We need this semantics to validate our WP computation.

• Therefore, the best choice is Σs = V → Z, so that only tautologies hold
at s.

• We include all logical variables from assume statements in V .

Quiz: The Error State

• For any Σ, what are the results of the edges?

false ? false !

∅ {⊥}

• However, ⊥ should pass through other edges (like exceptions / maybe
monad)

JφK⊥ = false ⊥ [x 7→ e] = ⊥

• We amend the assume rule. . .

25

Transfer functions

JskipK Σ = Σ

Jx := eK Σ = {σ [x 7→ JeKσ] | σ ∈ Σ}

Jφ ?K Σ = {σ | σ ∈ Σ, JφKσ = true}
∪ {⊥ | ⊥ ∈ Σ}

Jφ !K Σ = {σ | σ ∈ Σ, JφKσ = true}
∪ {⊥ | σ ∈ Σ, JφKσ = false}

Example

0

1 2

3

4

x < 0 ? 0 ≤ x ?

x := −x x := x+ 1

x 6= 0 !

Equation & Constraint Systems

• Recall G = (N,E, s, r).

• First we set the starting state:

Σs = {σs} (or Σs = V → Z)

And for each point q ∈ N :

Σq =
⋃
{JCK Σp | (p, C, q) ∈ E}

• As a constraint system:

Σs ⊇ {σs}
Σq ⊇ JCK Σp for (p, C, q) ∈ E

26

Constraint System Example

• Let xp = {σ x | σ ∈ Σp} (and ⊥ if σ = ⊥).

• We start with x0 = xs = Z.

x0 ⊇ Z
x1 ⊇ {z | z ∈ x0, z < 0}
x2 ⊇ {z | z ∈ x0, 0 ≤ z}
x3 ⊇ {−z | z ∈ x1}
x3 ⊇ {z + 1 | z ∈ x2}
x4 ⊇ {z | z ∈ x3, z 6= 0}
∪ {⊥ | z ∈ x3, z = 0}

0

1 2

3

4

x < 0 ? 0 ≤ x ?

x := −x x := x + 1

x 6= 0 !

3.4 VC Generation

And Now WP. . .

WP JskipK ψ = ψ

WP Jx := eK ψ = ψ[e/x]

WP Jφ ?K ψ = φ→ ψ

WP Jφ !K ψ = φ ∧ ψ

Quiz: Error State Again

• Recall our false assume/assert edges:

false ? false !

∅ {⊥}

• Now what is the WP for these?

WP Jfalse ?K ψ WP Jfalse !K ψ
true false

27

Equation system for WP

• We now start from the end node r ∈ N .

• Post-conditions are explicitly asserted, so. . .

• We start with ψr = true and for p ∈ N :

ψp =
∧
{WP JcK ψq | (p, c, q) ∈ E}

• Alternatively, as a constraint system:

ψr =⇒ true

ψp =⇒ WP JcK ψq for (p, c, q) ∈ E

Again this example:

0

1 2

3

4

x < 0 ? 0 ≤ x ?

x := −x x := x+ 1

x 6= 0 !

Now recall this example. . .

y := 5 ;

x := 0 ;

while x 6= 5 do

x := x+ 1 ;

x = y !

28

We could compute this. . .

0

1

2

3 4

y :=
5 ; x

:=
0

x 6= 5 ?

x = 5 ?

x := x+ 1

x = y !

WP computation was stuck in this loop

0

1

2

3 4

y :=
5 ; x

:=
0

x 6= 5 ?

x = 5 ?

x := x+ 1

x = y !

Havoc!

• Concrete semantics:

JhavocxK Σ = {σ [x 7→ z] | σ ∈ Σ, z ∈ Z}

• WP for havoc:

WP JhavocxK ψ = ψ[x′/x] x′ is fresh!

• We need ψ to hold for all values of x. Usually, we have assumes after
havoc, so a typical example is

WP JhavocxK ((y = x)→ (x = z)) =⇒ (y = z)

29

A simple assumption

• We should havoc all variables that are assigned to in the loop body.

• For simplicity, we assume this is only x.

• (You may think of x as a vector.)

Normal While Loop

0

1

2

e ?

¬e ?

C

Abstraction using invariant φ

0′

0

1 2′

2

φ ! ; h
avo

cx
; φ

?

e ?

¬e ?

C ; φ !

false ?

Why can we do this?

• The construction guarantees that if

⊥ 6∈ Σ2

we have

Σ′2 ⊆ Σ2

where Σ′i are the sets computed for the original while loop.

• Note: it follows very closely the proof rules of Hoare logic.

30

Now we really can compute a VC

0

1

1′

2

3

3′

4

y :=
5 ; x

:=
0

ha
vo
cx

x 6= 5 ?

x = 5 ?

x := x+ 1

x = y !

false ?

What happened?

• Well, there was no invariant to check.

• That’s good because the invariant was trivial.

• The homework requires making this construction with an invariant.

• There’s just one more thing. . .

Procedure Calls

• Given a function P with parameter p and result r and contract

Lφ M P Lψ M

• We produce the following translation for a call x = P (e).

p := e

φ !

ψ ?

x := r

31

4 Data Flow Analysis

Data Flow Analysis

• We now consider how to check assertions using data flow analysis.

• Before we do that, we must to understand the basics of classical data flow
analysis frameworks.

• We need to reason about soundness.

• Statements about programs are ordered. . .

Partial Orders

Definition
A set D together with a relation v is a partial order if for all a, b, c ∈ D,

a v a reflexivity

a v b ∧ b v a =⇒ a = b anti-symmetry

a v b ∧ b v c =⇒ a v c transitivity

Examples

1. D = 2{a,b,c} with the relation “⊆”

2. Z with the relation “=”

3. Z with the relation “≤”

4. Z⊥ = Z ∪ {⊥} with the ordering:

x v y ⇐⇒ (x = ⊥) ∨ (x = y)

Facts about the program

• Our domain elements represent propositions about the program.

• Let p |= x denote “x holds whenever execution reaches program point p”.

• We order these propositions such that

x v y whenever (p |= x) =⇒ (p |= y)

• Consider examples:

– The set of possibly live variables.

– The set of definitely initialized variables.

32

Combining information

• Assume there are two paths to reach p (true-branch and false-branch).

• If we have x along one path and y along the other, how can we combine
this information?

x t y

• We want something that is true of both paths, and

• as precise as possible.

Least Upper Bounds

• d ∈ D is called an upper bound for X ⊆ D if

x v d for all x ∈ X

• d is called a least upper bound if

1. d is an upper bound and

2. d v y for every upper bound y of X.

Do least upper bounds always exist?

>

a cb

e f g

h i

⊥

Complete Lattice

Definition 1. A complete lattice D is a partial ordering where every subset
X ⊆ D has a least upper bound

⊔
X ∈ D.

Every complete lattice has

• a least element ⊥ =
⊔
∅ ∈ D;

• a greatest element > =
⊔
D ∈ D.

33

Which are complete lattices?

1. D = 2{a,b,c}

2. D = Z with “=”.

3. D = Z with “≤”.

4. D = Z⊥.

5. Z>⊥ = Z ∪ {⊥,>}.

Solving constraint systems

• Recall the concrete semantics:

Sq ⊇ JcKSp for (p, c, q) ∈ E

• In general:
xi w fi(x1, . . . , xn)

• We rewrite multiple constraints:

x w d1 ∧ · · · ∧ x w dk ⇐⇒ x w
⊔
{d1, . . . , dk}

So how to do it?

• In order to solve:
xi w fi(x1, . . . , xn)

• We need fi to be monotonic.

• A mapping f is monotonic if

a v b =⇒ f(a) v f(b)

Monotonicity

• A mapping f is monotonic if

a v b =⇒ f(a) v f(b)

• Which of the following is not monotonic?

inc x = x+ 1 dec x = x− 1

top x = > bot x = ⊥
id x = x inv x = −x

34

Vector function

• We want to solve:
xi w fi(x1, . . . , xn)

• Construct vector function F : Dn → Dn

F (x1, . . . , xn) = (y1, . . . , yn)

where yi = fi(x1, . . . , xn)

• If fi are monotonic, so is F .

Kleene iteration

• Successively iterate from ⊥:

⊥, F (⊥), F 2(⊥), . . .

• Stop if we reach some X = Fn(⊥) with

F (X) = X

• Will this terminate?

• Is this the least solution?

Simple Example

• For D = 2{a,b,c}

x1 w {a} ∪ x3
x2 w x3 ∩ {a, b}
x3 w x1 ∪ {c}

• The Iteration
0 1 2 3 4

x1 ∅ {a} {a, c} {a, c} X
x2 ∅ ∅ ∅ {a} X
x3 ∅ {c} {a, c} {a, c} X

Why Kleene iteration works

1. ⊥, F (⊥), F 2(⊥), . . . is an ascending chain

⊥ v F (⊥) v F 2(⊥) v · · ·

2. If F k(⊥) = F k+1(⊥), it is the least solution.

3. If all ascending chains in D are finite, Kleene iteration terminates.

35

Discussion

• What if D does contain infinite ascending chains?

• In particular, our concrete semantics was defined as the set of states with
σ ∈ V → N.

• How do we know there aren’t better solutions to the constraint system?

x = f(x) x w f(x)

Answer to the first question

Theorem (Knaster-Tarski)
Assume D is a complete lattice. Then every monotonic function f : D→ D has
a least fixpoint d0 ∈ D where

d0 =
l
P P = {d ∈ D | d w f(d)}

1. Show that d0 ∈ P .

2. Show that d0 is a fixpoint.

3. Show that d0 is the least fixpoint.

Answer to the second question

• Could there be better solutions to the constraint system than the least
fixpoint?

• According to the theorem:

d0 =
l
{d ∈ D | d w f(d)}

• Thus, d0 is a lower bound for all solutions to the constraint system d w
f(d).

Chaotic iteration

1. Set all xi to ⊥ and W = {1, . . . , n}.

2. Take some i ∈W out of W . (if W = ∅, exit).

3. Compute n := fi(x1, . . . , xn).

4. If xi w n, goto 2.

5. Set xi := xi t n and reset W := {1, . . . , n}.

6. Goto 2.

36

Data flow versus paths

• We want to verify that “whenever execution reaches program point p, a
certain assertion holds.”

• We need to check every path leading to p.

• Then: Why are we solving data flow constraint systems??

Path Semantics

• We define a path π inductively:

π = ε empty path

π = π′e where e ∈ E

• If π is a path from p to q, we write π : p→ q.

• We define the path semantics:

JεKS = S

Jπ(p, c, q)KS = JcK (JπKS)

Merge Over All Paths

• For a complete lattice D, we solved

xs w ds
xq w JcKxp (p, c, q) ∈ E

• But we are really interested in:

yp =
⊔
{JπK ds | π : s→ p}

Example: Merge Over All Paths

0

1 2

3

4 5

skip skip

x := 4 x := −4

y := x2
y = 16 !

37

When do solutions coincide?

• For our collecting semantics, they do.

• All functions JcK are distributive.

• In reality, we compute an abstract semantics.

xs w ds
xq w JcK] xp (p, c, q) ∈ E

• Transfer functions JcK] : D→ D are monotonic.

Soundness of LFP Solutions

Theorem (Kam, Ullman, 1975)
Let xi satisfy the following constraint system:

xs w ds
xq w JcK] xp (p, c, q) ∈ E

where JcK] are monotonic. Then, for every p ∈ N , we have

xp w
⊔
{JπK] ds | π : s→ p}

Intraprocedural Coincidence

Theorem (Kildall, 1972)
Let xi satisfy the following constraint system:

xs w ds
xq w JcK] xp (p, c, q) ∈ E

where JcK] are distributive. Then, for every p ∈ N , we have

xp =
⊔
{JπK] ds | π : s→ p}

4.1 Assertion Checking

Assertion Checking

• Track values of variables.

• Combine with WP computation.

• Infer invariants for loops.

38

Value Domains

• Characterize the possible values of variables whenever we reach program
point p.

• A non-relational value domain:

D = V → Dz

• We consider two simple value domains:

1. Kildall’s constant propagation domain.

2. The Interval Domain.

Non-relational Domains

• For a complete lattice D and finite set V ,

• the set of functions D→ V with the point-wise ordering

f1 v f2 ⇐⇒ ∀v ∈ V : f1(v) v f2(v)

is also a complete lattice.

• For example: D = V → 2Z.

Abstract Evaluation

• Just like for concrete state σ ∈ V → Z:

JzKσ = z

JxKσ = σ x

Je1 + e2Kσ = Je1Kσ + Je2Kσ

• Now, we need abstract operators such that for d ∈ D = V → Dz, we
evaluate:

JzK]d = z]

JxK]d = d x

Je1 + e2K]d = Je1K]d+] Je2K]d

What the domain must supply

1. Lattice operations.

2. Lifting of constants:
∀z ∈ Z : z] ∈ Dz

3. Abstract operations:

∀z1, z2 ∈ Dz : z1 +] z2 ∈ Dz

(not just for +; also unary, comparisons, logical, etc.)

39

Kildall’s Domain

1. Lattice is the flat lattice.

2. Constants are already elements of Dz:

z] = z

3. Operators are essentially lifted:

a+] b =

⊥ if a = ⊥ or b = ⊥
> if a = > or b = >
a+ b otherwise

(More precise, e.g., for multiplication?)

Interval Domain

1. Lattice is Z× Z with 〈l1, u1〉 v 〈l2, u2〉 if

〈l2 ≤ l1〉 ∧ 〈u1 ≤ u2〉

2. Constants are singleton intervals:

z] = 〈z, z〉

3. Operators are generally defined as:

〈l1, u1〉 ∗] 〈l2, u2〉 = 〈l, u〉 where

l = min {a ∗ b | a ∈ {l1, u1}, b ∈ {l2, u2}}
u = max{a ∗ b | a ∈ {l1, u1}, b ∈ {l2, u2}}

The Analysis

• We define abstract transfer functions.

• The simple ones:

JskipK] d = d

Jx := eK] d = d [x 7→ JeK]d]

• Much like the concrete semantics:

JskipKS = S

Jx := eKS = {σ [x 7→ JeKσ] | σ ∈ S}

40

The Bottom Value

• The bottom element is the mapping

d v = ⊥ (∀v ∈ V)

• As soon as ∃v with d v = ⊥, we would set all variables to ⊥.

• This bottom value denotes non-reachability.

• All transfer functions let ⊥ pass through (strict).

• Conceptually, we do not need ⊥ in the value domain at all:

(V → Z>)⊥ instead of V → Z>⊥

Boolean values

• Booleans are also handled by the value domain. (e.g., when analysing C,
there is no other option.)

• We simply need representatives for true and false:

true] ∈ Dz false] ∈ Dz

• and abstract versions of the boolean operators.

Assume edges

• The concrete semantics:

Je ?KS = {σ | σ ∈ Sp, JeKσ = true}
∪ {⊥ | ⊥ ∈ Sp}

• We will handle errors separately.

• Abstract value sets:

Je ?K] d =

{
⊥ if JeK]d v false]

d u dt otherwise

• This dt depends on the domain, but must satisfy:

dt w
⊔

minimal elems {d | true] v JeK]d}

41

Example 1: Dead Code

0

1

2 3

4

5

x := 5

x = 5 ? x 6= 5 ?

y := 9 y := 6

y = 9 !

Example 2: Restricting Values

0

1 2

3

4

x = 5 ? x 6= 5 ?

x := x+ 1 x := 6

x = 6 !

Correctness

• We have a monotonic concretization function γ.

• For the value domains γ : Dz → 2Z.

γ z =

∅ if a = ⊥
Z if a = >
{z} otherwise

42

• For the variable assignments:

γ d =

{
∅ if ∃v : d v = ⊥
{ρ | ∀v : ρ v ∈ γ (d v)} otherwise

Correctness condition

• All our transfer functions need to satisfy:

JcK (γ d) v γ (JcK] d)

• Then, then the least solutions also satisfy:

Sp ⊆ γ xp

• Because if we have f(γ x) v γ(f] x) and d = f] d, then

f(γ d) v γ(f] d) = γ d

Assert edges

• Their effect on values is like assume:

Je !KS = {σ | σ ∈ Sp, JeKσ 6= 0}
∪ {⊥ | σ ∈ Sp, JeKσ = 0}

• So how to check assertions? (next slide)

• Let xp be the value analysis:

x0 w d0
xq w JcK] xp for (p, c, q) ∈ E

Assertion Checking

• We can just check for each assertion edge (p, e !, q)

1] v JeK]xp

If the above does not hold, the the assertion definitely fails.

• If we want to be sound:
JeK]xp v 1]

If this holds, the assertion is verified.

43

Example 3: Distributivity

0

1 2

3

4 5

skip skip

x := 4 x := −4

y := x2
y = 16 !

Can we do better?

• We combine with WP computation.

• Recall the constraint system:

φp ⇒WP JcK φq for (p, c, q) ∈ E

• What is the ordering of the domain?

• How do we combine?

• We can set up such a system for each assertion. . .

Discussion

• It is safe if we can only approximate implication.

• What is important for soundness?

• Our domain can be sets of conjucts.

• At program point p, we can safely dismiss a conjunct φ if

JφK]xp v 1]

• If the solution for the system has φ0 ≡ true, we are happy.

Conclusion

• This works for the simple example.

• WP computation would not terminate for a loop.

• Also, what is the concretization of this combined analysis?

44

What about loops?

0

1

2

3 4

x :=
0

x < 5 ?

x ≥ 5 ?

x := x+ 1

x = 5 !

For the Kildall domain:

0

1

2

3 4

>

0

>
> Fail!

x :=
0

x < 5 ?

x ≥ 5 ?

x := x+ 1

x = 5 !

For the interval domain

0

1

2

3 4

>

[0, 4]

[0, 5]

[5, 5] Success?

x :=
0

x < 5 ?

x ≥ 5 ?

x = x+ 1

x = 5 !

45

Not really. . .

• This was not really static analysis.

• Termination not guaranteed.

• All ascending chains must stabilize.

• Enforce this by a widening operator O.

• Then, Kleene iteration will reach a (not necessarily least) fixpoint.

Widening
O : D× D→ D is a widening operator if

1. ∀x, y ∈ D : (x v xOy) ∧ (y v xOy)

2. for every chain x0 v x1 v x2 v · · · ,

y0 = x0

y1 = y0Ox1
y2 = y1Ox2
· · ·

is not strictly increasing.

Iteration with widening

• Our non-terminating iteration:

x0 = ⊥
xi+1 = f(xi)

• Iteration with widening:

y0 = ⊥

yi+1 =

{
yi if f(yi) v yi
yiOf(yi) otherwise

Widening for Intervals

• [l1, u1]O[l2, u2] = [l, u] where

l =

{
l1 if l1 ≤ l2
−∞ otherwise

u =

{
u1 if u2 ≤ u1
∞ otherwise

46

• This is not commutative

– First argument: previous iteration.

– Second argument: new value!

• Idea: give up if bounds are increasing.

Example with widening

0

1

2

3 4

>

[0,∞]

[0,∞]

[5,∞] Fail!

x :=
0

x < 5 ?

x ≥ 5 ?

x = x+ 1

x = 5 !

Why did we fail?

• We are above the least solution.

• In particular, conditional constraints are over-approximated:

x2 w Jx < 5 ?K] x1
[0,∞] w Jx < 5 ?K] [0,∞]

[0,∞] w [0, 4]

• Idea: why not just iterate a few times more?

Refining the solution

• Let x denote a solution to our constraint system:

x w f(x)

• If f is monotonic, then further iterations are all safe!

x w f(x) w f2(x) w · · ·

• We can stop after 5 minutes if we don’t hit a fixpoint.

47

Post-fixpoint iteration

0

1

2

3 4

>

[0, 4]

[0, 5]

[5, 5] Success!

x :=
0

x < 5 ?

x ≥ 5 ?

x = x+ 1

x = 5 !

Success finally?

• Well, we were lucky and hit a fix-point.

• Termination for post-fixpoint iteration can be guaranteed.

• We require a narrowing operator 4.

Narrowing
4 : D× D→ D is a narrowing operator if

1. ∀x, y ∈ D : (y v x) =⇒ (y v x4y v x)

2. for every chain x0 w x1 w x2 w · · · ,

y0 = x0

y1 = y04x1
y2 = y14x2
· · ·

is not strictly decreasing.

Narrowing iteration

• Let x0 be a solution, i.e.,

x0 w f(x0)

• Post-fixpoint iteration with narrowing

y0 = x0

yi+1 = yi4f(yi)

48

Narrowing for Intervals

• [l1, u1]O[l2, u2] = [l, u] where

l =

{
l2 if l1 = −∞
l1 otherwise

u =

{
u2 if u1 =∞
u1 otherwise

• Idea: Only restore lost bounds.

Replay with Widening/Narrowing

0

1

2

3 4

>

[0, 4]

[0, 5]

[5, 5] Success!

x :=
0

x < 5 ?

x ≥ 5 ?

x = x+ 1

x = 5 !

Conclusion

• This example does not require narrowings to enforce termination.

• Can you think of a simple modification to this example where narrowing
would be essential?

49

	Introduction
	Deductive Methods
	Model-Checking
	Abstraction
	This Course

	Hoare Logic
	Weakest Pre-Conditions
	Loop Invariants
	Exercise: Factorial

	Challenge: MinSum

	VC generation
	Control Flow Graphs
	State and Satisfiability
	Collecting Semantics
	VC Generation

	Data Flow Analysis
	Assertion Checking

