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Abstract. We present an enhancement of the generic fixpoint algorithm
TD which can deal with widening and narrowing even for non-monotonic
systems of equations. In constrast to corresponding enhancements pro-
posed for other standard fixpoint algorithms, no extra priorities on vari-
ables are required. Still, a mechanism can be devised so that occurrences
of the widening/narrowing operator are inserted as well as removed
dynamically.

1 Introduction

Many analysis problems can be formalized as (post)-solutions to systems of
equations x“ fx, x P V , where V is a set of unknowns each denoting and fx is a
function specifying how x depends on the values of other unknowns in V . In the
simplest setting of context-insensitive analysis of sequential imperative programs,
the set of unknowns is given by the set of program points, for which the equation
system provides a specification of valid invariants. In the more elaborate case
of context-sensitive analysis, though, the unknowns are no longer plain program
points but also incorporate information about the calling contexts of the respective
functions.

A solver of systems of equations is an algorithm which determines such post-
solutions. It is local if it is started with a query to the value of some unknown and
then tries to explore the system only as much as is necessary to determine the
answer to the query. Local solving has attracted attention in particular for inter-
procedural analysis of recursive programs [3, 9, 15,21,23,24] where the potential
number of abstract calling contexts can be extremely high, if not infinite, while
the number of those contexts which are really required for describing all occurring
contexts for each function may be quite small. Local solvers are also the method
of choice to realize incremental program analysis, e.g., when updating the analysis
result after an incremental modification of the source program in question [14,22].
Particularly useful, from a software engineering perspective, are generic local
solvers [12,13,16,19,21] which make only minimal assumptions about the domain



of values to compute with, e.g., that it has an ordering relation Ď as well as an
upper bound operation \, while right-hand sides of equations are taken as black
boxes. This means that the right-hand side fx of a variable x is not considered
as some kind of syntactical expression which can be inspected beforehand and
must be interpreted by the solver. Instead, the right-hand side is considered as
a function implemented in some programming language which can be called for
another function σ representing the current information about the unknowns and
returns a contribution to the left-hand side x of the equation. Interestingly, quite
competitive generic solvers have been proposed. Among these, the top-down solver
TD [19] or the solver from Goblint [16]. Since they are completely ignorant of
the concrete analysis problem in question, they conveniently allow the analysis
designer to separate the algorithmic concerns of solving from the design of a
suitable domain of abstract values (corresponding to potential invariants) and
the realization of the abstract semantics by means of equations. Accordingly, they
are at the heart of modern analysis frameworks such as the Ciao system [15] or
Goblint [4, 24].

One key problem for solving systems of equations is that many interesting
analysis problems require lattices with infinite strictly ascending chains. This
is already the case for interval analysis [7] which tries to determine for each
numerical program variable and program point a suitably small interval superset
of all runtime values, but also the case for more elaborate numerical properties
such as octagons [20] or polyhedra [11]. One general technique to deal with such
problems is the widening and narrowing approach as proposed by Cousot and
Cousot [7]. The idea is to accelerate the Kleene-type fixpoint iteration for the
system of equations by rapidly increasing the values of the unknowns through
a widening operator. In this way, a guarantee of termination is traded against
a severe loss in precision—some of which may later be recovered by means of a
subsequent narrowing iteration. Technically, a widening produces a larger value
than the ordinary least upper bound operator. Thus it may reach a post-solution
more quickly (and hopefully in finitely many steps), whereas narrowing when
applied to a post-solution (perhaps produced by over-enthusiastic widening) may
return a better post-solution.

While local solvers such as the top-down solverTD or the solver from Goblint
can easily be extended to work with widening, it has been observed in [5], that
they do not go well with narrowing. There are two reasons for this behavior. First,
during the narrowing phase, further unknowns may be encountered which may
not yet been considered so far. More severely, however, is that the application
of context-sensitive analysis may result in non-monotonic systems of equations,
while narrowing in the original sense can only be applied when all right-hand sides
are monotonic. As a remedy, therefore, Apinis et al. introduce a new operator
m which combines a widening operator ∇ with a narrowing operator ∆ into
one [5]. By means of this operator, variants of several standard solvers are derived
and sufficient conditions are provided for which these algorithms are guaranteed
to terminate. In particular, variants of the generic local solvers underlying the
Goblint system are presented. The key idea for enforcing termination is to



maintain an ordering on the names of the unknowns which is respected during
fixpoint iteration.

In this paper, we present a variant of the solver TD which also supports
widening and narrowing. It turns out that TD iterates according to an ordering
on unknowns as provided by the iteration strategy. This means that it suffices to
insert the operator m into the base algorithm for combining old values with newly
computed values and additionally always trigger reevaluation of an unknown,
whenever its value has changed. Already for this minimalistic enhancement,
termination can be guaranteed—at least for equation systems where all right-
hand sides are monotonic, and only finitely many unknowns are encountered.
Beyond that, we enhance the algorithm so that the operator m is not applied for
each equation when its right-hand side is evaluated, but only for a small subset
of these. This subset is dynamically established by means of the set of unknowns
under evaluation by the solver, which is explicitly maintained by TD anyway.

2 Equation System

Assume that D is a set of values. Usually, we assume that D is a complete lattice,
but weaker assumptions would do as well. The minimal requirements are that
D is equipped with a partial ordering Ď, that there is a designated least element
K with KĎ d for all d PD, and that there is a binary upper bound operation \,
i.e., aĎ a\ b and bĎ a\ b. Let V denote a set of variables or unknowns. Then a
system C of equations over the values D with variables from V is a collection of
equations:

x“ fx , x P V

where the right-hand side fx of an unknown x specifies how the value of x depends
on the values of all other unknowns in the system. Thus, fx can be understood as
a function fx : pV ÑDq ÑD, which for every assignment σ : V ÑD of values to
unknowns, returns a value in D for the left-hand side x. A mapping σ : V ÑD is
a post-solution to S if the values of σ for the left-hand sides are upper bounds to
the values returned by their respective right-hand sides for σ, i.e., if σ x Ě fx σ
for all x P V .

Example 1. As a running example, consider the following equation system with
two equations

x“ pxă 232 ? y : 232q

y “ x` 1

where the set D of values is given by D “ NY t8u, equipped with the natural
ordering and extended with 8. The right-hand side of x returns the value of y,
if x is less than 232, otherwise it returns 232. The right-hand side of y, however,
always returns the value of x` 1. Then the mappings tx ÞÑ 232, y ÞÑ 232` 1u and
tx ÞÑ 8, y ÞÑ 8u are post-solutions for the given equation system. �

In static program analysis, equation systems are used for specifying data flow
[18] or the abstract semantics of a programs [3, 11]. The value domains in such



cases typically are (complete) lattices where the right-hand side functions are
monotonic.

In the practical application within a program analyzer, the function fx is not
given as a mathematical object, but as a piece of code realizing the mathematical
function. This code can be implemented in any language. We only make the
assumption that the realized function is terminating and pure in the sense of [17].
This means that operationally, every evaluation of fx σ consists of a finite sequence
of steps which eventually returns a value, where each step consists of a look-up of
the value of an unknown, followed by some computation solely depending on the
sequence of values read so far.

For some analysis problems, the set of potential unknowns and thus the
resulting systems of equations may be very large, or even infinite. In order to deal
with such a situation, the system of equations is more conveniently assumed to be
represented implicitly by means of a single function f P V Ñ pV ÑDq ÑD so that
f x returns the right-hand side fx for each unknown x. Using this representation,
the mapping σ P V ÑD is a post-solution if σxĚ f x σ for all x P V .

A solver for a class of equation systems is an algorithm that for each system
C of equations in that class, upon termination, returns a post-solution. Various
solvers have been proposed for equation systems where the set of unknowns is finite
and the partial ordering D is Noetherian, i.e., has no infinite strictly increasing
chains. One example of such a solver is Round Robin iteration with accumulation.
For other solvers, such as the worklist iterator, further information about the right-
hand side functions is required—namely the set of unknowns whose values are
queried during their evaluations. In some cases, though, the system of equations
is queried for the values of a few interesting unknowns only. Consider, e.g., inter-
procedural analysis in the style of [9], e.g., for C. In this application, the unknowns
are pairs of program points and abstract calling contexts in which these points
are analyzed. The equation system then is queried for the value of the end point
of the call to the main function for the initial abstract calling context. From the
remaining unknowns only those must be inspected which directly or indirectly
contribute to the result of the initial query. A local solver is an algorithm meant
to deal with such queries. When started with the initial query to an unknown x,
it returns a partial solution σ. The mapping σ is a partial solution if it provides
values for a subset V 1 Ď V of unknowns such that the following holds:

– x P V 1;
– For every unknown y P V 1, fy when evaluated on σ, only queries the values of

unknowns in V 1;
– σxĚ fxσ for all x P V 1.

Note that the equation system in Example 1, when started with a query of x,
has a partial solution of only σ “ tx ÞÑ 232u. This is because the short-circuit
evaluation of the ternary operator :? does not require to inspect the value of y to
determine the value of the right-hand side of x for σ.

In this paper we are concerned with the Top-Down local solver TD from
Le Charlier and Van Hentenryck [19] as depicted in Figure 1. The solver TD
operates on a partial assignment σ of unknowns to values which initially is empty.



void solve(var x) {
D eval(var y) {
solve(y);
infl y Ð infl y Y {x};
return σ y;

}
if (x P stableY called) return;
else {
called Ð calledY {x};
stable Ð stableY {x};
tmp Ð σ x \ fx (eval);
called Ð called z {x};
if (tmp = σ x) return;
else {
σ x Ð tmp;
destabilize(x);
solve(x);

}
}

}

void destabilize(var x) {
W Ð infl x;
infl x Ð H ;
forall (y P W) {

if (y P stable) {
stable Ð stable z {y};
destabilize(y);

}
}

}

Fig. 1. The original solver TD.

Each unknown for which σ does not provide a value, implicitly is assumed to be
mapped to the least value K. The solver TD consists of two functions: solve, and
destabilize. The main function of TD is the function solve—which when called
with an unknown x, is meant to compute a partial solution σ that provides a value
for x. Furthermore, TD maintains a subset called of unknowns which consists of
all unknowns for which the evaluation of the right-hand side has been started but
is not yet completed. It also maintains a set stable receiving the unknown x as
soon as solving for x has started, where x is only removed when some unknown
onto which x recursively depends has changed its value. Initially, both called and
stable are empty. A call to solve for the unknown x first checks if x is contained
in stable or called. If this is the case, solve immediately returns. Otherwise, x is
inserted into stable and called to indicate that solving of x has now started. Then



the right-hand side fx for the unknown x is evaluated for the local function eval
(instead of σ directly).

When within a call solve x, the argument function eval is queried for the value
of an unknown y, it ultimately returns the value of y. Before that, however, the
solver tries to compute the best possible value for y by calling the function solve for
y. Furthermore, eval y keeps track of detected influences between unknowns. All
currently known dependences are maintained by TD in a mapping infl which,
initially, is empty. The function eval records the fact that the variable y was
required for computing the value for x, by adding the unknown x in the mapping
infl to the value for y. Only then is the value of y (as stored in σ) returned.

In the next step, the function solve joins the old value of σ for x with the
new value returned by f x eval. Since now the evaluation of the right-hand side is
finished, x is removed from the set called, and the joined new value is compared
to the old value for x as provided by σ. If these two values are equal, no increase
of x has occurred and solve returns. Otherwise, the value of x in σ is updated
to the new value. Since the value of x has changed, all unknowns which directly
or indirectly may be influenced by x, can no longer be considered as stable and
therefore are marked for potential reevaluation. This is the task of the function
destabilize.

The function destabilize when called for an unknown x, iterates through all
unknowns in the set infl x. Each of the unknowns y which are found to be in stable
are removed from stable and then recursively destabilized. Moreover, the value of
infl for x is updated to the empty set. In particular this means that before every
call of solve, all infl sets of unstable unknowns, i.e., unknown not stable, are empty.
Once destabilization has terminated, function solve re-evaluates x by calling itself
tail-recursively.

Assume that initially, σ is the empty map, all sets stable, called and infl x for
all x P V are empty. Then we consider the following invariant I:

1. Whenever y R stableY called, then infl y “H;
2. Whenever y P stablezcalled, then σ y Ě fy σ, and for every unknown z whose

value is queried during the evaluation of fy w.r.t. the current σ, z P stableY
called and y P infl z.

Then we have the following properties:

Lemma 1. 1. The invariant I holds in the beginning and is re-established by
each call to solve or eval. Likewise, the set called is preserved and only increased
intermediately.

2. After each call of eval y inside a call of solve x, x P infl y, y P stableY called
and the current value of σ y is returned.

3. After each call of solve x, the variable x is in the set stable. Moreover, if σ x has
been updated, then x does not recursively influence any unknown in stableX
called. �

By Lemma 1, the program TD when started with a call solve x, returns a partial
post-solution σ for some set V 1 of unknowns which contains x — whenever it



terminates. That set V 1 then is given by all unknowns x which are accessed when
recursively re-evaluating the right-hand side of x starting from σ. Technically, this
re-evaluation can be triggered by re-setting the set stable to the empty set and
again calling solve x.

Lemma 1 also implies that the call solve x is guaranteed to terminate whenever
the domain is Noetherian and only finitely many distinct unknowns are encoun-
tered during the evaluation.

We remark that one important step in proving Lemma 1 is to prove that
conceptually, the evaluation of fx σ of the right-hand side of x in a call to solve x
for the present mapping σ can be considered as if it happened atomically after
evaluation of the unknowns whose values are queried during the evaluation of fx.
For that, it suffices to convince ourselves that every direct query to an unknown
y R called, during this evaluation, will add y and all unknowns by which it is
influenced and that are not in called, into the stable set— ensuring that a second
query of y or any unknowns by which y is influenced will return exactly the same
result. Note that the unknowns in called are not changed during the evaluation of
fx σ.

Solving the equation system of Example 1 with TD produces the following
sequence of updates:

y x y x ¨ ¨ ¨ x

x 0 0 1 1 2 ¨ ¨ ¨ 232

y 0 1 1 2 2 ¨ ¨ ¨ 232` 1

We notice that the solving process, although it theoretically terminates after 233

updates, is not efficient. Such inefficiency is typical for equation systems where
the value domain contains long increasing chains.

3 Widening and Narrowing

Solving systems of equations usually is based on some form of Kleene iteration,
meaning that it consists of a sequence of evaluations of right-hand sides, followed
by updates of the unknowns on the corresponding left-hand sides—until all
equations in question are satisfied. In case when the partial ordering D of values is
not Noetherian, termination of the iteration, though, can no longer be guaranteed.
For such cases, Cousot and Cousot [7] propose to first accelerate the iteration by
introducing another upper bound operator ∇ : DÑ DÑ D (the widening) to
accumulate intermediate values. Conceptually, the idea can be seen as replacing
the accumulating version:

x“ x\ fx

of each equation with the equation:

x“ x∇ fx

where ∇ is an upper bound operator which guarantees that every (post) solution
of the new system is also a post-solution of the original system. Beyond that,



the widening operator must ensure that values only be increased finitely often.
Accordingly, if the set of unknowns which is encountered is finite, TD equipped
with ∇ (instead of \) will be guaranteed to terminate.

Solving the equation system in Example 1 with TD where widening is defined
as

x∇ y “

#

8 if y ą x
x otherwise

produces the following sequence of updates:

y x

x 0 0 8

y 0 8 8

Accordingly, the solving process terminates already after two updates, the result-
ing values for x and y, though, seem unnecessarily large.

In general, many heuristics have been proposed for various domains widening
operators which guarantee termination, while at the same time retain enough
precision to return useful results. Still, in many cases the results obtained by
widening alone, are unsatisfactory. Therefore, Cousot and Cousot propose to
perform a second iteration on the system of equation which subsequently may
improve a given post-solution [8,10]. The second iteration starts at a post-solution
of the system. Given that all right-hand sides represent monotonic functions, the
second iteration will result in a decreasing sequence of assignments to unknowns—
each of which now forms a post-solution. In order to enforce termination of this
second iteration, a narrowing operator ∆ PDÑDÑD is introduced. Again, the
first argument of this operator is meant to be the former value of an unknown,
while the second argument corresponds to the value newly provided by evaluating
the corresponding right-hand side. Then the following property should hold:

bĎ a ñ b Ď a∆ b Ď a

As before, the narrowing operator should enforce that all possibly resulting
decreasing chains are finite.

For our running example, we use the following narrowing operator:

x∆ y “

#

y if x“8
x otherwise

Starting with the post-solution tx ÞÑ 8, y ÞÑ 8u, downward iteration produces
the following sequence of updates:

x y

x 8 232 232

y 8 8 232`1



Thus, the solving process terminates already after two updates.
In general, narrowing operators can only be applied if the evaluation of a right-

hand side returns less or equal value than currently provided by the left-hand
side. If right-hand sides are not monotonic, this is not necessarily the case. Non-
monotonic right-hand sides, however, inevitably occur in the systems of equations
for inter-procedural analysis in the style of Cousot in [9].

Example 2. Consider the equation for a call to a procedure g at an edge in the
control-flow graph of the calling procedure f from program point u to program
point v. For simplicity, assume that all procedures operate on a global state (full
treatment of this kind of constraint system together with a discussion of variations,
e.g., for partial contexts is discussed in [3]). For every abstract calling context α
of f , we then obtain the equation:

xv, αy “ xg, xu, αyy

where xu, αy, xv, αy are unknowns representing the abstract values attained at
program point u, v when analyzing f for context α, and xg, βy is the abstract
state attained at the exit of the procedure g when called in the abstract context β.
Note that in this equation, the context β for which xg, βy provides the value for
the left-hand side xv, αy, equals the current abstract value for xu, αy. This means
that in a first evaluation of xu, αy could return a value β1, while a later evaluation
might return another value β2, and there is no reason why the values of the two
distinct unknowns xg, β1y and xg, β2y should always be related.

Likewise, as elaborated by Apinis et al. in [5], local solving and the two-phase
approach to widening/narrowing does not go well together. As a remedy, Apinis
et al. propose to combine the two operators into one update operator m : DÑ
DÑD:

am b“

#

a∆ b if bĎ a

a∇ b otherwise

Let us call this new operator a warrowing. Plugging the warrowing operator into
a local solver results in a fixpoint iteration which not necessarily performs a single
widening iteration followed by a single narrowing iteration. Instead, widening and
narrowing is applied in an intertwined manner—with the additional benefit of
increasing precision.

We recall from Apinis et al. [5] that every variable assignment σ such that

σ x“ σ x m fx σ px P V q

is also a post-solution of the original system. In general, though, when plugging
the combined operator into an arbitrary solver, termination can no longer be
guaranteed—even if the original system of equations has monotonic right-hand
sides only.

The following sequence of updates that may be exhibited by some solver (not
TD) for the equation system in Example 1, when the warrowing operator m is
applied for every right-hand side.



y y x x y y . . . y

x 0 0 0 8 1 1 1 . . . 232

y 0 8 1 1 1 8 2 . . . 232` 1

Although the iteration terminates, the solving process turns out to be even less
efficient than if no widening/narrowing were used. In general, even termination of
the iteration can no longer be guaranteed. Therefore, Apinis et al. [4, 5] provide
a modifications to several standard solvers so that termination guarantees are
retained. The key idea for these modifications is to introduce some kind of ordering
on the unknowns which is obeyed during fixpoint iteration. In the following, we
show that the enhancement of the top-down solver TD by means of the warrowing
operator m is possible — without resorting to such artificial change in the iteration
ordering.

4 Enhancing TD

Intuitively, adding an extra ordering on the unknowns for TD can be omitted
as top-down iteration already imposes an ordering by which unknowns are
re-evaluated: no unknown, once called, will be reevaluated before each of the
unknowns onto which it depends are stabilized. Surprisingly, this already suffices
to ensure termination for equation systems with monotonic right-hand sides,
given that the least upper bound operator in TD is replaced with the warrowing
operator m.

Consider again the equation system in Example 1. When x is solved with the
enhanced TD, we obtain:

y y x y x

x 0 0 0 8 8 232

y 0 8 1 1 8 8

Now, the solving process terminates after a few steps. Note that TD does not
update the value for y as the value of y is not required for verifying the answer to
the initial query of x.

Practical evidence shows, however, that performing widening (and narrowing)
for every program point throws away too much information [6]. Therefore, the
set of unknowns in whose right-hand sides m is applied, should be chosen to be
as small as possible. Fig. 2 shows the proposed modified top-down solver where
the additions are highlighted. The first point to note is that accumulation with \
is now replaced with accumulation by means of the warrowing operator m. Also,
once m is involved for computing the next value for an unknown x, the unknown
x is also added to the set infl x in order to trigger reevaluation of x once x changes
its value. The second point to note is that, by default, the new values provided
by the respective right-hand sides are directly used to update the value of the
unknown on the right-hand side. The warrowing operator m is used to combine
old values of unknowns with the new values only for dedicated unknowns, namely,
those from the set wpoint.



void solve(V x) {
D eval(V y) {

if (y P called) wpoint Ð wpointY {y};
solve(y);
infl[y] Ð infl[y]Y {x};
return σ[y];

}
if (x P stableY called) return;
called Ð calledY {x};
stable Ð stableY {x};
if (x P wpoint) {
wpoint Ð wpoint z {x};
tmp Ð σ[x] m f (x) (eval);
infl[x] Ð infl[x]Y {x};

}
else tmp Ð f (x) (eval);
called Ð called z {x};
if (tmp = σ[x]) return;
else {
σ[x] Ð tmp;
destabilize(x);
solve(x);

}
}

void destabilize(V x) {
W Ð infl[x];
infl[x] Ð H ;
forall (y P W) {

if (y P stable) {
stable Ð stable z {y};
destabilize(y);

}
}

}

Fig. 2. The enhanced solver TDm.

The insight is that in order to enforce termination, widening (and likewise also
narrowing) need not be applied everywhere in the system but only for at least one
unknown within each cyclic influences of unknowns [6]. For systems of equations
originating from control-flow graphs of programs (without recursive procedures),
a reasonable choice is to use loop heads as widening points only. In our setting,
though, the solver is unaware of the application where the system of equations
originates from. Moreover, preprocessing of influences between unknowns is not
possible—also due to potential changes of influences between unknowns during



the iteration of the solver. This means that a dynamic method must be provided
which detects a sufficiently large set of widening points.

In our modification of TD, detection of widening points happens inside of the
local function eval. Assume that eval is called for unknown y inside a call of solve
for an unknown x. Then the variable y is added to wpoint whenever y is found to
be already in called. As TD is a demand-driven local solver, we have, therefore,
dynamically detected a cycle in the dependency graph for the unknowns of the
equation system.

As a second improvement, the variable y is removed again from wpoint as soon
as the iteration on y has stabilized. Such dynamic shrinking of the set wpoint
not only accounts for dynamic changes of influences between unknowns, but also
may significantly increase precision. Consider, e.g., the unknowns corresponding
to a loop in a control-flow graph. Assume that the loop head has been removed
from stable, but is no longer contained in wpoint. Then the prior iteration on the
loop must have stabilized. Thus, the destabilization of x must have been triggered
from outside the loop—implying that applying m in the right-hand side of x is
not necessary [1, 2].

Theorem 1. Consider TDm for a system C of equations with set V of unknowns.
Assume that initially, both stable and called are empty, and solve x has been called
for some unknown x P V . Then the following holds:

1. Upon termination, a partial solution for C is obtained for some subset V 1 Ď V
with x P V 1.

2. The call is guaranteed terminate if only finitely many unknowns are encoun-
tered and one of the following assumptions are met:
(a) a∆ b“ a, i.e., narrowing is effectively switched off, or
(b) all right-hand sides are monotonic.

Clearly, Theorem 1 is unsatisfactory, as it does not provide a termination
guarantee for the case where right-hand sides are not monotonic. With contrived
non-monotonic systems, virtually every solver using m as is, can be forced into
non-termination. In that sense, the second assertion for monotonic right-hand
sides cannot easily be improved. It gives an indication, though, that practically
termination can be hoped for. At the price of giving up some opportunities for
further narrowing steps, we can always enforce termination. We could, e.g., modify
the warrowing operator m so that the number of switches from widening to
narrowing is bounded at each occurrence of m in the equation system.

For the proof of Theorem 1, we remark that the properties stated in Lemma 1
for solver TD also hold true for the program TDm. From that, the statement 1
of Theorem 1 immediately follows. Therefore here we concentrate on the proof of
termination.

5 Proof of termination

We perform an induction on the number n of unknowns queried during the
evaluation of the unknown x and which are either equal to x or not contained



in the set called. For n“ 0, the evaluation immediately terminates. Now assume
that n ą 0. To establish a contradiction, assume that the call solve x does not
terminate. Since by inductive hypothesis, each recursive call to eval terminates,
the tail-recursive call to solve x is executed infinitely often. This means that the
value of x must be updated infinitely often, and thus its right-hand side also be
re-evaluated infinitely often.

We claim that then during each evaluation of the right-hand side of x, x is
added to the set wpoint—implying that each new value is obtained by application
of the operator m. Assume for a contradiction that this were not the case. Let Vi
denote the set of unknowns which are not in called which are queried during the
ith evaluation of the right-hand side of x. If before the pi` 1qth evaluation, x is
not contained in wpoint, then for none of the unknowns y P Si, the evaluation of
their right-hand sides may have queried the value of x. After the ith evaluation
of the right-hand side of x, each unknown y P Si is stable and none of them is
contained in the set inflpxq. Therefore, none of them is removed from the set stable
when the value of x in σ is updated. Therefore, the next as well as any subsequent
evaluation of the right-hand side will query always the same set of unknowns, i.e.,
Sj “ Si for all j ě i, and all the unknowns in there will be stable. But then the
pi` 2qth value returned for x will equal the pi` 1qth value for x—in contradiction
to our assumption.

Let d1 ‰ d2 ‰ . . . be the sequence of values for x after the ith update. In
particular, between any two updates, x must have been destabilized (otherwise,
solve x would have terminated immediately), implying that x recursively has been
found to influence itself. To establish this influence, x will have been inserted into
the set wpoint, the latest during the first evaluation of its right-hand side and will
stay there until its value has stabilized. Therefore, for each i ě 1 it holds that
di`1 “ di m bi for suitable values bi.

First assume that narrowing returns its first argument, i.e., is effectively
switched off. Then di`1 “ di ∇ bi (for all i ě 1). Since the operator ∇ is a
widening, the sequence di must eventually be stable—contradicting the assertion
that di ‰ di`1 for all i.

Therefore, now consider the second sufficient condition for termination as
stated in the theorem, namely, that all right-hand sides are monotonic. Let m
denote the maximal index such that for all i ă m, di`1 “ di ∇ bi. Since ∇ is a
widening, such an m exists. For that m, we claim:

Claim. For all j ěm, dj Ą dj`1.

Given that the claim holds, dj`1 “ dj ∆ bj for all j ě m. Now since ∆ is a
narrowing operation, the sequence dj , j ě m must become ultimately stable—
again contradicting the assertion that di ‰ di`1 for all i.

It remains to prove the claim. In order to do so, we introduce a few extra
notions. For a set V and a lattice pD,Ďq, let g be a function pV ÑDq ÑD. Given
a mapping σ P V Ñ D, the function g depends on the set V 1 Ď V of unknowns
(relative to σ) if for all σ1 P V ÑD such that V 1 is the smallest subset such that
σ|V 1 “ σ1|V 1 implies that g σ “ g σ1. We say that g references unknowns from



Rpg, σq Ď V w.r.t. the mapping σ if the evaluation of the strategy tree [17] for g
for the mapping σ queries exactly the unknowns Rpg, σq. It can be shown that
referencing is an over-approximation of dependency, i.e., all mappings σ1 such that
σ|Rpg,σq “ σ

1|Rpg,σq implies g σ “ g σ1. We have:

Lemma 2. If g is monotonic then for all σ, σ1 : V ÑD,

@x PRpg, σq. σ1 xĎ σ x

then
g σ1 Ď g σ .

Proof. Assume for a contradiction that there are mappings σ, σ1 such that @x P
Rpg, σq. σ1 xĎ σ x, but g σ1 Ę g σ. We construct

σ2 x“

#

σ x if x PRpg, σq
σ1 x otherwise.

We have
@x P V. σ1 xĎ σ2 x

and therefore, by monotonicity of g,

g σ1 Ď g σ2 .

Because reference is an over-approximation of dependence we also have that g σ2 “
g σ. Thus, we conclude that g σ1 Ď g σ holds—in contradiction to our assumption.�

Now we are ready to prove our claim:

Lemma 3. During a call to solve(x), for some unknown x, once the sequence of
values uj provided by evaluating the right-hand side for the unknown x starts to
descend, it will stabilize or keep descending, i.e., dj Ě dj`1 for all j ěm.

Proof. Evaluation of the right-hand side of the unknown x, when solving x
generates a sequence pz1, σ1q, . . . , pzr, σrq, where the first components zi are the
unknowns that are re-evaluated and the second components σi are the respective
mappings at the time when the evaluation of the right-hand side of zi has been
completed, and the ordering is the ordering in which the new values for the
unknowns are determined. In particular, the last unknown in this sequence zr
equals x. Let us call this the trace of the evaluation of x.

Assume that the evaluation of the right-hand side of the unknown x returned
a smaller value u than the value currently stored in σ. At that point in time, all
referenced unknowns Rpf zi, σq that are not in the set called are stable. Assume
that σ x ∆ u Ă σ x. After evaluation of x has been completed, destabilize is
called for x, as we assume that the value for x continuously changes. The function
destabilize will remove all unknowns from stable that might need to be updated,
as they are (transitively) influenced by x. Subsequently, solve is again called for
the unknown x.



As before, evaluation of the right-hand side of x will generate a trace pq1, σ11q,
. . . , pqn, σ

1
nq. Recall that the last unknown to be updated again will be x. Now we

show that those unknowns qi that have already occurred in the sequence z1, . . . , zr
will receive a smaller value or stay the same. For the proof, we perform induction
over the prefixes of the trace pq1, σ11q, . . . , pqn, σ1nq.

Base Trivial.
Step Assume that the values of q1, . . . , qi´1 that occurred already in the

sequence z1, . . . , zr stayed the same or decreased—according to the induction
hypothesis. As for the update to qi, we only need to consider the case that qi
has already occurred, i.e., that qi “ zj for some index j.
As TD solves all unknowns occurring in the right-hand side of qi beforehand,
except when they are in called or in stable, only unknowns which did not occur
among the z1, . . . , zr may receive a larger or incomparable value. This means
that the last evaluation of zj did not depend on these unknowns. By Lemma 2,
however, the value returned for the right-hand side of qi “ zj then will be
smaller or stay the same. This concludes the proof of the claim and hence of
Theorem 1. �

6 Conclusion

We have presented a moderate improvement of the generic local solver TD
which enables the solver to use widening and narrowing in a convenient way.
Upon termination, the resulting algorithm always returns a partial solution from
which a partial post-solution can be extracted. Moreover, termination can be
guaranteed whenever only finitely many unknowns are encountered and either no
narrowing is used or right-hand sides are all monotonic. During fixpoint iteration,
it dynamically not only detects dependences between unknowns but also those
unknowns which require widening/narrowing. Compared to the solvers presented
in [2, 4, 5], the solver TDm is simpler as no explicit priorities of unknowns need to
be maintained. The latter solvers, however, can be enhanced to deal with side-
effects inside systems of equations. Side-effects allow to generate contributions to
unknowns different from the left-hand side. This mechanism is convenient, e.g.,
for combining flow-insensitive analysis with inter-procedural analysis [3]. It is still
open whether the solver TDm can be enhanced to deal with such systems as well.
Also, in the application of TD inside the Ciao system, extra measures are taken
to limit the number of unknowns to be considered [14]. It would be interesting to
see how the plain version considered here works together with such extra methods.
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