
Region Analysis for Race Detection

Helmut Seidl and Vesal Vojdani

Lehrstuhl für Informatik II, Technische Universität München
Boltzmannstraße 3, D-85748 Garching b. München, Germany

{seidl,vojdanig}@in.tum.de

Abstract. Automatic race detection of C programs requires fast, yet
sufficiently precise, analysis of dynamic memory. Therefore, we present
a region-based pointer analysis which seeks to identify disjoint regions
of dynamically allocated objects to ensure that write accesses to the
same region are always protected by the same mutexes. Our approach
has been implemented within the interprocedural analyzer of concurrent
C programs GobLint and we have successfully applied it on code from
the Linux kernel, such as the access vector cache. This code relies on a
synchronized hash table where an array of doubly linked lists is protected
by an array of locks.

1 Introduction

locks slots t

Fig. 1. Memory regions

Writing multi-threaded code which both is cor-
rect and manipulates complicated data-structures
can be cumbersome. Programmers of low-level
software therefore mostly adhere to simple and
conservative programming styles. Accordingly, dy-
namic shared data-structures are avoided when-
ever possible, and when dynamic allocation of
memory is inevitable, one common idiom is to rely
on non-overlapping data-structures and protect
each of these memory regions by a dedicated lock.
This occurs naturally when resources are main-
tained in hash-table-like data-structures, i.e., arrays of linked lists where each
list is protected by its own lock as illustrated in Figure 1.

There are different levels of granularity at which locking schemes for shared
data-structures operate: at one extreme, an individual mutex is maintained for
each data element separately, known as per-element locking [20]; at the other
extreme, coarse-grained locking schemes use a single mutex to protect all data
nodes allocated at a given point in the program. In between, there are subtler
cases of medium-grained locking where certain dynamically allocated elements
protect a bunch of other elements (not quite per-element), or elements allocated
at a given point are not all protected by the same mutex (not quite coarse-
grained). Here, we are concerned with the latter case. In many applications, we
found that the dynamic data-structures protected by one mutex are disjoint from

typedef struct node { int data; struct node *next; } node;
node *even_list, *odd_list;

void insert(int data) {
node *t = new(data);
if (even(data)) { t→next = even_list; even_list = t; }
else { t→next = odd_list; odd_list = t; } }

void even_worker() { void odd_worker() {
node *t1 = even_list; node *t2 = odd_list;
while (t1 != NULL) { while (t2 != NULL) {

lock(even_mutex); lock(odd_mutex);
access(t1→data); access(t2→data);
t1 = t1→next; t2 = t2→next;
unlock(even_mutex); } } unlock(odd_mutex); } }

Fig. 2. Elements placed into linked lists

the data-structures protected by other mutexes. The number of protected disjoint
data-structures, however, can be large. This is the case, e.g., for synchronized
hash-tables where each bucket is protected by an individual mutex.

Consider the two-bucket hash-table in Figure 2 where elements allocated by
the insert function end up in two distinct lists. The correctness of the locking
scheme in this program hinges on the fact that the expressions t1→data and
t2→data can never evaluate to the same address, i.e., they can never alias.
We can be sure of this because the two lists are disjoint and thus closed under
pointer reachability.

We call an analysis a region analysis if it infers a safe partitioning of the heap
into disjoint regions. For region analysis, one could use sophisticated analyses
to infer shapes of data-structures. Another approach would be to summarize
dynamically allocated objects as blobs of memory associated with finitely many
abstract locations such as allocation sites. While the first approach has difficulties
scaling to larger programs, the second approach fails when elements allocated at
the same program point end up in distinct data-structures protected by distinct
mutexes, as in the above example.

We present a region analysis which is reasonably fast, yet sufficiently precise
to deal with programs that manipulate disjoint heap regions. It identifies the
set of static globals within the region accessed by local pointers. It also deals
with arrays of regions by allowing regions to be indexed with symbolic index
expressions. For the example above, the analysis would maintain that the two
lists are disjoint, t1 is pointing into the region of even_list, and t2 is pointing
into the region of odd_list.

Our region analysis can be extended to a race detection method by adding two
components. First, a must alias analysis which provides information on which
global address are definitely pointed to by a pointer variable, e.g., provided
by [17]. Second, a symbolic lock set analysis which determines for every program

2

point a representation, which may involve symbolic address expressions, of the
set of definitely held locks when reaching this program point.

2 Region Inference

For the purpose of this paper, we spell out our approach for a minimalistic
programming model which is just rich enough to exhibit the key ideas of our
analysis of multi-threaded programs using dynamic data-structures and arrays.
At first, we restrict ourselves to programs which consist of only a single procedure
represented by a finite control-flow graph where each edge is labeled with a basic
operation s; in Section 3, we will extend to an interprocedural setting. We only
track the values of local variables pointing into the global memory. The global
memory is shared between different processes and consists of blocks, which either
may be statically allocated at program start or dynamically allocated during
program execution through some operator new τ (for some type τ). For the
moment, we rule out pointers into the stack as well as pointer arithmetic and
assume that pointers always point to the beginning of blocks. In Section 5, we
will add global arrays, and in Section 6, we indicate how the basic approach
can be extended to work also in presence of (well-behaved) pointer-arithmetic
as required for the analysis of, e.g., the Linux kernel API for doubly linked lists.

We assume that the frontend provides us with a normalized representation of
assignments. For the beginning, we consider the following forms of expressions
and assignments:

adr ::= y local pointer variable
| &a static global address

pexp ::= y→ b dereferencing of pointers
val ::= adr | null pointer value

| new(τ) memory allocation
pass ::= pexp = val ; memory write

| y= val ; | y= pexp; variable assignment

Let L and G denote the set of local pointer variables and the set of addresses
of static global memory cells, respectively. Region analysis aims at inferring po-
tential reachability between elements from G ∪ L. Our analyzer therefore main-
tains for every program point an equivalence relation π on globals. Two ele-
ments x1, x2 ∈ G are put into the same equivalence class when some memory
cell is jointly reachable from both x1 and x2 through iterated field selection
and dereferencing. Additionally, we maintain for every program point a function
ρ : L → 2G∪{•} mapping each local y to a set of globals identifying the region
into which y may possibly point. The bullet • identifies the region of all thread-
local dynamically allocated memory cells. When a thread allocates an object
and initializes its fields, the object is seen as residing within this thread-local
region until it is reachable from, or can itself reach, one of the global regions.

Equivalence relations have also been used for may-alias analysis [12]. There,
two expressions are considered equivalent if they may denote the same address.

3

May-alias equivalence classes do not collapse when one is reachable from the
other. On the other hand, while non-reachability implies non-equality, we cannot
extract definite non-reachability information from non-equality. Thus, ensuring
that pointers which traverse complicated structures may not alias is extremely
difficult without the explicit notion of disjointness: one must precisely express
the aliasing relationship, or all information about non-reachability is lost.

Here, an equivalence relation π is represented by the set of two-element sub-
sets {x, y} with (x, y) ∈ π — implying that the trivial equivalence relation is
represented by the empty set. Let P and R denote the set of all equivalence rela-
tions on G and the set of all maps from L to 2G∪{•}, respectively. Both sets form
complete lattices for the orderings induced by the subset orderings on the set of
two-element subsets of G and G∪{•}, respectively. In particular, for equivalence
relations π1, π2 ∈ P, the greatest lower bound π1uπ2 is given by the intersection
of the sets of unordered pairs corresponding to π1 and π2, respectively; whereas
the least upper bound π1 t π2 is the least equivalence relation containing all
pairs from π1 and π2.

Using a suitable data-structure for partitions, the operations “u”, “t” in P
can be executed in polynomial time. Consider a pair T = 〈π, ρ〉 describing the
current program state. We assume that all sets ρ(y) are closed under π. We call
a set X closed under the equivalence relation π, if x ∈ X and {x, x′} ∈ π implies
that also x′ ∈ X. For an arbitrary pair 〈π, ρ〉, let clπX denote the least set X ′

with X ⊆ X ′ which is closed under π.
We now specify how a pair T = 〈π, ρ〉 describing the program state before

an assignment s is transformed into a pair 〈π′, ρ′〉 describing the program state

after the assignment, i.e., we define the abstract meaning JsK] of the statement
s. First, consider statements where local pointers are set:

Jy = &aK] T = 〈π, ρ⊕ {y 7→ clπ{&a}}〉

Jy = y′K] T = Jy = y′ → bK] T = 〈π, ρ⊕ {y 7→ ρ(y′)}〉

Jy = nullK] T = 〈π, ρ⊕ {y 7→ ∅}〉

Jy = new(τ)K] T = 〈π, ρ⊕ {y 7→ {•}}〉

where ρ ⊕ {yi 7→ Xi | i ∈ I} is the function obtained from ρ by updating the
image of yi to Xi for all i ∈ I. Now, consider a write to memory through local
pointers. In case either null or a pointer to a fresh memory block is written, the
abstract state does not change:

Jy→ b = nullK] T = Jy→ b = new(τ)K] T = T

Finally, consider a write to memory of the form y→ b = y′. If neither ρ(y) nor
ρ(y′) contain •, then we join the equivalence classes of y and y′:

Jy→ b = y′K] T = 〈π′, {y 7→ clπ′(ρ(y)) | y ∈ L}〉 where

π′ = π t {{x, x′} | x 6= x′, x, x′ ∈ ρ(y) ∪ ρ(y′)}

4

If the bullet is involved, but ρ(y), ρ(y′) ⊆ {•}, then simply Jy→ b = y′K] T = T ;
however, when • ∈ ρ(y)∪ ρ(y′) 6⊆ {•}, we additionally consider all pointers that
may point into the thread-local region denoted by •. Let Y = {y,y′} ∪ {y′′ ∈
L | • ∈ ρ(y′′)} and X =

⋃
{ρ(y′′) | y′′ ∈ Y }\{•}. We join all globals from X

into one equivalence class to which all variables from Y may now point:

Jy→ b = y′K] T = 〈π′, ρ′〉 where

π′ = π t {{x, x′} | x 6= x′, x, x′ ∈ X}
ρ′ = {y 7→ clπ′(ρ(y)) | y 6∈ Y } ∪ {y′′ 7→ clπ′X | y′′ ∈ Y }

For proving the soundness of the analysis, we rely on a small-step operational
semantics of heap-manipulating programs. Since we have currently ruled out
procedures, the concrete program state when reaching a program point u consists
of a pair σ = 〈µ, λ〉 where λ maps the local pointers to the start addresses of
blocks and µ describes the current global memory. We represent the memory
µ by a map which assigns a value to every address-field pair (l, b). Type-safety
requires that l is the address of a block in the global memory of struct type τ
which has a field b. For convenience, we assume that every field of pointer type
which has not yet been initialized, holds the value null.

In µ, the address l1 is reachable from the address l2 iff l2 can be obtained
from l1 by repeated field selection and dereferencing. A region in µ is a set R of
addresses in µ such that every l1 ∈ R satisfies the condition: l2 ∈ R whenever
µ(l1, b) = l2 for some field name b of the struct at address l1. This definition
implies that the set of regions of µ form a partition of the addresses in µ. In
particular, no address in the region R is reachable from any address outside the
region R.

Assume that the concrete program state σ = 〈µ, λ〉 induces a partition Π =
{R1, . . . , Rm} of the addresses in µ. Then σ is in the concretization of the abstract
state T = 〈π, ρ〉, i.e., σ ∈ γ(T), iff the following holds:

1. If {x, x′} 6∈ π for global static addresses x 6= x′, then x and x′ are not in the
same region of µ.

2. If x 6∈ ρ(y), then x and λ(y) are not in the same region of µ.

3. If ρ(y) ∩ ρ(y′) = ∅, then λ(y) and λ(y′) are not in the same region of µ.

4. If ρ(y) = ∅, then λ(y) equals null.

This implies that if ρ(y) = {•}, then all memory cells reachable from λ(y) are
definitely not reachable from globals and thus not accessible from other threads.
Accordingly, write accesses through y need not be protected. If on the other
hand, ρ(y) contains a global static address, the address of y must be considered
as published, i.e., possibly accessible for other threads. The set of static global
addresses occurring in ρ (and π) can be considered as the set of possible owners
of a region for which locks should be provided. The following theorem states
that our definitions of the abstract transformers for basic program statements
are sound.

5

Theorem 1 (Soundness of Transfer Functions). Let s denote a program
statement and T denote an abstract state. If σ ∈ γ(T) and σ′ denotes the concrete

program state obtained from σ by the execution of s, then σ′ ∈ γ(JsK]T). ut

3 Interprocedural Analysis

In this section we present an interprocedural formulation of the region analysis.
We model communication between procedures by assuming that every function
has the same set L of local variables and that all locals of the caller are passed
by value to the callee; however, in our simplified setting, we only pass locals into
procedures but do not return them back. Thus, the effect of a procedure call
is limited to possible collapses within the partition of globals and the possible
joining of thread-local data structures with some global regions. In order to deal
with the latter, we extend the points-into map ρ for local pointer variables with
an extra variable � representing the thread-local data structures before the call.
The abstract transformer enter] initializes the abstract state at procedure entry
based on the abstract state before the call:

enter](〈π, ρ〉) = 〈π, ρ⊕ {� 7→ {•}}〉

While analyzing a procedure q, updates through pointers into thread-local mem-
ory may result in globals being added to the region tracked by � (just as for any
other variable with • in its points-into set). At procedure exit, the local variables
of the called procedure q are removed, while the points-into information accumu-
lated by � are added to every local y of the caller which before the call may have
pointed into the thread-local region. Assume that T1 = 〈π1, ρ1〉, T2 = 〈π2, ρ2〉
are the abstract states before the call and at procedure exit, respectively. Then
this combination is achieved by the function combine]:

combine](T1, T2) = 〈π2, ρ〉 where
ρ = {z 7→ clπ2

(ρ1(z)) | z ∈ L ∪ {�}, • 6∈ ρ1(z)} ∪
{z 7→ clπ2

(ρ1(z) ∪ ρ2(�)) | z ∈ L ∪ {�}, • ∈ ρ1(z)}

The abstract functions enter] and combine] allow us to apply general frameworks
for interprocedural analysis [26]. Here, we follow the approach advocated, e.g., by
Cousot [5], which relies on partially tabulating the abstract value tables of called
procedures. A multi-threaded variant of this approach [25] has been implemented
by the analyzer Goblint [28]. The analyzer solves a constraint system for the
abstract values returned by the summary function for f when called on abstract
values a. Given a complete lattice L of abstract values, abstract transformers
JsK] for basic statements, and abstract transformers enter] and combine] for
parameter passing and function return, the constraint system is set up as follows:

〈v, a〉 w a for a function entry point v

〈v, a〉 w JsK] (〈u, a〉) for edge (u, v) with statement s

〈v, a〉 w combine](〈u, a〉, 〈retf , enter](〈u, a〉)〉) for edge (u, v) calling f()

6

where a ∈ L, f denotes functions with return point retf , and u, v are program
points. For a program point v of a function g, the variable 〈v, a〉 of the constraint
system represents the abstract value attained at v in a call to g where evaluation
of the body of g starts with the abstract value a. The soundness of the least
solution of this constraint system instantiated to our region analysis follows
from Theorem 1 and [5,14]:

Theorem 2 (Soundness of Region Analysis). Assume that ϕ〈v, a〉, for pro-
gram point v of a procedure f and abstract state a, is the least solution of the
constraint system over the complete lattice L. Let ϕ〈v, ae〉 = 〈π, ρ〉, and assume
that the pair σe = 〈µe, λe〉 of a heap µe and assignment λe of locals is in the
concretization of ae, i.e., σe ∈ γ(ae). Moreover, assume that Re is the set of
thread-local memory cells at procedure entry, i.e., the set of addresses which can
only be reached from the locals in σe.

Then every same-level execution starting in σe at the entry point of f and
reaching program point v in state σ = 〈µ, λ〉 satisfies the following properties:

– σ ∈ γ(〈π, ρ〉);
– For every global x, if x is reachable from an address in Re (w.r.t. µ), or an

address in Re is reachable from x (w.r.t. µ), then &x ∈ ρ(�). ut

The given constraint system may be huge depending on the complete lattice of
the analysis. Local fixpoint iteration is a general technique to partially explore
large (or possibly infinite) systems of constraints [7]. Starting from a subset Y
of interesting unknowns, local fixpoint iteration explores only those other un-
knowns which may contribute to the values of unknowns from Y . This tech-
nique is well-suited if the interesting values can be computed by consulting
only a small (though possibly unknown) fraction of the constraint variables.
This is the case in our application. Here, fixpoint iteration starts with the set
Y = {〈retmain, enter

] a〉} if main is the start function of the thread currently un-
der consideration, and the abstract value a describes the program state before
program execution [7]. Local fixpoint iteration then will trigger the evaluation of
all pairs 〈v, enter]a′〉 where v is the program point of a procedure which (during
fixpoint iteration) is called for the abstract program state a′. In our experiments
with the analyzer Goblint, we found that the number of different calls of the
same procedure is mostly quite small.

4 Relating Locks and Regions

In order to relate accessed regions of the global memory with acquired locks,
we can rely on any analysis providing must-alias information for static global
addresses. For clarity of presentation, we just consider the simplest instance of
such an analysis, which tracks conjunctions of equalities of the form y =̇ x where
y ∈ L is a local pointer variable and x ∈ L∪G is either a local pointer variable or
a global static address. Such a domain has been suggested in [17] where efficient
algorithms for the basic operations have been presented.

7

Let E denote the lattice of equalities. Technically, each element φ ∈ E either is
equivalent to false or is equivalent to a satisfiable finite conjunction of equalities.
We write φ |= (x =̇ x′) if the equality x =̇ x′ is logically implied by φ. The
ordering on E is given by logical implication, i.e., φ v φ′ iff either φ = false or
both φ and φ′ are different from false, and φ |= (x =̇ x′) for every equality x =̇ x′

in φ′. Thus, the greatest lower bound of φ1, φ2 is given by their conjunction
φ1 ∧ φ2, whereas the least upper bound of two satisfiable conjunctions φ1, φ2 is
equivalent to the conjunction of all equalities x =̇ x′ which are both implied by φ1
and φ2. Here, we consider the abstract functions for procedure calls. According to
our assumption, all locals are passed as actual parameters to called procedures.
The locals of the caller, on the other hand, are not affected by the changes to
locals of the callee. This means that the abstract functions enter]E , combine]E for
procedure calls are defined by:

enter]E φ = φ combine]E(φ1,) = φ1

As a third component, our analysis requires information about the set of locks
which are definitely held when reaching a program point. For the moment, every
lock is identified by static addresses or addresses pointed at by local pointers. For
every reachable program point u (in every analyzed invocation of a procedure),
our analysis therefore identifies a finite subset S of descriptions of locks which
are definitely held when reaching u (in the given invocation). Let S denote the
set of finite subsets of global static addresses of locks. Since we are interested
in definite information, finite sets of lock address expressions are ordered by the
superset relation.

While region and must-alias analysis are independent, the analysis of sets of
definitely held locks may profit from the results of both. The must-alias analysis
is applied to identify all address expressions which denote the acquired lock,
the may-alias information which we infer from the region information, helps
to narrow down the set of locks which may no longer be held after releasing
a lock. More precisely, assume that T = 〈π, ρ〉 is an abstract description of
memory regions. We infer non-equality information as follows. If {x, x′} 6∈ π
for two pointer expressions x, x′, then x 6= x′ for every program state 〈µ, λ〉 in
the concretization of π. Likewise, if x 6∈ ρ(y), then also λ(y) 6= x. Finally, if
ρ(y)∩ρ(y′) = ∅ while ρ(y)∪ρ(y′) 6= ∅, then also λ(y) 6= λ(y′). We denote these
facts by T |= (x 6= x′), T |= (y 6= x) and T |= (y 6= y′), respectively.

Assume that the current program state T = 〈π, ρ, φ, S〉 consists of the parti-
tion of globals π, the points-into information ρ, the conjunction of must-equalities
φ, and the lock set S. Then the sets of definitely held locks after operations lock
and unlock for locks inside static structs are defined by:

Jlock(&(z → b)K]ST = S ∪ {&(x→ b) | x ∈ G,φ |= z =̇ x}
Junlock(&(z → b))K]ST = S \ {&(x→ b) | ¬(π |= z 6= x)}

for z ∈ L ∪ G, respectively. When entering or leaving a procedure, the set of
definitely held locks does not change. Therefore, we have:

enter]L S = S combine]L(, S2) = S2

8

struct list { int key; int data; struct list *next; };
struct list *slots[512];
spinlock_t locks[512];

struct list *insert(int key, int data) {
struct list *t; int hv = hash(key);
spin_lock(&locks[hv]);
t = slots[hv];
if (t == NULL) {

slots[hv] = new_list(key, data); goto fd; }
while(1) {

if (t→key == key) {
t→data = data; goto fd; }

if (t→next == NULL) {
t→next = new_list(key, data); goto fd; }

t = t→next; }
fd: spin_unlock(&locks[hv]);

return t; }

Fig. 3. Simplified insert-function.

5 Extension with Arrays

So far, our analysis is able to deal with dynamic data structures and a fixed
finite set of mutexes. In the next step, we extend this base approach to global
data structures which may contain arrays and thus also arrays of mutexes.

Example 1. Figure 3 shows a simplified version of the insert-function from the
access vector cache of Security Enhanced Linux.1 At every program point, at
most one lock is held which is taken from a possibly large set of locks contained
in the array locks. For a sound data-race analysis of the function insert, it
does not suffice to verify that some lock from this array is held when the hash
map is modified. Instead, it also must check the (statically unknown) index of
the lock coincides with the index of the list in slots. ut

We now extend our core language by additionally allowing arrays within global
shared data structures. Here, we consider non-nested arrays only. The address
of a memory cell from a static global data structure with arrays is identified
by &a[i] where i is an index. Accordingly, we consider address expressions of
the form &a[e] where e is a side-effect free index expression depending on int-
variables only. Furthermore, we extend our notion of abstract heap partitions
π and points-into maps ρ. Besides sets of two-element sets, we now also allow

1 The most notable simplification is the use of singly linked lists instead of the doubly
linked lists from the Linux kernel; however, since our technique is based on a conser-
vative partitioning of the heap into disjoint regions, dealing with doubly linked lists
and even structured use of pointer arithmetic posed no significant further challenge.

9

singleton sets {&a} in partitions. Such a singleton indicates that different entries
of the array &a may belong to the same memory region. We thus consider the
set P of abstract heap partitions π with the following properties:

1. If {x, y}, {y, z} ∈ π for x 6= z, then {x, z} ∈ π.
2. If {&a, x} ∈ π, then also {&a} ∈ π.
3. If {&a} ∈ π, then &a[e] does not occur in π.
4. For the same array &a, π may have at most one address expression e with

&a[e] occurring in π.

We could have allowed multiple index expressions ei referring to the same array
&a as long as all ei definitely evaluate to distinct values. In our experiments,
the restriction to a single expression, however, has always been sufficient. The
partial ordering on P is given by π1 v π2 iff the following holds:

1. If {&a[e], x} ∈ π1 then {&a[e], x} ∈ π2 or {&a}, {&a, x} ∈ π2.
2. If {x, y} ∈ π1 where neither x nor y contains an index expression, then also
{x, y} ∈ π2.

Thus, e.g., for π1 = ∅, π2 = {{p,&a[i]}}, π3 = {{&a}, {p,&a}}, π1 v π2 v π3.
Accordingly, we now consider points-into maps ρ where a set X occurring as

the image of a local (or �) satisfies the following additional restrictions:

1. If &a[e],&a[e′] ∈ X, then e ≡ e′;
2. If &a ∈ X then for every e, &a[e] 6∈ X

where the ordering on two such sets is the natural extension of ∅ v {x} for all
x, and {&a[e]} v {&a}.

Also, we extend the closure operation clπ such that clπX for a set X of
global static address expressions or •, now additionally replaces an indexed ex-
pression &a[e] with &a whenever {&a} ∈ π. Likewise, we extend the domain of
must equalities and finite lock sets to address expressions containing indexing.
The occurring index expressions may depend on int-variables; however, we here
ignore definite equalities between int-variables. Thus, we consider two index
expressions e1, e2 as definitely equal only if they are syntactically equal. Techni-
cally, this allows us to use a similar domain for must equalities and lock sets as
in section 4 — only that we now additionally consider indexed static addresses
&a[e] instead of static addresses &a alone.

This simplistic setting is still able to deal with increments or decrements of
int-variables. Accordingly, our analysis will track assignments to int-variables i
of the form i= i + c for c ∈ Z whereas all other assignments to i are approxi-
mated by the non-deterministic assignment i= ? which is meant to assign to i
an unknown value. The effect of the assignment i= i+ c on a triple T = 〈π, φ, S〉
consists in substituting i in all index expressions occurring in T with i− c. The
effect of the assignment i= ? on the other hand, assigns an unknown value to i
and thus must remove all occurrences of xi from T . For a partition π, delete(π, i)
replaces all expressions &a[e] where i occurs in e with &a (if there are any) and
adds the set {&a} (given that there are any). For a points-into map ρ, delete(π, i)

10

replaces in every image ρ(z) elements &a[e] where i occurs in e with &a. For com-
ponent φ, delete(φ, i) removes all equalities involving i. Likewise for S, delete(S, i)
removes all lock expressions &a[e].b where i occurs in e.

Ji= i + cK]T = T [i− c/i]
Ji= ?K]T = 〈delete(π, i), delete(ρ, i), delete(φ, i), delete(S, i)〉

The effects of assignments involving local pointers and global memory, are de-
fined componentwise on the first three components, while the set of definitely
held locks remains unchanged. We omit the details but instead apply the tech-
nique to a typical example.

Example 2. Assume we start the execution of the insert-function from Figure 3
with the abstract value T0 = 〈∅, {� 7→ {•}, t 7→ ∅}, true, ∅〉. After having called
spin_lock() and reaching the while-loop, we have:

T1 = 〈∅, ρ1, φ1, S1〉 where
ρ1 = {� 7→ {•}, t 7→ {&slots[hv]}}
φ1 = t =̇ &slots[hv]
S1 = {&locks[hv]}

although the precise value of hv is unknown. Inside the loop the must-equality
t =̇ &slots[hv] is lost, while the region information as well as the lock set are
preserved. Unlocking resets the set of held locks to ∅. ut

Our analysis can be enhanced by jointly performing constant propagation or,
more generally, any analysis of int variables which provides us with more precise
information about how index expressions are related. Such information could be
provided, e.g., by Karr’s analysis of affine equalities [13,16].

While the complete lattice for the combined analysis of regions, must equali-
ties and abstract lock sets in presence of arrays is no longer finite, it still satisfies
the ascending chain condition. In order to apply the interprocedural framework
from Section 3, we generalize the functions enter] and combine] for abstract pa-
rameter passing and procedure return from the last sections. Additionally, we
now must track the values of local int variables. We could do so by additionally
maintaining, e.g., affine must equalities between these. Here, we prefer a simpler
analysis which just tracks the set of local int variables which may have changed
their values since procedure entry. Assume that before the call, we have the
abstract state T = 〈π, ρ, I, φ, S〉 where π, ρ, φ, and S are as before and I now
denotes a set of int variables whose value possibly has changed since procedure
entry. When entering a newly called procedure, we initialize this set to ∅. We
define:

enter]〈π, ρ, I, φ, S〉 = 〈π, ρ1, ∅, φ, S〉 where
ρ1 = ρ⊕ {� 7→ {•}}

Likewise, at procedure exit, the local variables of the called procedure q must be
removed. Also all equivalences {x,&a[e]} in the returned must be collapsed to

11

{x,&a} for index expressions e depending on int-variables which have changed
their values. This is achieved by:

combine](〈π1, ρ1, I1, φ1, S1〉, 〈π2, ρ2, I2, , S2〉) = 〈π, ρ, I1, φ1, S〉 where
π = delete(π2, I2)
ρ = {z 7→ clπ(ρ1(z)) | z ∈ L ∪ {�}, • 6∈ ρ1(z)} ∪
{z 7→ clπ(ρ1(z) ∪ ρ2(�)) | z ∈ L ∪ {�}, • ∈ ρ1(z)}

S = delete(S2, I2)

Here, the calls to delete() for a set I of int variables abbreviate repeated appli-
cation of delete() for each element i ∈ I.

Example 3. Consider the insert-function from Figure 3. Assume that at the pro-
gram point before the call to this function we have the abstract state: T0 =
〈∅, {�, t 7→ {•}}, ∅, true, ∅〉. Then enter](T0) = T1 is the abstract value for the
start point of the corresponding abstract call to the function insert() where:

T1 = 〈∅, ρ1, ∅, φ1, ∅〉 where
ρ1 = {� 7→ {•}, t 7→ {&slots[hv]}}
φ1 = t =̇ &slots[hv]

At the program point before the lock operation, we have T2 = 〈∅, ρ1, {hv}, φ1, ∅〉.
After locking, we thus have T3 = 〈∅, ρ1, {hv}, φ1, {&locks[hv]}〉 — implying
that the elements accessed through the pointer t belong to the region slots[hv]
and that these accesses are protected by the corresponding lock locks[hv]. At
function exit, we finally arrive at T4 = 〈∅, ρ1, {hv}, φ1, ∅〉. Combining this state
with the state T0 before the call will recover the set of possibly modified int
variables as well as the must equalities before the call. In the example, we just
recover the abstract state T0. ut

6 Analyzing the Linux Kernel

We have implemented our analysis in the Goblint analyser and applied it to
Linux kernel modules such as device drivers. One challenge in analyzing device
drivers is how to model the rest of the kernel. Goblint uses a driver harness
that assumes the worst possible interleavings of the device’s file operations and
interrupt handlers. Starting from the module initialization code, we track func-
tion pointers that are held in structs. Pointers passed to library functions are
assumed to be potential call-backs and are analyzed as separate threads. These
may interleave with each other as well as with the rest of the initialization code.

In the implementation, we also extended the basic approach to deal with
nested static global data-structures such as structs containing arrays as well as
well-behaved pointer arithmetic within structs. This is necessary for the analysis
of the Linux API for doubly linked lists. This API provides macros which, e.g.,
calculate the start address of a struct from the address of a component. While
these macros have a clean semantics, their implementation makes extensive use

12

File Size (merged) Time Verified Warnings

atmel tclib 1317 lines 0,07 s 1 0
hwmon 1434 lines 0,23 s 1 0
enclosure 1510 lines 0,19 s 1 1
scsi dh 4370 lines 0,57 s 2 0
dmaengine 4449 lines 0,83 s 3 0
scsi rdac 4744 lines 0,81 s 1 0
usb hcd 7340 lines 3,32 s 3 2
avc 7466 lines 1,68 s 2 1
ppp generic 10818 lines 4,70 s 4 1

Table 1. Result of analysing kernel modules

of type casts, and addition and subtraction of pointers. Therefore, our imple-
mentation allows application of the address operator to arbitrary expressions
evaluating to global addresses. Thus, pointers may no longer point to the begin-
nings of blocks. Moreover, a pointer variable whose value is obtained from the
value of the pointer variable q by means of such kind of pointer arithmetic is
put into the same region as q.

The results of running our analyzer on a number of different modules from
the kernel is summarized in Table 1. We use the CIL analysis framework [19] as
a front-end to parse and process these files. The sizes of the files in the table
are the sizes of CIL’s outputs after merging the modules with included headers
and removing unused definitions. We ran these experiments on an Athlon 64 X2
3800+ machine under Kubuntu.2

For all these benchmarks, we are successful in automatically inferring the
correlations between elements of lists and their corresponding locks and to ver-
ify that all accesses are protected. The numbers of shared variables for which
we could verify a consistent locking scheme as well those for which conflicting
accesses were found are listed in the table. The analyzer registers accesses to
each element in a region separately; thus, if k linked lists have collapsed into a
single region and there is a conflicting access through a pointer into this region,
the number of warnings would be k and not one. The false alarms for these
benchmakrs are mostly due to our imprecise harness. We will comment here
only on two interesting benchmarks. The file avc is the access vector cache code
of Security Enhanced Linux which served as the inspiration for the examples in
this paper. The analyzer’s output is the following:

Found correlation: avc_cache.latest_notif is guarded by
lockset {notif_lock}

Found correlation: avc_cache.slots is guarded by
lockset {avc_cache.slots_lock[*]}

Datarace over avc_callbacks:
write in some thread with lockset: {} (avc.c:6953)

2 The goblint website, http://goblint.at.mt.ut.ee, has detailed instructions
on reproducing these benchmarks.

13

The asterisk in the second lockset is the analyzer’s modest way of indicating
that it has verified the correlation between the index expressions used when
accessing list elements in the array of slots and the index expressions used to
acquire a mutex from the array of locks. The analyzer warns about a “race”
for avc_callbacks. While this is indeed a race in the context of this module
alone, the function for registering callbacks are only used in the initialization
code by the files using this module.

The file dmaengine is part of the hardware-neutral interface to the DMA
subsystem. The programmers have commented in the source file: “The subsystem
keeps two global lists, dma_device_list and dma_client_list. Both of
these are protected by a mutex, dma_list_mutex.” Our analyzer succeeds in
verifying this.

7 Related work

Regions and ownership types have been used for compile-time garbage collec-
tion [27] or to ensure encapsulation in object-oriented languages [4]. More re-
cently, analyzers have been developed for checking correct usage of region-based
memory management APIs [1, 29]. Note, however, that the regions there need
not be closed under reachability. For analyzing pointers, Gulwani and Tiwari [10]
present a domain of quantified may- and must-equality pairs which can express
similar invariants to ours. This analysis, while being extremely precise, has prob-
lems with dealing with doubly linked lists. Reachability in the presence of pointer
arithmetic has been studied by Chatterjee et al. [3] who provide an annotation
language for reasoning about the linked list API of Windows device drivers.

Precise abstractions of the heap have been provided by separation logic [22]
and shape analysis [24]. Gopan et al. [8] present a shape analysis which allows
reasoning about dynamic memory and the values of array elements, Gulwani
et al. [9] present a set cardinality analysis which combines shape and numeric
abstractions to reason about sizes of data-structures. Hackett and Rugina [11]
present a shape analysis which is built on top of a partitioning of the heap into
disjoint regions. These regions are derived from a standard points-to analysis and
again not necessarily closed under reachability. Recent work has also provided
methods for making shape analysis scale better [2, 15, 31] — at a certain loss in
precision, e.g., by no longer tracking arrays.

Our main interest has been to provide efficient methods which are precise
enough for analyzing data races in presence of dynamic data-structures and
arrays. Rugina and Rinard [23] present techniques to avoid races by analyzing
disjointness of accessed memory blocks. Naik and Aiken [18] propose conditional
must-not aliasing to deal with locking schemes of various levels of granularity
in Java. They introduce disjoint reachability analysis for dealing with medium-
grained locking; however, their notion of disjointness is based on allocation sites,
which is not helpful in cases such as Figure 2. We have experimented with
some analyzers that perform race detection for C. We compared the following
analyzers: Locksmith, a sound race detection tool based on type-based label-

14

Test Goblint Locksmith Coverity DDVerify

static +/+ +/+ +/+ −/+
single list +/+ +/− −/+
shared lists +/+ +/− −/+
simple array +/+ +/− −/+
shared array +/+ +/− −/+

Table 2. Summary of comparison. For each idiom, “+” indicates success, while “–”
indicates the existence of a False Negative / False Positive.

flow [21]; Coverity Prevent, a commercial bug-detection tool based on meta-
compilation techniques [6]; and DDVerify, a device driver model-checker that
checks for proper use of the kernel API [30].

We compared the tools on small test programs. For each test, there is a
version with a race and one without races. The test static is the simplest possible
race example, has a static global variable that should be protected by a static
lock; single list contains a linked list where access to its nodes are protected by a
single lock; shared lists has two lists that are protected by their own locks; still,
there might be races due to sharing between elements in the lists; simple array
contains an array of locks and an array of linked lists where the accesses should
be properly correlated as in the examples of this paper; shared array is like the
previous test, except there might be sharing between the linked lists of different
array elements, hence there may a race although the correct lock is acquired.
The summary of this comparison is shown in Table 2.

It seems that DDVerify checks other properties related to mutexes, e.g.,
double-acquisition of locks, but not whether accesses to globals are protected
by the same locks. Locksmith and Coverity Prevent pass the first test, but al-
ready the simple linked list example is beyond their current capabilities. Lock-
smith complains on all tests, even when the program is perfectly safe; Coverity
remains completely silent, even in the presence of races. Naturally, these ana-
lyzers have their advantages: Coverity checks a host of other properties, Lock-
smith deals with per-element locking, and DDVerify has an extremely precise
automatic device driver harness mechanism; nevertheless, for medium-grained
locking, Goblint is the clear winner.

8 Conclusion

We have presented a general approach to certify absence of data-races in C. In
order to deal with dynamic data-structures, we provided a simple region analysis
which allows to analyze reachability through field selection and dereferencing.
We also indicated how this method can be extended to deal with arrays of regions
and (well-behaved) pointer arithmetic. Our methods have been implemented in
the efficient interprocedural data-race analyzer Goblint allowing us to verify
locking schemes for dynamic data structures and arrays in the Linux kernel.

15

While we have analyzed benchmarks without modifying the original ker-
nel code, in four of the benchmarks we only considered conflicts between write
accesses. Read accesses are often protected by reader/writer locks, or more re-
cently, the Read-Copy-Update mechanism. This poses a problem when the read
accesses are protected at a coarser level of granularity than that of the write
accesses. Thus, our failure to distinguish these would generate false alarms. An-
other challenge is to combine our technique here with methods dealing with
per-element locking [20] in order to verify programs where some dynamically
allocated structures, such as the per-device structure, contain linked lists and
associated mutexes.

Acknowledgments. We thank Kalmer Apinis for assistance with the program-
ming. Development of the analyzer is partially supported by the Estonian Science
Foundation under grant no. 6713.

References

1. C. Boyapati, A. Salcianu, W. Beebee, and M. Rinard. Ownership types for safe
region-based memory management in real-time java. In PLDI’03, pages 324–337.
ACM Press, 2003.

2. C. Calcagno, D. Distefano, P. O’Hearn, and H. Yang. Compositional shape analysis
by means of bi-abduction. In POPL’09, pages 289–300. ACM Press, 2009.

3. S. Chatterjee, S. Lahiri, S. Qadeer, and Z. Rakamarić. A reachability predicate for
analyzing Low-Level software. In TACAS’07, LNCS, vol. 4424, pp. 19–33. Springer,
2007.

4. D. G. Clarke, J. M. Potter, and J. Noble. Ownership types for flexible alias pro-
tection. In OOPSLA’98, pages 48–64. ACM Press, 1998.

5. P. Cousot and R. Cousot. Static Determination of Dynamic Properties of Recursive
Programs. In E. Neuhold, editor, Formal Descriptions of Programming Concepts,
pages 237–277. North-Holland Publishing Company, 1977.

6. D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking system rules using
system-specific, programmer-written compiler extensions. In OSDI’00, pages 1–
16. USENIX Association, 2000.

7. C. Fecht and H. Seidl. A Faster Solver for General Systems of Equations. Sci.
Comput. Programming, 35(2):137–161, 1999.

8. D. Gopan, T. Reps, and M. Sagiv. A framework for numeric analysis of array
operations. In POPL’05, pages 338–350. ACM Press, 2005.

9. S. Gulwani, T. Lev-Ami, and M. Sagiv. A combination framework for tracking
partition sizes. In POPL’09, pages 239–251. ACM Press, 2009.

10. S. Gulwani and A. Tiwari. An abstract domain for analyzing heap-manipulating
low-level software. In CAV’07, LNCS, vol. 4590, pp. 379–392. Springer, 2007.

11. B. Hackett and R. Rugina. Region-based shape analysis with tracked locations. In
POPL’05, pages 310–323. ACM Press, 2005.

12. M. Hind, M. Burke, P. Carini, and J.-D. Choi. Interprocedural pointer alias anal-
ysis. ACM Trans. Prog. Lang. Syst., 21(4):848–894, 1999.

13. M. Karr. Affine relationships among variables of a program. Acta Inf., 6(2):133–
151, 1976.

16

14. J. Knoop and B. Steffen. The Interprocedural Coincidence Theorem. In CC’92,
LNCS, vol. 641, pp. 125–140. Springer, 1992.

15. R. Manevich, T. Lev-Ami, M. Sagiv, G. Ramalingam, and J. Berdine. Heap decom-
position for concurrent shape analysis. In SAS’08, LNCS, vol. 5079, pp. 363–377,
2008.

16. M. Müller-Olm and H. Seidl. A note on Karr’s algorithm. In ICALP’04, LNCS,
vol. 3142, pp. 1016–1028. Springer, 2004.

17. M. Müller-Olm and H. Seidl. Upper adjoints for fast inter-procedural variable
equalities. In ESOP’08, LNCS, vol. 4960, pp. 178–192. Springer, 2008.

18. M. Naik and A. Aiken. Conditional must not aliasing for static race detection. In
POPL’07, pages 327–338. ACM Press, 2007.

19. G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. Cil: An infrastructure for
C program analysis and transformation. In CC’02, LNCS, vol. 2304, pp. 213–228,
2002.

20. P. Pratikakis, J. S. Foster, and M. Hicks. Existential label flow inference via CFL
reachability. In SAS’06, LNCS, vol. 4134, pp. 88–106. Springer, 2006.

21. P. Pratikakis, J. S. Foster, and M. Hicks. Locksmith: Context-sensitive correlation
analysis for detecting races. In PLDI’06, pages 320–331. ACM Press, 2006.

22. J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In
LICS’02, pages 55–74. IEEE Press, 2002.

23. R. Rugina and M. C. Rinard. Symbolic bounds analysis of pointers, array indices,
and accessed memory regions. ACM Trans. Prog. Lang. Syst., 27(2):185–235, 2005.

24. M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic.
ACM Trans. Prog. Lang. Syst., 24(3):217–298, 2002.

25. H. Seidl, V. Vene, and M. Müller-Olm. Global invariants for analyzing multi-
threaded applications. Proc. of the Estonian Academy of Sciences: Phys., Math.,
52(4):413–436, 2003.

26. M. Sharir and A. Pnueli. Two approaches to interprocedural data flow analysis.
Program Flow Analysis: Theory and Applications, pages 189–234, 1981.

27. M. Tofte and L. Birkedal. A region inference algorithm. ACM Trans. Prog. Lang.
Syst., 20(4):724–767, 1998.

28. V. Vojdani and V. Vene. Goblint: Path-sensitive data race analysis. Annales Univ.
Sci. Budapest., Sect. Comp., 30:141–155, 2009.

29. X. Wang, Z. Xu, X. Liu, Z. Guo, X. Wang, and Z. Zhang. Conditional correlation
analysis for safe region-based memory management. In PLDI’08, pages 45–55.
ACM Press, 2008.

30. T. Witkowski, N. Blanc, D. Kroening, and G. Weissenbacher. Model checking
concurrent linux device drivers. In ASE’07, pages 501–504. ACM Press, 2007.

31. H. Yang, O. Lee, J. Berdine, C. Calcagno, B. Cook, D. Distefano, and P. O’Hearn.
Scalable shape analysis for systems code. In CAV’08, LNCS, vol. 5123, pp. 385–398,
2008.

17

